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Plasmoid-induced-reconnection and fractal reconnection
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As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-
reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar ob-
servations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss
the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which
we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the in-
duction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid
ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for
the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current
sheet tends to have a fractal structure via the following process path: tearing ⇒ sheet thinning ⇒ Sweet-Parker
sheet ⇒ secondary tearing ⇒ further sheet thinning ⇒ · · · . These processes occur repeatedly at smaller scales
until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous
resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many
plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast
reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented
for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.

1. Introduction
Recent numerical simulations (e.g., Ugai, 1986, 1992;

Scholer, 1989; Biskamp, 1986; Yan et al., 1992; Yokoyama

and Shibata, 1994; Magara and Shibata, 1999; Tanuma et

al., 1999, 2001) have revealed that if the resistivity is spa-

tially uniform, fast, steady-state Petscheck-type reconnec-

tion does not occur but instead slow, Sweet-Parker-type re-

connection occurs. This holds especially when a strong in-

flow is imposed at the external boundary, and the only way

so far found to achieve a steady-state Petschek configura-

tion is to have a localized resistivity. The so called anoma-

lous resistivity satisfies this condition. However, there are a

number of questions about it.

1. In order to produce anomalous resistivity, the current

sheet thickness must be as small as the ion Larmor radius1

rL ,ion =
mivthc

eB
= 100

(

B

10 G

)−1 (

T

106 K

)1/2

cm (1)

or the ion inertial length

lin,ion = c/ωp,i = 300
( n

1010 cm−3

)−1/2

cm, (2)

1Although the physics of anomalous resistivity has not yet been fully
understood, it is known that anomalous resistivity occurs due to plasma
turbulence which is produced by the microscopic plasma instability, such as
the lower hybrid drift instability, the electrostatic ion cyclotron instability,
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both of which are of order of 1 m in the solar corona. Since

the size of solar flares is typically 104 km, there is a large

gap between the flare size and the necessary microscopic

scale to produce anomalous resistivity. How can such an

enormous gap between macroscopic and microscopic scales

be reconciled in real flares?

2. Even if the anomalous resistivity (or localized resistiv-

ity) is realized, what determines the reconnection rate?

Based on recent observations of solar flares and numer-

ical simulations, we try to give possible answers to above

questions. We argue that the key physics needed to answer

the above questions is the global coupling between plasmoid

(flux rope) ejection and reconnection process. Since this

coupling is scale free, it can occur on any scale, constitut-

ing a fractal reconnection process, which couples the macro-

and micro-scales.

2. Solar Observations: Flares and Plasmoid Ejec-
tions

Yohkoh has revealed numerous indications of magnetic

reconnection in solar flares, such as cusps, arcades, loop

top hard X-ray (HXR) sources, X-ray jets, and so on (e.g.,

Tsuneta et al., 1992a; Hanaoka et al., 1994; Masuda et al.,

and the ion sound instability (e.g., Treumann and Baumjohann, 1997). In

the case of the lower hybrid drift instability, the threshold of the instabil-

ity is vd > vion,th where vd = j/(nee) is the electron-ion drift veloc-

ity, and vion,th = (kT/mi )
1/2 is the ion thermal speed. This equation

becomes equivalent to d < rL ,ion if we consider the pressure balance

p = 2nkT ≃ B2/8π between inside and outside of the current sheet,

where d is the thickness of the current sheet.
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1994; Forbes and Acton, 1996; Shibata, 1999). Further-

more, as has been predicted by some pioneers (Hirayama,

1991; Moore and Roumeliotis, 1992), the association of

plasmoid (flux rope) ejections with flares is much more com-

mon than had been thought (e.g., Shibata et al., 1995; Nitta,

1996; Ohyama and Shibata, 1997, 1998, 2000; Tsuneta,

1997; Akiyama and Hara, 2000). This has led us to ad-

vocate a unified model of flares shown in Fig. 1 (Shibata

et al., 1995; Shibata, 1996, 1997, 1998, 1999). Recent ob-

servations with SOHO/LASCO have also revealed a lot of

evidence of flux rope and disconnection events in coronal

mass ejections (CMEs) (e.g., Dere et al., 1999; Simnet et

al., 1997), and Yohkoh has shown that giant arcades formed

after prominence eruptions or CMEs are physically simi-

lar to flare arcades even though their total X-ray intensity

is much lower than that of normal flares (e.g., Tsuneta et al.,

1992b; Hanaoka et al., 1994). Figure 2 shows several exam-

ples of plasmoid (flux rope) ejections on the Sun from the

largest scale in CMEs (∼1011 cm) to the smallest scale in

compact flares (∼109 cm). The velocity of these plasmoids

range from a few 10 km/s to 1000 km/s, and their maximum

values are comparable to the inferred coronal Alfvén speed

(∼1000 km/s). These images show that the magnetic recon-

nection and associated plasmoid ejection universally occur

on widely different scales.

One of the interesting findings by Yohkoh concerning X-

ray plasmoid ejections is that, in impulsive flares, a plas-

moid starts to be ejected slowly, long before the impulsive

Fig. 1. A unified model of flares: plasmoid-induced-reconnection model

(Shibata et al., 1995). This is an extention of a classical model of erup-

tive solar flares, called the CSHKP model.

phase, and then is rapidly accelerated during the impulsive

phase (Ohyama and Shibata, 1997, 1998; Tsuneta, 1997;

Fig. 3). Similar behavior has also been observed for LDE

flares and CME events (e.g., Kahler et al., 1988; Hund-

hausen, 1999).

Another interesting finding from Yohkoh on X-ray plas-

moid ejection is that there is a positive correlation between

the plasmoid velocity (Vplasmoid ∼ 30–400 km/s) and the

apparent rise velocity of the flare loop (Vloop ∼ 4–20 km/s)

(Shibata et al., 1995):

Vplasmoid ≃ (8 − 20) × Vloop. (3)

This relation (though still very preliminary) suggests that

the plasmoid velocity is related to the reconnection inflow

speed, or vice-versa. This is because the apparent rise mo-

tion of the flare loop is coupled to the reconnection process.

Consequently, magnetic flux conservation leads to

Vloop ≃ (Bin f low/Bloop)Vin f low. (4)

Morimoto and Kurokawa (2000) found a correlation be-

tween the erupting velocity of H-alpha filaments (i.e., a plas-

moid) and the thermal energy density of post-eruption X-ray

arcades. This also suggests that there is a physical relation

between plasmoid velocity and inflow speed (reconnection

rate).

3. Role of Plasmoid: Plasmoid-Induced-Recon-
nection Model

On the basis of these observations, Shibata (1996, 1997)

proposed a plasmoid-induced-reconnection model, which is

an extension of the classical CSHKP (Carmichael, 1964;

Sturrock, 1966; Hirayama, 1974; Kopp and Pneuman, 1976)

model and similar in spirit to the model of Anzer and

Pneuman (1982). In this model, the plasmoid ejection plays

a key role in triggering fast reconnection in two different

ways (Fig. 1).

1) A plasmoid (flux rope) can store energy by inhibit-

ing reconnection. A large magnetic island (plasmoid or flux

rope) inside the current sheet is a big obstacle for recon-

nection. Hence if an external force compresses the cur-

rent sheet, magnetic energy can be stored around the current

sheet. Only after the plasmoid is ejected out of the current

sheet, will the anti-parallel field lines be able to touch and

reconnect. If a larger plasmoid is ejected, a larger energy

release occurs.

2) A plasmoid ejection can induce a strong inflow into

the reconnection site. If a plasmoid is suddenly ejected out

of the current sheet at the velocity Vplasmoid , an inflow must

develop toward the X-point in order to compensate for the

mass ejected by the plasmoid, as has been shown in many

numerical simulations (e.g., Forbes, 1990; Yokoyama and

Shibata, 1994, 2001; Magara et al., 1997; Tanuma et al.,

2001; see also Fig. 4). The inflow speed can be estimated

from the mass conservation law (assuming incompressibil-

ity, for simplicity);

Vin f low ∼ Vplasmoid Wplasmoid/L in f low, (5)

where Wplasmoid is the typical width of the plasmoid, and

L in f low (≥Wplasmoid ) is the typical vertical length of the in-

flow region. In deriving Eq. (5), it is assumed that the
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Fig. 2. Various plasmoids (flux rope) with different scales observed on the Sun. (a) Coronal mass ejection (CME), the largest-scale plasmoid on the

Sun (∼1011 cm) observed with SOHO/LASCO on Nov. 1–2, 1997 (Dere et al., 1999). These are running-difference images. The velocity of the CME

is 140–240 km/s. (b) Large-scale X-ray plasmoid associated with an LDE (long duration event) flare on Feb. 21, 1992 (∼1010 cm) observed with

Yohkoh/SXT (Hudson, 1994; Ohyama and Shibata, 1998). The plasmoid velocity is about 100 km/s. (c) Small-scale X-ray plasmoid associated with an

impulsive flare (∼ 109 cm) observed with Yohkoh/SXT on Oct. 5, 1992 (Ohyama and Shibata, 1998). These are negative images. The velocity of the

plasmoid is 250–500 km/s. 1” corresponds to 726 km.
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Fig. 3. Temporal variations of the height of an X-ray plasmoid and the hard

X-ray intensity of an impulsive solar flare on 11 Nov. 1993 observed with

Yohkoh SXT and HXT (Ohyama and Shibata, 1997).

Fig. 4. Temporal variations of both the reconnection rate (electric field

at the reconnection-point) and the height of the plasmoid (magnetic is-

land) for a typical result of 2.5D MHD numerical simulation of magnetic

reconnection induced by plasmoid (flux rope) ejection (Magara et al.,

1997). Units of the height, time, and electric field are L (a half length

between footpoints of a sheared arcade loop), t0 = L/Cs0 (Cs0 is the

sound speed ∼0.4VA), and E0 = Cs0 B0/c, respectively. In a typical

solar coronal condition, L ≃ 5000 km, VA ≃ 1000 km/s, E0 ≃ 2 × 104

V/m, and t0 ≃ 20 sec.

mass flux into reconnection region (∼L in f lowVin f low) is

balanced by the mass flux carried by the plasmoid motion

(∼Vplasmoid Wplasmoid ). Since the reconnection rate is deter-

mined by the inflow speed, the ultimate origin of fast recon-

nection in this model is the fast ejection of the plasmoid. If

the plasmoid ejection (or outflow) is inhibited in some way,

then fast reconnection ceases (Ugai, 1982; Tanuma et al.,

2001; Lin and Forbes, 2000).

This model naturally explains (1) the strong acceleration

of plasmoids during the impulsive (rise) phase of flares (see

Fig. 3 and next section), (2) the positive correlation between

plasmoid velocity and the apparent rise velocity of flare

loops (Eqs. (3) and (5)), (3) the total energy release rate of

flares and plasmoid ejections (Shibata, 1997), and (4) the

time scale of the impulsive (rise) phase for both impulsive

flares (∼L in f low/Vplasmoid ∼ 104 km/100 km/s ∼ 100 sec),

and for LDE flares (∼105 km/100 km/s ∼ 103 sec).

It is interesting to note that similar impulsive reconnec-

tion associated with plasmoid ejection (current sheet ejec-

tion) has also been observed in laboratory experiments (Ono

et al., 2001).

4. Nonlinear Instability Caused by Strong Cou-
pling between Plasmoid Ejection (Acceleration)
and Reconnection

In this section, we examine the physical mechanism of

the plasmoid-induced-reconnection in more detail. We con-

sider a situation where reconnection has just begun and a

plasmoid, with a length L p and a width Wp, has just started

to form. The reconnection generates a jet (with the Alfvén

speed VA) which collides with the plasmoid and accelerates

it. Thus the plasmoid speed increases with time, which in-

duces a faster inflow into the reconnection point (i.e., the

X-point), thereby leading to yet faster reconnection and an

even larger energy release rate. This, in turn, accelerates

the plasmoid again, eventually leading to a kind of nonlin-

ear instability for the plasmoid ejection and the associated

reconnection.

Let us estimate the plasmoid velocity in this process, by

assuming that the plasmoid is accelerated solely by the mo-

mentum of the reconnection jet. (Note that we do not deny

the possibility of acceleration of plasmoid by other mecha-

nism such as global magnetic pressure. The purpose of this

section is simply to show how the momentum of the recon-

nection jet can accelerate the plasmoid.) We also assume

that the plasmoid density ρp and the ambient plasma den-

sity ρ are constant with time, for simplicity. In absence of

any appropriate time-dependent theory in a rapidly evolv-

ing configuration, we assume that the steady state mass con-

servation Vi L i = VpWp (Eq. (5)) is valid and also that all

the mass flux (Vi L i ) convected into the reconnection region

(with length of L i ) are accelerated up to Alfvén speed as in

Sweet-Parker or Petschek model.

We first consider the case in which the mass added to the

plasmoid by the reconnection jet is much smaller than the

total mass of the plasmoid (i.e., the plasmoid speed Vp is

much smaller than the Alfvén speed VA). Equating the mo-

mentum added by the reconnection jet with the change of

momentum of the plasmoid, we have

ρp L pWp

dVp

dt
= ρVi L i VA = ρVpWpVA (6)

where we use the mass conservation relation for the inflow

and the outflow, VpWp = Vi L i (Eq. 5). (See Appendix for

detailed derivation of the Eq. (6).) Physically, this means

that the inflow is induced by the outflow (plasmoid ejection).

This is the reason why this reconnection is called plasmoid-

induced-reconnection.

The equation (6) is easily solved to yield the solution

Vp = V0 exp(ωt) (7)

where V0 is the initial velocity of the plasmoid, and

ω =
ρVA

ρp L p

. (8)
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Thus, the plasmoid velocity increases exponentially with

time, and the “growth time” (1/ω) is basically of order of

Alfvén time. The inflow speed becomes

Vi =
Wp

L i

Vp =
WpV0 exp(ωt)

L i (0) +
V0

ω
(exp(ωt) − 1)

. (9)

If Wp is constant, the inflow speed increases exponentially

with time in the initial phase, but tends to be a constant

(≃ωWp) in the late phase.

As time goes on, the mass added to the plasmoid by the jet

increases and eventually becomes non-negligible compared

with the initial mass (i.e., the plasmoid speed becomes non-

negligible compared with the Alfvén speed). In this case,

we obtain the solution (see Appendix for derivation):

Vp =
VA exp(ωt)

exp(ωt) − 1 + VA/V0

. (10)

Hence the plasmoid speed is saturated at around t = tc ≃
1
ω

ln(VA/V0) and hereafter tends to the Alfvén speed VA as

time goes on. The inflow speed becomes

Vi =
WpVp

L i

= Wp

VA exp(ωt)/(exp(ωt) + a)

(VA/ω) ln[(exp(ωt) + a)/(1 + a)] + L i (0)
(11)

where a = VA/V0 − 1. If Wp is constant in time, the inflow

speed gradually decreases in proportion to 1/t after tc.2 On

the other hand, if Wp increases with time in proportion to t

after tc, the inflow speed becomes constant,

Vi = ωWp(t = 0) =
ρVA

ρp L p

Wp(t = 0). (12)

In this case, the reconnection becomes steady, and the shape

of the reconnection jet and plasmoid becomes self-similar

in time and space (e.g., Nitta et al., 2001; Yokoyama and

Shibata, 2001).

A typical solution for Wp = constant is shown in Fig. 5,

which reminds us of the observed relation between plasmoid

height vs. hard X-ray intensity (Fig. 3; Ohyama and Shi-

bata, 1997) and explains also the numerical simulation re-

sults (Fig. 4; Magara et al., 1997) very well. It is noted here

that the hard X-ray intensity is a measure of either the elec-

tric field at the reconnection point (E ∝ Vi B) or the energy

release rate (∝Poynting flux ∝ Vi B2/(4π)).

5. Fractal Reconnection
As we discussed in Section 1, we have a fundamental

question: how can we reach the small dissipation scale nec-

essary for anomalous resistivity or collisionless reconnec-

tion in solar flares? Also, even if we can reach such a small

scale, is it true that there is only one diffusion region with a

thickness of 100 cm (and with a length of 10 m or 100 m) in

a solar flare as expected from Petschek’s steady state theory?

The idea that the reconnection process is inherently tur-

bulent, involving a spectrum of different scales, has been

2This kind of evolution occurs when 1) the current sheet length is lim-

ited (Tanuma et al., 2001), 2) magnetic field distribution is non-uniform

around the current sheet (Magara et al., 1997).

Fig. 5. Temporal variations of the plasmoid velocity (Vplasmoid ), its height,

and inflow velocity (Vin f low), in an analytical model (Eqs. (10) and (11))

for the case of VA/V0 = 100. Units of the velocity, height, and time are

VA, L p , and L p/VA , respectively.

around for some time (see Ichimaru, 1975, for examples).

However, here we argue that a plasma with large magnetic

Reynolds number (occurs as in the solar corona, the inter-

stellar medium, or the intergalactic medium) inevitably

leads to a fractal current sheet with many magnetic islands

of different sizes connecting macroscopic and microscopic

scales (Tajima and Shibata, 1997; Shibata, 1997, 1998;

Tanuma et al., 2001).

Let us first consider the Sweet-Parker current sheet with a

thickness of δn and a length λn . This current sheet becomes

unstable to secondary tearing if

tn ≤ λn/VA, (13)

where tn is the growth time of the tearing instability at

maximum rate (ωmax ∝ kmax
−2/5tdi f

−3/5tA
−2/5 and kmax ∝

(tdi f /tA)−1/4, where ωmax and kmax are the maximum

growth rate and corresponding wave number),

tn ≃ (tdi f tA)1/2
≃

(

δ2
n

η

δn

VA

)1/2

, (14)

and λn/VA is the time for the reconnection flow to carry

the perturbation out of the current sheet. (As for the theory

of the secondary tearing in the Sweet-Parker sheet, see e.g.,

Sonnerup and Sakai (1981), Biskamp (1992).) That is, if

tn > λn/VA, the tearing instability is stabilized by the effect

of flow. Using Eqs. (13) and (14), we find

δ3
n ≤ ηVA

(

λn

VA

)2

,

i.e.,

δn ≤ η1/3V
−1/3

A λ2/3
n . (15)

If this inequality is satisfied, the secondary tearing occurs,

leading to the current sheet thinning in the nonlinear stage of

the tearing instability. At this stage, the current sheet thick-

ness is determined by the most unstable wavelength of the

secondary tearing instability, i.e.,

λn+1 ≃ 6δn R1/4
m∗,n = 6η−1/4V

1/4

A δ5/4
n

≤ 6η1/6V
−1/6

A λ5/6
n , (16)
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where Rm∗,n = δn VA/η. The current sheet becomes thinner

and thinner, and when the current sheet thickness becomes

δn+1 ≤ η1/3V
−1/3

A λ
2/3

n+1, (17)

further secondary tearing occurs, and the same process oc-

curs again at a smaller scale (Fig. 6). It follows from Eqs.

(16) and (17) that

δn ≤

(

η

VA

)1/6

62/3δ
5/6

n−1, (18)

or
δn

L
≤ A

(

δn−1

L

)5/6

, (19)

where

A = 62/3 R−1/6
m , (20)

and

Rm =
LVA

η
. (21)

This fractal process continues until the current sheet thick-

ness reaches the microscopic scale such as the ion Larmor

radius or ion inertial length. The equation (19) leads to

δn

L
= A6(1−x)

(

δ0

L

)x

, (22a)

where

x = (5/6)n. (22b)

From this, we can estimate how many secondary tearings are

necessary for the initial macroscopic current sheet to reach

the microscopic scale. Taking the typical solar coronal val-

ues, δ0 = 108 cm, L = 109 cm, VA = 108 cm/s, η = 104

cm2/s for T = 106 K, we find Rm = 1013 and

A ≃ 0.02. (23)

Since δn must be smaller than the typical microscopic scale,

e.g., the ion Larmor radius (∼100 cm), we have

δn/L < rL ,ion/L , (24)

or

(0.02)6(1−(5/6)n)(0.1)(5/6)n

< 10−7.

The solution of this inequality (see Fig. 7) is

n ≥ 6. (25)

That is, in the solar corona, six secondary tearings are nec-

essary to reach microscopic current sheet.

What is the time scale of this fractal tearing? The time

scale for the n-th tearing is

tn ≃ δ3/2
n (ηVA)−1/2

= (δn/δ0)
3/2t0, (26)

where

t0 = δ
3/2

0 /(ηVA)1/2. (27)

Since Eq. (22) leads to

δn/δ0 ≃ A
6(1−(5/6)n)

0 , (28)

λ

λ

λ

δn-1

δn

δ

n-1

n+1

n+1

n

Fig. 6. Schematic view of fractal reconnection.
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n

Fig. 7. The current sheet thickness (δn/L) in the n-th secondary tearing

(see Eq. (22a)).

where A0 = 62/3 R
−1/6

m∗,0 , and Rm∗,0 = δ0VA/η, we find

tn ≃ A
9(1−(5/6)n)

0 t0. (29)

Thus we obtain

tn/tn−1 = A
(3/2)(5/6)n−1

0 ≤ A
3/2

0 (30)

for n ≥ 1. It follows from this equation that

tn ≤ A
3/2

0 tn−1 ≤ A
(3/2)n

0 t0. (31)

Consequently, the total time from the 1st (secondary) tearing

(t1) to the n-th (secondary) tearing (tn) becomes

ttotal = t1+t2+· · ·+tn ≤ t0 A
3/2

0

1 − A
3n/2

0

1 − A
3/2

0

≤ t0 A
3/2

0 . (32)

For typical coronal conditions (described above), this time

scale becomes

ttotal ≤ 6 × 10−3t0, (33)
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which is much shorter than the time scale of the 0-th tear-

ing (t0). Although the 0-th tearing time is long (∼3 × 104–

106 sec for initial current sheet with δ0 ∼ 107–108 cm), the

nonlinear fractal tearing time is quite short (less than 102–

3 × 103 sec), so that the microscopic scale is easily reached

within a short time as a result of the fractal tearing.

It should be stressed that the role of the fractal tearing is

only to produce a very thin current sheet with a microscopic

scale of order of the ion Larmor radius or the ion inertial

length. The fractal tearing does not explain the main energy

release in flares. The main energy release is explained by

the fast reconnection process which occurs after the ejection

of the large scale plasmoid as we discussed before.

6. Summary: A Scenario for Fast Reconnection
Let us summarize our scenario of fast reconnection in the

solar corona, which is illustrated in Figs. 8 and 9 (the latter

is from a numerical simulation by Tanuma et al., 2001 and

it nicely illustrates a part of our scenario). Our scenario can

also be applied to other hot astrophysical plasmas (e.g., stel-

lar corona, interstellar medium, galactic halo, galactic clus-

ters, and so on) for which magnetic Reynolds number and

the ratio of its characteristic scale length to the ion Larmor

radius (or ion inertial length) are very large.

Initially we assume the current sheet whose thickness is

much larger than the microscopic plasma scale. Such a cur-

rent sheet is easily created by the interaction of emerging

flux with an overlying coronal field (e.g., Heyvaerts et al.,

1977; Shibata et al., 1992; Yokoyama and Shibata, 1995),

the collision of a moving bipole with other magnetic struc-

ture (e.g., Priest et al., 1994), the global resistive MHD in-

stability in a shearing arcade (e.g., Mikic et al., 1988;

Biskamp and Welter, 1989; Kusano et al., 1995; Choe and

Lee, 1996; Magara et al., 1997; Choe and Cheng, 2000;

Cheng and Choe, 2001), or other related mechanisms (e.g.,

Forbes, 1990; Chen et al., 2001).

If the current sheet length becomes longer than the crit-

ical wavelength for the tearing mode instability, the insta-

bility starts. As the instability develops, it enters a nonlin-

ear regime which makes the initial current sheet thinner and

thinner. The current sheet thinning stops when the sheet

thickness becomes comparable to that of the Sweet-Parker

sheet, and thereafter the sheet length increases with time. If

the sheet length becomes longer than a critical wavelength

(Eq. (13)), secondary tearing occurs. Even if the sheet has

not yet reached the Sweet-Parker state, it can become unsta-

ble to the secondary tearing if the sheet thickness satisfies

the same condition (Eq. (13)). Then the same process oc-

curs again at a smaller scale, and the system evolves into

one that is fractally structured. In this way, a microscopicly

small scale (such as ion Larmor radius or ion inertial length)

can be reached within a short time.

Once a small scale is achieved, fast reconnection occurs

because anomalous resistivity can now set in. It is also

possible that fast collisionless reconnection occurs with a

nondimensional reconnection rate of the order of 0.1–0.01 at

this small scale (see recent full particle simulations by, e.g.,

Drake, 2000; Hoshino et al., 2001; Tanaka, 2001; Horiuchi

et al., 2001). Hence small scale magnetic islands (plas-

moids) created by small scale tearing are ejected at the Alfvén

v

v

in

p

I

II

III

IV

V

Fig. 8. A scenario for fast reconnection. I: The initial current sheet. II:

The current sheet thinning in the nonlinear stage of the tearing instabil-

ity or global resistive MHD instability. The current sheet thinning stops

when the sheet evolves to the Sweet-Parker sheet. III: The secondary

tearing in the Sweet-Parker sheet. The current sheet becomes fractal

because of further secondary tearing as shown in Fig. 6. IV: The mag-

netic islands coalesce with each other to form bigger magnetic islands.

The coalescence itself proceeds with a fractal nature. In the phases III

and IV, the microscopic plasma scale (ion Larmor radius or ion inertial

length) is reached, so that fast reconnection becomes possible at small

scales, V: The greatest energy release occurs when the largest plasmoid

(magnetic island or flux rope) is ejected. The maximum inflow speed

(Vin = reconnection rate) is determined by the velocity of the plasmoid

(Vp). Hence this reconnection is called plasmoid-induced-reconnection.

speed and collide with other islands to coalesce with each

other, thereby making bigger islands (plasmoids). This coa-

lescing process itself also occurs with a fractal nature (Tajima

and Shibata, 1997).

It should be noted that the ejection (acceleration) of plas-

moids (flux rope with axial field in 3D space) can enhance

the inflow into the reconnection point, creating a positive

feedback, i.e., nonlinear instability (as we outlined in Sec-

tion 4). This determines the macroscopic reconnection rate

which may be smaller or larger than the microscopic re-

connection rate. If the macroscopic reconnection rate (in-

flow speed) is larger than the microscopic reconnection rate,

the magnetic flux is accumulated around the diffusion re-

gion, leading to intermittent fast reconnection (Lee and Fu,

1986; Kitabata et al., 1996; Schumacher and Kliem, 1996;

Tanuma et al., 1999, 2001; Fig. 9). On ther other hand, if

the macroscopic reconnection rate is smaller than the mi-
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Fig. 9. Numerical simulation of reconnection triggered by an MHD fast mode shock (Tanuma et al., 2001), illustrating a part of our proposed scenario

for fast reconnection (Fig. 8): a) passage of the MHD fast shock, b) current sheet thinning (in the nonlinear stage of the tearing instability), c) the

Sweet-Parker reconnection, d) secondary tearing, e) Petschek reconnection as a result of the onset of anomalous resistivity. Slow shocks inherent to

Petschek reconnection are formed.

croscopic reconnection rate, the reconnection may continue

in a quasi-steady state. However, there may be large am-

plitude perturbations around the reconnection point, so that

it would be difficult to maintain quasi-steady reconnection.

The reconnection would be very time dependent with inter-

mittent reconnection and ejection of plasmoids with vari-

ous sizes created by fractal reconnection. Petschek’s slow

shocks are also formed in a very time dependent manner

(e.g., Yokoyama and Shibata, 1994; Tanuma et al., 2001).

The local macroscopic reconnection rate can be much larger

than the average reconnection rate and is determined by the

macroscale dynamics, i.e., plasmoid-induced-reconnection.

In this case, the time dependence is essential for determining

the reconnection rate.

Since this process is scale free, we have fractal structure

in the global current sheet. The greatest energy release oc-

curs when the largest plasmoid is ejected. This may corre-

spond to the impulsive phase of flares. The time variation of

the reconnection rate (and the total energy release rate) asso-

ciated with ejection of plasmoids with various sizes is also

fractal. That is, the power spectrum of the time variation

of the reconnection rate and the energy release rate show a

power-law distribution. This may correspond to the frag-

mented light curves of solar X-ray and radio emissions in
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the impulsive phase of flares (e.g., Benz and Aschwanden,

1992).

Quantitative proof of the fractal nature of the current sheet

(especially in 3D geometry) remains as an important sub-

ject for future numerical simulations and laboratory experi-

ments, both of which will have to be able to handle much

larger magnetic Reynolds number than they currently do

(i.e., Rm ≃ 103–104) in order to solve this fundamental

problem.
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Appendix. Derivation of Eqs. (6) and (10)
As we wrote in the text, we assume that all the mass con-

vected into the reconnection region (ρVi L i per unit time per

unit length in 2D space) are accelerated to Alfvén speed

VA. Since such accelerated mass (reconnection jet) collides

with the plasmoid, it can accelerate the plasmoid. Denoting

Vp = plasmoid speed, Mp = plasmoid mass, �Mp = mass

convected by the reconnection jet during a short time �t ,

which is equal to increase in plasmoid mass during �t , we

obtain the conservation of momentum as

�MpVA + MpVp = (Mp + �Mp)(Vp + �Vp). (A.1)

Here the left hand side is the total momentum before col-

lision, and the right hand side is the total momentum after

collision. If we neglect the term �Mp in the right hand side

of Eq. (A.1) (i.e., if we assume Vp ≪ VA), we have

Mp�Vp = �MpVA. (A.2)

The plasmoid mass (Mp) and the mass added to the plas-

moid (�Mp) by the jet for a short time �t are written as

Mp = ρp L pWp, (A.3)

�Mp = ρVi L i�t, (A.4)

both of which are per unit length. Using these formulae,

the equation (A.2) becomes ρp L pWp�Vp = ρVi L i VA�t ,

which is equivalent to

ρp L pWp

dVp

dt
= ρVi L i VA. (A.5)

Since we assumed that the mass injection into reconnec-

tion region is induced by the plasmoid motion, i.e., Vi L i =

VpWp (Eq. (5)), the right hand side of equation (A.5) be-

comes equal to ρVpWpVA, so that we get Eq. (6):

ρp L pWp

dVp

dt
= ρVi L i VA = ρVpWpVA. (6)

Note that in deriving above formulae, we did not assume

conservation of kinetic energy. This is because some part of

the kinetic energy is dissipated to heat the plasmoid, lead-

ing to increase in gas pressure (internal energy) of the plas-

moid. Although such enhanced gas pressure may accelerate

the plasmoid further, we neglected the effect of gas pressure

in above treatment for simplicity, since it is not easy to es-

timate how much fraction of internal energy is converted to

the kinetic energy of a plasmoid.

When Vp grows to the value that cannot be neglected

compared with VA, we cannot neglect the term �MpVp in

the right hand side of Eq. (A.1). In this case, the momentum

conservation equation becomes Mp�Vp = (VA − Vp)�Mp.

Combining this equation with Eqs. (A.3) and (A.4), we get

dVp

dt
=

ρVp

ρp L p

(VA − Vp). (A.6)

If ρ, ρp, VA, and L p are constant in time, the solution of this

equation becomes Eq. (10):

Vp =
VA exp(ωt)

exp(ωt) − 1 + VA/V0

. (10)

Here V0 is the initial velocity of a plasmoid at t = 0, and

ω = (ρ/ρp)(VA/L p).
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