N

N

Plasmon dispersion of the strongly coupled one
component plasma in two and three dimensions
J.P. Hansen

» To cite this version:

J.P. Hansen. Plasmon dispersion of the strongly coupled one component plasma in two and
three dimensions.  Journal de Physique Lettres, Edp sciences, 1981, 42 (17), pp.397-400.
10.1051/jphyslet:019810042017039700 . jpa-00231956

HAL Id: jpa-00231956
https://hal.archives-ouvertes.fr/jpa-00231956

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.archives-ouvertes.fr/jpa-00231956
https://hal.archives-ouvertes.fr

J. Physique — LETTRES 42 (1981) L-397 - L-400

Classification
Physics Abstracts
05.20 — 52.35

ler SEPTEMBRE 1981, PAGE L-397
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Résumé. — On montre que la dispersion négative et le maximum du taux d’amortissement des ondes électrosta-
tiques sont des caractéristiques communes aux plasmas fortement corrélés a deux et a trois dimensions.

Abstract. — We show that negative plasmon dispersion and a damping rate maximum are common features of
highly correlated plasmas in two and three dimensions.

In this letter we compare the influence of strong
correlations on plasmon dispersion and damping
in two and three space dimensions. For this purpose
we consider the simple model of a one component
plasma (OCP) made up of point charges e immersed
in a uniform neutralizing background. The Coulomb
potential is v(r) = e?/r in three dimensions (3d) and
— e?In (r/L) (with L an arbitrary scale factor) in
two dimensions (2d); a convenient unit of length is
the ion sphere (disk) radius a = (3/4 nn)'/? ((1/an)*/?),
where n is the number density, and the usual dimen-
sionless coupling constant is I' = Be®/a(Be?), where
B = 1/kg T is the inverse temperature. In 3d exten-
sive computer simulations [1] and a number of theo-
retical studies [2, 3] have shown that for coupling
constants I' 2 1, plasmon dispersion and damping
differs markedly from mean field behaviour ; in par-
ticular the dispersion dw/dk becomes negative for
I' 2 10. The 2d case is of interest because « particle »
simulations of inertially confined fusion plasmas are
generally restricted to 2d for practical reasons, and
also because detailed information on static properties
of the 2d OCP has recently become available [4, 5].

We recall that, if frequencies are scaled by the
plasma frequency w, and wave-numbers by the Debye
wave-number kp, the dielectric function gk, w) is
independent of dimensionality in the mean field
(i.e. collisionless Vlasov) approximation. The main
purpose of this work is to investigate the influence of
dimensionality on plasma waves in the presence of
strong particle correlations.

The basic dynamical variable in our problem is the

microscopic longitudinal current density, which has
Fourier-components :

_i dp() o

1 N
1 N = K.v; —ikri(t)
O = — T kvie -

Uoki

where v, = (kg T/m)'/? is the thermal velocity, r(r)
and v,(¢) denote the position and velocity of particle i
at time ¢, and p,(f) is the microscopic density. The
Laplace transform (denoted by a tilda) of the longi-
tudinal current correlation function :

Clk 1) = 5 CAD X0 ®

satisfies the generalized Langevin equation [6] :

. ivgk* o
|:— i + Z)S_(kj + Mk, w)] Wk, w) =1 (3)

where S(k) = { py p_x D)/N is the static structure
factor and M,(k, w) is the memory function.

If Ci(k, w) is known, the fluctuation-dissipation
theorem yields directly the dielectric function :

4

We now relate Cy(k, w) to the corresponding cor-
relation function, C{”(k, w), of some reference motion,
by writing down the generalized Langevin equation
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for ({9(k, w), and subtracting it from equation (3),
with the result :

{[Cﬁ"’(k, )] - évg k2 Adk) +
+ AM(k, w)} Ck,w) =1 (5)
where
Adk) = &k) — &O%k) = [SOk)] ™ - [SE)]™*

is the difference of direct correlation functions and
AM(k, w) is the difference of memory functions.
One frequently chooses the self motion as the refe-
rence dynamics [7], but here we shall make the even
simpler choice of extracting the free particle motion [8].
The corresponding C{* reads :

io w
Wl —
k2 (vo k)

where W(x) denotes the standard plasma dispersion
function :

COk, ) = - ©)

Wx) = W'(x) + iW"(x) =

=1- xe_xz/zj e2ds + i \/gxe"‘z/2 @)
0

while ¢9(k) = 0. Note that the mean field (Vlasov)
form for Cy(k,w) is then recovered from equa-
tion (5) if é(k) is replaced by its weak coupling (Debye-
Hiickel) limit — k2/k?, and if AM,(k, w) is neglected.
To account for strong correlations, we shall use the
exact ¢(k), and make a simple gaussian ansatz for the
memory function :

AM(k, ) = Q3(k)exp { — 2)27%(k)}  (8)

where t(k) denotes a wave-number dependent relaxa-
tion time which characterizes all collisional processes
in the plasma. We determine Q,(k) and t(k) from the
high frequency expansion :

Ck, ) = é

y [1 , O8O + Awk)

o

where we have extracted the contribution of the free
particle motion to the frequency moments [6]

oF(k) = 0'9?"(k) + Aw?'(k). Combining equations
(5) (6), (8) and (9) we obtam :

w(z()n)4(k) + Awjy(k)

4

(0]

€)

Q2(k) = Aw?,(k) + v2 k2 Ai(k) (10a)
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(k) = Q4(k)
Awji(k) — Aw} (k) [Awi (k) + 2 ofP*(k)] '
(10b)

Expressions for Aw?,(k) and Aw$,(k) in terms of the
pair and triplet distribution functions are available in
the literature for the 3d OCP [9, 10]. For the 2d OCP
we find :

Aw} (k) = w2[1 + Gy(k)]

k?
k3

(11a)

Aw (k) = o? {1 + 95 4+ 2G,(k) + 2G,0)]* +
D

+ 122 Ga(k) + K(k) + I(k)} (11b)
D
with
" _q Julkr) dr
G, (k) = L [9() — 1] Gry =2 73 (12a)
® d
K(k) = azj g [1 - Jo(kr)]-r-: (12b)
d2 d2 ’
Ik) = o )2 J J cos (2 o) x
[g(3)(r’ r’ s a) - g(r) g(r’)]
X [1 —_ eik.r - e—ik.r' + eik.(r—r’)] . (120)

Here J, is the nth order cylindrical Bessel function,
g(r) denotes the pair and g® the triplet distribution
function, with « the angle between the vectors r and
r’. To calculate I(k) we must resort to the standard
superposition approximation for g‘® [6], except for
the case I' = 2, where g is known exactly [4]. For
the pair distribution functions of the 2d OCP we
have used recent hypernetted chain (HNC) results
[5).

Our expressions for C\(k, ) and &(k, w) are inde-
pendent of dimensionality. The differences between
two and three dimensions for a given coupling I'
can hence only stem from differences in the static
information contained in S(k) and in the frequency
moments w2'(k). The difference between the 2d and
3d cases appears most clearly in the k-dependence of
the relaxation time (106). In 3d, w?, and w%, behave
as k? for small k [9, 10] and hence (k) goes to a non-
zero constant (say 7,) as k — 0; from the results of
[9, 10] we conclude that w, 7, ~ 0.23 I''/ for strong
coupling (I" > 1).

In 2d the situation is more complicated, since the
integrals K(k) and I(k) in equations (12), although
well defined for all values of k, lack the simple k?
behaviour of their 3d counterparts and of the G,(k).
In figure 1 we show some numerical results for t
as a function of k : t(k) is seen to rise sharply from
zero for small k£ and to reach a I'-dependent plateau
value 7, for k < 0.5/a ; numerically w, 7, ~ 0.20 ' */*.
Note that the vanishing of z(k) as k — 0 may well be
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PLASMON DISPERSION IN 2 AND 3 DIMENSIONS

Fig. 1. — Variation of w, 7 (eq. (106)) with the reduced wave-
number 4.k in the 2d OCP, for I' = 2, 10 and 40.

spurious and due to our determination of the relaxa-
tion time from a high frequency expansion.

For the sake of simplicity we shall henceforth
neglect the k-dependence of 7, and replace the relaxa-
tion time by the above-mentioned values of 7, in 2
and 3 dimensions. This approximation is reasonable,
as long as we restrict ourselves to k < 1/a. More
specifically, we investigate plasmon dispersion and
damping by solving the dispersion relation e(k, w) = 0
to order k2. Combining equations (4-6), (8), (10)
and (11), the dispersion relation is cast in the form :

kb

1+F

W( i’-) {1 + Gy(k) — W(wrg) x
vo k

k2
X [1 + G,(k) + —zé(k)]} =0 (13)
ko

since we restrict ourselves to k < 1/a <€ kp = \/ I'dja
in the strong coupling limit, we can completely
neglect Landau damping (i.e. W"(w/v, k) but not
W"(wt,) !). Also, to order k* [2] :

k? k?

EC(k) =—-1+4+o0a = e (14)
oBP\ _ (/4 (2d)
1=1- (‘a?)T - {=4r/10 3d)
k2
Galk) = a2 73 15)
D

_(-1/8 2d)
%2 = Y4uI)15 ~ — 625 (3d)

where u = BU™/N denotes the excess internal energy
per particle and P the pressure. The 2d values quoted
for a; and a, are exact, while for 3d we quote the
« ion-sphere » values, which are valid for I > 1 [2].
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Combining now equations (13)-(15), we obtain the
desired dispersion and damping to order k? :

w(k) | +3k2 | +61 4 62k2
= -— — i—=
w, 2 k3 3 2 kD
0y = ay — (o + &) W'w, 1) (16)
0, = — (g + ay) Wiw, 1) -
Since 1 > W'(x) > — 0.285... and W"(x) > 0, it is

clear from equations (14)-(15) that 6, and J, are
always negative. Moreover |J, | increases with I,
so that we expect negative dispersion beyond some
critical I'_. In 3d we find I', ~ 10, in good agreement
with simulation data [1] and other theoretical esti-

1‘ 2 3 > mates [2, 3], while in 2d, I', ~ 14.

For a fixed value of the reduced wave-number
a.k, collisional damping is characterized by
A,(I') = 6,/a®> ki = 6,/d.I' ; combining equations
(7), (14)-(16), and the previous expressions for t,, we
find :

AyI) = —clMe ™ (17)
where ¢ ~ 0.015 (0.015), a ~ 0.020 (0.025) and
y = 0.4 (0.5) in 2 (3) dimensions. As expected colli-
sional damping vanishes in the weak coupling limit
[11]. But equation (17) also shows that the damping
rate is maximum for I' ~ 56 (20) in 2d (3d) and decrea-
ses for stronger couplings, a behaviour which is
compatible with available simulation data in 3d [1].

Although our simple calculation has no pretention
of rigour, its predictions should be qualitatively,
and even semi-quantitatively correct; as illustrated
by the good agreement with the computer results in 3d.
Whilst an exact correspondence between two and
three-dimensional plasmon propagation holds only
in the collisionless regime, the similarities remain
very striking even in the presence of strong correla-
tions. This means that the simulation of collective
behaviour in real 3d dense plasmas by 2d codes should
be reliable, even in the strong coupling regime.

It is however worth pointing out that significant
differences between the 2d and 3d OCP show up in
the high frequency behaviour of the single particle
(self) motion; this motion is characterized by the
normalized velocity autocorrelation function Z(¢)
which is the k — 0 limit of the self part, C\¥(k, 1),
of the longitudinal current correlation function (2).
Extracting the self contributions to the frequency
moments in equations (9), (11) and (12), we find for
the 2d OCP :

w?
o) (k) = —23 + 302 k? (18a)

ot k) = o [ + K@ + I‘S’] +
+ —w v2 k* + 150 k* (18b)

2
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where K® and I® are the k-independent parts of the
integrals K(k) and I(k) in equations (12); in parti-
cular :

* d
K©® = azf g(r)—:. (18¢)
0 r
Since g(r) ~exp{ — pu(r)} ~ 1 for r >0, it is
immediately clear that the integral (18¢) diverges for
I' < 2; no such singularity occurs for the 3d case.

We conclude that the fourth frequency moment of
the spectral function associated with C{¥(k, ¢), and
hence with Z(¢), diverges for I' < 2; in other words,
for sufficiently high temperatures, these spectral
functions exhibit a high frequency tail which decays
more slowly than 1/w® in 2d, while the corresponding
3d spectral functions are expected to decay exponen-
tially. This high frequency tail might be a consequence
of the extreme « softness » of the Coulomb potential
in two dimensions.
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