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Plasmonic colour laser printing
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Colour generation by plasmonic nanostructrues1, 2 and metasurfaces3, 4 has several advan-

tages over dye technology: reduced pixel area, sub-wavelength resolution and the produc-

tion of bright and non-fading colours5. However, plasmonic colour patterns need to be pre-

designed and printed either by e-beam lithography (EBL)6–11 or focused ion beam (FIB)12–14,

both expensive and not scalable processes that are not suitable to post-processing customiza-

tion. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces

using laser post-writing. Laser pulses induce transient local heat generation that leads to

melting and reshaping of the nanostructures15. Depending on the laser pulse energy den-

sity, different surface morphologies that support different plasmonic resonances leading to

different colour appearances can be created. Using this technique we can print all primary

colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power

consumption down to 0.3 nJ per pixel.

The concept of our laser printing is illustrated in Fig. 1. The printable plasmonic metasurface
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is composed of metal disks on top of dielectric pillars, hovering above a holey metal film, see Fig.

1a and 1b. This design with polymeric pillars can be implemented by nano-imprinting, roll-to-roll

processing or injection molding technologies based on a master defined by EBL. We use abundant

and recyclable aluminum (Al) as the plasmonic material, which exhibits high plasma frequency

and has recently been studied to yield surface plasmon resonances (SPRs) from visible to UV16, 17.

Abundant polymers and hybrid materials suitable for nanoimprinting can be used. For instance,

PMMA (Polymethylmethacrylat) or Ormocomp (Micro resist technology GmbH) are good candi-

dates, which can be imprinted in thermal nanoimprint (PMMA) or UV curing (Ormocomp) pro-

cesses. Due to the plasmon hybridization of the disk-hole system in the Al metasurface18, reflected

colours caused by resonant absorptions at specific wavelengths can be modified by changing the

geometric parameters6, 19 (see Supplementary Figure S1).

For a laser pulse of nanoseconds duration, the instant energy is efficiently high to heat the

selected area above the melting temperature. The disks may thus transform their shapes into thicker

disks or spheres in a crystallographic phase transition process (Fig. 1c) 20, 21, and finally they

may be ablated away. By the excitation of SPR with electric field confinement, light energy is

redistributed and concentrated in specific regions of the disk-hole unit cell, enabling a fine tuning

of the morphology by adjusting the input pulse energy density. In return, the change of morphology

shifts the resonant frequency of the SPR, leading to a variation in reflected colours. This allows

printing of colours on a specific plasmonic surface by controlling the laser parameters (such as

power, spot size, frequency etc.) as well as the position of the laser spot (see Supplementary Video

I).
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To realize a desired colour from laser irradiation, we modify the SPR through single-pulse

laser exposure (1 ns, λ = 532 nm). As the input laser energy dosage is increased from 0 to 535 nJ in

the focal plane of a 4× objective (spot size∼50 µm in diameter), the main SPR shifts from 600 nm

to 500 nm and the printed colour varies from cyan to yellow (Fig. 2a). We further explore the

continuous tuning of colours across the visible spectrum in metasurfaces with different parameters

(Supplementary Figures S2 and S3). Remarkably, CMY primaries (cyan, magenta and yellow)

used in traditional colour printing are obtained comprehensively. With sufficient laser intensity,

the Al nanodisks can be annealed at their rims and evolved into spherical objects (Fig. 2b and

Supplementary Figure S4). Also, by increasing the laser intensity, the spheres are ablated from the

polymer interface, owing to a rapid change in the center of mass during the melting process which

provides the particles with a repulsive momentum22. Furthermore, for a laser energy above 500 nJ,

the holes in the continuous film on the substrate can even be enlarged in a controlled manner.

To describe the morphology transformation of the Al disks, we offer a simplified model of the

complex thermodynamic phase transition. Neglecting gravity, we vary the thickness t of round-

cornered disks (or the radius r of the sphere) while preserving the over-all metal volume of the

initial disks. Simulations with this model (Fig. 2c) predict the blue-shift of SPR and demonstrate a

qualitative agreement with the corresponding measurements for different thermo-transition states.

It should be noted that the measured spectra show a broadening of the resonances when comparing

with the simulated ones because of the defects in printing (Supplementary Figure S5). From the

simulated electric field enhancements for printed metasurfaces (Fig. 2d), we find that the electric

field decreases during the gradual transformation from disks to spheres. The field is strongly
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localized at the sharp corners of the unchanged disks (Fig. 2d (i)), dissipating in the intermediate

shape (Fig. 2d (ii)) and finally dispersively covering the sphere (Fig. 2d (iii)). The absorbed

heat power is directly related to the electric field distributed in the materials and can simply be

expressed as

Qabs(ω) =
1

2
ω

∫
ε
′′
(ω)|E(ω)|2dV, (1)

where ω is the angular frequency, ε′′(ω) is the imaginary part of the dielectric function ε = ε
′
+iε

′′ ,

E is the electric field, and the integration is carried out over the volume of the unit cell. Thus, the

heat absorption can obviously be improved by overlapping the lossy metal with a strong electric

field. With the aid of the SPR, the electrical field is strongly localized and enhanced near the

metal surface and exponentially decays into the surrounding medium, causing a strong heat power

confined at the interface23. This process can be further understood by examining the simulated

temperature evolutions during the first initial nanoseconds for different structural morphologies

(Fig. 2e) and the temperature distribution resulting from thermo-plasmonic heating (Fig. 2f), see

also Supplementary Figure S6.

Based on the trait of local-plasmon heating, the plasmonic metasurfaces can be embedded in

transparent polymers for laser printing (Fig. 3a)24. With the excitation of the SPR, the plasmon

enhanced photo-thermal melting ensures that the writing process only takes place at the plasmonic

metasurface within the focal plane. As shown in Fig. 3a, the coating leads to a redshift of the res-

onances in the system and a corresponding colour change before and after laser printing because

of the increased refractive index of the surroundings. A top coating offers the advantage to pro-

tect the structure from mechanical damage, fingerprints, greasy residue, and so forth, making the
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proposed “plasmonic paper” more robust and fully flexible for colour printing in everyday applica-

tions (Fig. 3b) . Impressively, by embedding 20 nm Al inside plastics, our printing method creates

environmentally sound colouration solutions for consumer products (such as beverage bottle, toy

and automotive), with only a ppm (parts-per-million) level residue of Al for recycling.

For a detailed expression of a colour image, it is necessary not only to produce single colour

depth, but also colour mixing9, 25 or overlapping (Supplementary Figure S7), to broaden the capa-

bility of our colour library. For a proof-of-concept demonstration, spatial colour mixing is carried

out by coordinating the distribution of colour dots. By controlling the laser spot size and step di-

mension, we printed magenta colour dots onto the cyan background with different filling factors.

The spot size is well below the resolution of a regular human eye so that the spatially distributed

dots can be seen as a single mixed blue-violet colour (Fig. 3c and 3d). A simple averaging of

two different colour spectra yields a similar result as the reflection spectrum of the mixed colour,

proving the spatial mixing of distinct structural colours (Fig. 3e and Supplementary Figure S8).

Note that the spectrum of the mixed colour is slightly different from the theoretical prediction

of 50% mixture because of the fluctuation of the spot size. Despite the practical advantages of

laser manipulating, colour generation by spatial mixing as a complementary strategy is ultimately

necessary to accomplish full-colour printing26. In principle, a full-colour library is possible by

combining the already-rich colours (caused by laser reshaping directly) and the additional colour

mixing possibilities. Besides, monochrome laser printing on the colourless plasmonic paper is also

possible (Supplementary Figure S9).
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We further expound how to increase the printing resolution to exceed the diffraction limit.

Conventional optics suffer from the diffraction limit, meaning that a spatial resolution below a

quarter of a micrometer seems entirely out of reach for visual applications. Interestingly, photon

heating occurs only in the vicinity of the focal spot and the size of melted material can be reduced

due to the Gaussian probability distribution of the photon fluence density. This property leads to a

critical value of exposure energy where the melting reaction is initiated, which essentially defines

a threshold that excludes the low-intensity wings from melting and thus reduces the size27, as dis-

played in the upper panel in Fig. 4a. However, a small (e.g. 10%) fluctuation of the laser intensity

would be detrimental for this mechanism. Surface plasmons possess two natural properties of sub-

wavelength light confinement and intense field enhancement28. Applying a plasmonic super-lens,

sub-diffraction-limited imaging with 60 nanometer half-pitch resolution has been implemented29.

Here, we push the laser-induced colour printing to the sub-diffraction scale by exploiting the plas-

monic thermal reshaping. As indicated in the lower panel in Fig. 4a, electric field is confined and

enhanced at the plasmonic metasurface. The local field enhancements help to localize the light

intensity, thereby causing localized heating at the intended particle. This mechanism is the key

to successfully realize (1) a higher spatial resolution, as the melting at the unit cell can be well

controlled within the disk, (2) a better stability, because only a laser fluctuation ≥100% can heat

and melt the nearest neighboring unit cell, and (3) a lower power, where a 1% of original laser

power is feasible due to the 100 times enhancements of the E-field intensity.

We are thus able to design laser printed colour pixels of arbitrary small size by choosing an

appropriate but relatively low laser-pulse energy. To strengthen our conclusion, we applied a single
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nanosecond laser pulse focused through a 0.65 NA 40× objective (spot size ∼4 µm) for printing.

Considering a Gaussian distribution of the laser energy, only a small central region can reach the

melting threshold, as manifested in the circles in Fig. 4b. We have achieved laser printing at the

single unit cell level of the metasurface with a periodicity of 200 nm, which is smaller than the

theoretical diffraction limit throughout the entire visible spectrum, as shown in the red circle in

Fig. 4b. Furthermore, the actual melting part of a disk can be less than 50 nm when employing a

single-pulse energy in a spot down to 0.3 nJ (the inset in Fig. 4b), resulting in the laser-induced

manipulation of structures within the single unit cell. The reshaping part of the disk can even be

smaller under a weaker intensity (see the results in Supplementary Figure S10).

As the plasmonic heating flattens the sharp corners from the disk-hole system and eliminates

the narrow nanogaps in between, the electromagnetic field enhancement is consequently weakened.

The gradient change of geometry and the attenuation of intensity actually protect the printing area

from reacting to multiple-pulse irradiation, as the first pulse degrades the geometry immediately,

making the field intensities upon subsequent pulses being below the threshold value. Moreover,

the intensity gaps between these transition states of morphologies provides distinct power levels

for reshaping, which provides easier colour switching, mixing and overlapping, as shown in Fig.

4c.

To illustrate the capability to print arbitrary images with colour and tonal control, we printed

a selected image using a single nanosecond laser pulse focused through a 0.8 NA 50× objective

lens (spot size ∼3 µm). In order to prove the ultimate capability, we actualized a colour design
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in blue tone (see also Supplementary Figure S10 and S11) and a step size of 200 nm (the same

dimension as the unit cell). The printed image was taken by an optical microscope with a 0.9 NA

100× objective lens. As the pixel is at the theoretical resolution limit of the optical microscope,

printed pixels can only be distinguished in a blurred way (Fig. 4d). In Fig. 4e we exhibit laser

prints of 9 images in different colours, which were taken by the same microscope with a 0.9 NA

100X objective lens. Although we have taken a controlled laser power for patterning, the print-

ing can also be performed with up to 5 colours with sub-diffraction-limit resolution and the high

sharpness (Fig. 4e). In particular, the images presented in Figures 4d and 4e with about 125,000

pixels in total would fit into the cross-section of a human hair. As any traditional printer, our plas-

monic colour laser printer can perform printing technologies (such as half-toning) in a super-high

resolution (Fig. 4f). Moreover, it is worth noting that the image could also be laser-printed through

a mask (Supplementary Figure S12), a spatially modulated laser array or scanning mirrors, which

would allow a faster printing with a resolution approaching the single-unit-cell limit by following

the achievements in this work. With the multi-colour printing on plastic-based plasmonic meta-

surfaces, multi-nary code recording can be performed, paving the way for a low-cost recording

apparatus (Supplementary Figure S13). By incorporating the sub-wavelength recording and multi-

nary plasmonic colour channels, a disk capacity of TB level for a DVD sized disk with a single

metasurface could potentially be realized.

In summary, we have demonstrated full-colour laser printing on plasmonic metasurfaces

with sub-diffraction-limit resolution. The nanoimprinted metasurfaces are composed by a 20 nm

Al film buried in a thin-film polymer, which is flexible, economic and recyclable. Reconfigured
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by plasmon resonances, our laser printing process allows for recording speeds up to 1 Gbit s−1

with a spot energy down to 0.3 nJ. Colours are printed when only a single unit cell is modified

by laser heating with individual pixels of 200 nm×200 nm squares, thus enabling laser printing of

colours at a resolution of ∼127,000 DPI. This technology promises exciting avenues from large-

scale colour printing and decoration to nanoscale colour patterning, encryption and data storage,

where high information densities are pursued.

Methods

Sample preparation. Firstly, a silicon master mold was fabricated by applying electron-beam

lithography (EBL, JEOL JBX-9500FS 100 keV prototype) and dry etching. We used a fast sin-

gle spot writing technique, where EBL with a focused Gaussian beam was used to define shapes

directly. The single-spot exposure strategy uses the EBL system as a raster scan tool to write a

large area, when a beam step size is larger than the spot size30. The sample was fabricated on a

0.5 mm thick 4 inch Borofloat glass wafer where upon a thin film of Ormocomp mixed with ma-T

1050 thinner (25% w/w, both micro resist technology) was dispensed. The silicon stamp coated

with an antistiction coating was employed for replicating the pillar structure via room temperature

nanoimprint into the Ormocomp layer. The Ormocomp film was cured by exposure to UV light and

separated from the silicon master and peeled from the Borofloat glass substrate afterwards. Then,

a 20 nm Al film was deposited by an electron beam evaporator (Alcatel SCM 600) at 5 Å/s after

imprint under a process pressure of 10−6 -10−5 mbar. For polymer coated samples, a sufficiently

thick layer of PMMA (10% 950PMMA in Anisole, MicroChem Corp) was spin-coated (500 rpm,
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∼10 µm) on top to avoid Fabry–Pérot interference.

Optical setups. The optical setup for laser colour printing is schematically illustrated in Sup-

plementary Figure S14a. It comprises a Nikon Ti-U inverted microscope where a laser (CryLaS

FDSS532-150) emitting 1 ns pulses at 532 nm is used for printing. The laser pulse energy is con-

trolled with a half wave plate on a computer controlled rotation stage combined with a polarizing

beam splitter. The laser beam is focused onto the input port of a module of the microscope which is

made to accept fiber-coupled laser input sources for diffraction-limited focusing onto the sample.

A white light source can be coupled in for illumination as well, not shown in the figure. In this

work, the sample was mounted on a computer controlled piezo nanopositioning stage (Mad City

Labs Nano H50 series piezo electric stage, 0.1 nm resolution, 50 µm travel, XY axes), which was

placed on a computer controlled motor stage. The optical setup for spectroscopic imaging is illus-

trated in Supplementary Figure S14b. A high intensity white light source (Energetiq EQ-99XFC

fiber coupled laser driven light source) is used for illumination. An image of the surface is pro-

jected onto the control CCD array, CCD1. Via a beam splitter, a duplicated image of the device

surface is projected onto the entrance slit of an imaging spectrometer with a 150 g/mm grating

(Acton SP-2756 imaging spectrograph with PIXIS100B digital CCD camera, 100×1340 pixels,

CCD2). Optical micrographs were acquired using a Nikon Eclipse L200 microscope with a Nikon

digital camera (DS-Fi1). Photographs were taken by a Canon IXUS camera.

Laser printing. For spot-by-spot printing , a function generator was used to select single 1 ns
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pulses from the pulse train of the laser with the power tuned accordingly for each spot. Mo-

tor/piezo stages, rotators and laser controllers were connected to a computer via I/O equipment. A

Matlab code was used to switch the laser on and off and select the repetition rate via the function

generator, control the laser energy via the half-wave plate and the polarizing beam splitter, and

move the piezo/motor stages for laser printing of images in a raster scan.

Numerical simulation. The plasmonic metasurface was simulated by CST (www.CST.com) mi-

crowave studio software. Reflection spectra and field distributions of structures under different

conditions (thermal reshaping, oxide coating and so on) were simulated by a finite element method.

An EM-thermal co-simulation approach was applied to solve the coupled electromagnetic and heat

transfer problem. The results are presented and further discussed in Supplementary Information.

Figures
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Figure 1: Plasmonic structures for colour printing. a, Schematic illustrations of the plasmonic

metasurface and a unit cell with parameter settings, where the periodicity is P = 200 nm, the

thickness of Al is T = 20 nm, the height of the pillars is H = 30 nm and the diameter of the

disks is D. b, A top-view SEM image of a plasmonic metasurface. Scale bar: 1 µm. c, A

schematic illustration of laser printing. The printing is governed by photo-thermal reshaping of the

metasurface.
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Figure 2: Spectral and geometry analysis and numerical simulations. a, Left, experimental

spectra of the metasurface with a selected disk diameter, D=106 nm. The dips appear from SPRs

under increasing laser dosage from 0 to 535 nJ of the single-pulse laser exposure (1 ns, λ = 532 nm,

spot size: 50 µm). Right, corresponding colour squares of 500 µm×500 µm printed with a 10 µm

step size. Scale bar: 500 µm. b, Left, corresponding SEM images of colour areas in a, Labels

(i)-(v). Scale bars: 200 nm. The related pulse energies are 0 (unexposed), 33, 133, 301 and 535

nJ. Right, 3D artworks for demonstrating the corresponding morphology evolutions. c, Simulated

spectra of models by imitating the morphology transformation in measurements. The cross-section

demos in the right panel indicate the parameter settings. For clarity, the normalized spectra in (a)

and (c) have been displaced by +1. d, Simulated electric field enhancements (at λ = 532 nm)

for selected morphologies of (i) t=20 nm, (ii) t=50 nm and (iii) r=35 nm (sphere). e, Simulated

temperature evolutions during the first initial nanoseconds for different structural morphologies,

which gradually change the morphology from a disk shape into a spherical particle. The cross-

sectional views indicate the morphology change and highlight the various geometrical parameters.

f, The corresponding temperature distribution in the initial structure after 3.0 ns, in the case where

the initial thickness of the disk is t = 20 nm. The incident pulse power and absorbed energy and

the heat power density distribution are shown in Supplementary Figure S6. The 3D evolution of

temperature in 8 ns is also supplemented as Video II.
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Figure 3: Flexible and robust samples for colour printing and colour mixing. a, Illustrations

and examples of laser printing on samples without (left) and with (right) polymer coating. Scale

bars: 500 µm. b, A large-scale sample with plasmonic colours printed by laser transmitted through

the protecting polymer. Scale bar: 1 cm. c, A printed portrait of “Mona Lisa” photographed by a

camera with a macro-lens. Scale bar: 2 mm. d, A magnified image taken by a microscope exhibits

colour dots with different dimensions. Scale bar: 500 µm. e, Corresponding reflection spectra of

selected pixels with different colours: the background cyan colour, the printed magenta colour and

the mixed blue-violet colour. Mixed colour dots make a new colour and a new spectrum.
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Figure 4: Laser printing with sub-diffraction-limit resolution. a, Upper, sub-diffraction-limit

laser printing without plasmonic reconfiguration, where dashed, solid and dotted lines respectively

denote the laser-pulse energy below, at and above the melting threshold (the yellow dashed line).

Bottom, advanced sub-diffraction-limit printing where photon energy is redistributed with optical

field confinement and enhancement by the plasmonic metasurface. b, SEM image of voxels formed

at exposure with different laser-pulse energies, which are gradually decreased from the upper left

corner to the bottom right one. Scale bar: 5 µm. The inset reveals an interesting area in the red

dashed circle (scale bar: 500 nm). c, The field enhancements in the central section of the unit cells

with a disk and a sphere, respectively. The insets show the corresponding 2D field distributions.

d, A colour design in blue tone printed with single-unit-cell resolution (127,000 DPI). Scale bar:

10 µm. e, Printed images in different colour schemes with single-unit-cell resolution. The laser

energy used for patterning were moderated to minimize influence for different printing channels,

while strong power will incite crosstalks of plasmonic energy distribution between the neighboring

unit cells and degrade the resolution. Scale bars: 5 µm. f, A collection of images printed by gray-

scale half-toning. The printing resolution is 63,500 DPI. Scale bars: 10 µm.
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