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Plasmonic layer-selective all-optical switching of
magnetization with nanometer resolution
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All-optical magnetization reversal with femtosecond laser pulses facilitates the fastest and

least dissipative magnetic recording, but writing magnetic bits with spatial resolution better

than the wavelength of light has so far been seen as a major challenge. Here, we demonstrate

that a single femtosecond laser pulse of wavelength 800 nm can be used to toggle the

magnetization exclusively within one of two 10-nm thick magnetic nanolayers, separated by

just 80 nm, without affecting the other one. The choice of the addressed layer is enabled by

the excitation of a plasmon-polariton at a targeted interface of the nanostructure, and rea-

lized merely by rotating the polarization-axis of the linearly-polarized ultrashort optical pulse

by 90°. Our results unveil a robust tool that can be deployed to reliably switch magnetization

in targeted nanolayers of heterostructures, and paves the way to increasing the storage

density of opto-magnetic recording by a factor of at least 2.
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O
ver the course of more than half a century, local magnetic
fields delivered by recording heads in hard-disk drives
have successfully driven writing speeds towards gigahertz

frequencies and storage densities beyond 1 Tb/in2. However, this
progress is now becoming restricted by the onset of the super-
paramagnetic limit1, and so new approaches that facilitate faster
and denser magnetic recording technologies are now being
sought2. The process of single-shot all-optical switching3,
whereby magnetization can be switched deterministically using
just an ultrashort optical pulse of arbitrary polarization, funda-
mentally promises near-terahertz writing speeds4,5 in ferrimag-
netic alloys of gadolinium-iron-cobalt (GdFeCo). In essence, all-
optical switching within GdFeCo originates from the ultrafast
magnetization dynamics6,7 of the exchange-coupled Gd and FeCo
sublattices, triggered by an ultrafast transfer of thermal energy
from the light to the spin bath. This process strongly depends on
the amount of energy delivered by the optical pulse8. If the
incident fluence is below the minimum threshold required for all-
optical switching, only ultrafast demagnetization9 with sub-
sequent recovery of the net magnetization is achieved. On the
other hand, if too much energy is supplied by the pulse, a random
distribution of switched and unswitched magnetic domains are
formed in the irradiated region.

A variety of effects can mediate the transfer of energy between
the incident optical pulse and the illuminated material. The
material property of magnetic circular dichroism or the optical
property of interference, for example, can tune the efficiency of
energy transfer. These effects and properties can be respectively
employed to achieve helicity-dependent all-optical switching8 or
to reduce the incident optical fluence needed for all-optical
switching by two-thirds10. While optical pulses trigger thermally-
driven magnetization dynamics in metallic GdFeCo systems8, it is
also possible to non-thermally generate effective magnetic fields
using circularly-11 or linearly-polarized12–14 femtosecond pulses
in alternative materials. In addition, upon illuminating a dielec-
tric/metallic interface with p-polarized light, a surface plasmon
polariton (SPP) can be excited15. The optical field enhancement
associated with SPPs could offer a pathway towards an even
smaller energy cost of all-optically writing a bit13,14,16. At the
same time, by confining the optical field using a plasmonic
antenna, the optically-addressed region of magnetization has
been successfully downscaled to length scales on the order of
50 nm17.

Supplementary to reducing the in-plane size of the optically-
addressed region of magnetization, an intriguing possibility for
achieving higher storage densities lies in extending magnetic
platters in to the third dimension. Recently, substantial research
has been directed towards all-optically reversing magnetization in
multi-layered heterostructures, motivated by the prospect of
stacking multiple magnetic layers on the same platter18,19 or
constructing optically-addressable magnetic tunnel junctions20.
Using magnetic bilayers, one can already achieve ultrafast single-
shot switching of Co/Pt (via exchange-coupling with a Gd21 or
GdFeCo22 layer), and realize a form of multi-level magnetic
recording based on the generation of spin-polarized currents23. If
one, however, considers a simple bilayer of GdFeCo optically-
addressed at normal incidence, the directionality of the optical
wave vector suggests—at first glance—that the first layer
addressed will always and inescapably undergo switching. Until
now, no method has been demonstrated that allows for switching
in the second layer, without affecting the first.

In this article, we unveil a method of deterministic layer-
resolved all-optical switching in a multi-layered heterostructure of
GdFeCo, exploiting the properties of SPPs. Using calculations, we
design the thermal distributions generated by s- and p-polarized
light across the depth of a heterostructure. Upon exposing the

bilayer to an s-polarized ultrashort optical pulse, no SPP is gen-
erated, and so the energy is concentrated at the first incident layer
penetrating only the skin depth. On the contrary, using a p-
polarized ultrashort optical pulse, we generate an SPP that con-
centrates energy in the second layer (the GdFeCo/air interface)
rather than the first GdFeCo/glass interface. We experimentally
verify this scenario, and moreover exploit the different con-
centrations of energy in order to all-optically switch the magne-
tization of targeted nanolayers of GdFeCo independently from
each other, using p- and s-polarized ultrashort optical pulses. We
therefore demonstrate an approach of polarization-dependent
multi-level magnetic recording, whereby each magnetic layer can
be independently addressed at will, thus enabling the storage
density of optically-addressed magnetic media to be doubled.

Results
Surface plasmon-polaritons in a multi-layered GdFeCo het-
erostructure. Although the imaginary part of the dielectric
permittivity of GdFeCo at the wavelength of 800 nm is large,
the real part of the permittivity is negative and so the ferro-
magnetic metal can support the excitation of an SPP (εGdFeCo=
−5.91+ 19.17i)24. At a semi-infinite air/GdFeCo interface, the
transverse propagation length15 and penetration depth inside
the GdFeCo film15 of an SPP is 2.6 μm and ∼17 nm respectively.
To facilitate the excitation of an SPP, we have fabricated and
studied the magnetic multi-layered heterostructure prism/glass/
Si3N4(5)/Gd26.0Fe64.8Co9.2(10)/Si3N4(80)/Gd27.0Fe63.9Co9.1(10)/
Si3N4(10) (Fig. 1a), where the number in parentheses indicates
the layer thickness in nanometres. The ferrimagnetic GdFeCo
layers were deliberately designed to have different concentra-
tions of gadolinium, and will be discussed in detail later on. The
glass substrate is coupled directly to a 60° SiO2 prism, allowing
for an SPP to be optically excited via the Kretschmann
scheme15 at the bottom GdFeCo/air interface. The thin (10 nm-
and 5 nm-thick) Si3N4 layers merely protect the GdFeCo from
oxidation, and have negligible impact on the electromagnetic
field distribution. On the other hand, the 80 nm-thick Si3N4

layer blocks the exchange interaction and diminishes the
magneto-dipole interaction between the GdFeCo layers,
ensuring their magnetization states are effectively decoupled.
The 80 nm-thick Si3N4 layer also plays an integral role in
allowing an incident p- and s-polarized pulses at the wavelength
of 800 nm to deliver drastically different electromagnetic field
distributions across the two GdFeCo layers (in general, this
difference could be observed for Si3N4 layers with thickness up
to 120 nm).

In order to demonstrate this effect, we model the optical
absorption inside each GdFeCo layer by

A ¼

Z

δA zð Þdz ¼
k0

npr cos θð Þ

Z

e zð Þj j2Im εGdFeCoð Þdz; ð1Þ

where npr is the refractive index of the coupling prism, k0 is the
optical wavenumber in vacuum, θ is the angle of incidence, δA(z)
is the partial absorption, and e(z) is the normalized electric field
(see “Methods”). Figure 1b, c show the calculated distribution of
|e(z)|2 and δA(z) across the depth of the studied heterostructure
for p- and s-polarized light at the wavelength of 800 nm incident
on the top Gd26(FeCo)74 layer at an angle of 59°. The p-polarized
light excites an SPP that is localized at the bottom Gd27(FeCo)73
layer (i.e. the GdFeCo/air interface), predominantly pumping the
energy of the laser pulse into this layer. The calculations (Fig. 1e)
show a strong dependence of |e|2 at the bottom interface of the
Gd27(FeCo)73 layer on the angle of incidence, with a maximum at
56°. We note that this is a characteristic feature associated with
the Kretschmann geometry25, and does not correspond to the
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maximum of the absorption in this layer. If the incident light is
instead s-polarized, no SPP is excited, and therefore the light
energy is partly reflected or partly dissipated in the top
Gd26(FeCo)74 layer.

To tune the efficiency of SPP excitation15, one can tune the
material refractive index, the photon energy or the angle of
incidence of light. We therefore numerically consider the former
parameters to be fixed (mimicking experimental conditions), and
calculate the angular dependence of the maximum absorbed
energy in the top Gd26(FeCo)74 and bottom Gd27(FeCo)73 layers
for incident p- and s-polarized light. Presented in Fig. 1d are the
corresponding results, revealing that the SPP resonance is rather
wide. Nevertheless, the graphs clearly show that if the angle of
incidence is above ∼50°, the absorption of p-polarized light in the
bottom Gd27(FeCo)73 layer is greater than in the top
Gd26(FeCo)74 layer. This represents the necessary condition for
layer-selective magnetic recording and the region that satisfies
this condition is shaded green in Fig. 1d. As a result of this

absorption difference, one may tune the pulse fluence such that
the energy dissipated in the two magnetic layers is below or above
the threshold required for the switching8. Hence layer selective
switching with subwavelength resolution can be achieved. To
verify this predicted angular dependence of absorption, we
measured and calculated the angle-resolved reflectivity of p- and
s-polarized light (Fig. 1e). Excellent qualitative and rather good
quantitative agreement between the computationally predicted
and experimentally observed angle dependencies evidences the
high quality of the fabricated multi-layers and inspires our
experimental search for layer selective all-optical magnetic
recording in the heterostructures.

Resolving the magnetization of different layers. In order to
distinguish the four different states of the magnetizations of the
two Gdx(FeCo)100−x layers with the help of a conventional
magneto-optical microscope, the magnetic layers were
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Fig. 1 The scheme of polarization-based layer-resolved all-optical toggling of magnetization. a Physical scheme and sample design. The p-polarized/s-

polarized optical pulse (and the associated targeted layer for magnetization reversal) is shown by red/blue. b, c The distribution of |e|2 (dashed-dotted line)

and the partial δA and total A absorption (solid line) inside the multi-layered heterostructure for p-polarized and s-polarized optical pulses respectively,

with fixed wavelength 800 nm and angle of incidence 59°. d Calculated angular dependence of the absorbed optical energy by the top (dashed line)/

bottom (dotted line) layer with incident p-polarized (red)/s-polarized (blue) light. e Calculated (thin solid lines) and experimentally measured (thick solid

lines) reflectance angular spectra for incident p-polarized (red)/s-polarized (blue) light. Also shown is the calculated strength of |e|2 at the bottom surface

of the bottom Gd27(FeCo)73 layer with incident p-polarized (red dashed-dotted line)/s-polarized (blue dashed-dotted line) light. In panels d-e, the green

background colour indicates the predicted region where the absorption of p-polarized light in the bottom Gd27(FeCo)73 layers is greater than in the top

Gd26(FeCo)74 layer. This is the region with expected polarization-controlled layer selective switching of magnetization. The black and grey arrows indicate

the angles where the polarization-based all-optical switching experimentally succeeded and failed respectively
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deliberately designed to have slightly different concentrations of
gadolinium, with x= 26 (x= 27) in the top (bottom) layer. This
resulted in a significant difference in the magnetization com-
pensation temperatures TM (TM ≈ 210 K and TM ≈ 315 K for
Gd26(FeCo)74 and Gd27(FeCo)73 respectively)26,27. Consequently,
the magnetizations28 as well as the coercive fields and the
magneto-optical Faraday rotation of the layers at room tem-
perature were also different. Both magnetic layers exhibit deter-
ministic all-optical switching, with nearly the same optical
fluence29. Since the values of TM lie on either side of room
temperature, the net magnetization of the Gd26(FeCo)74 and
Gd27(FeCo)73 layers is antiparallel and parallel respectively to the
magnetization of the constituent Gd sublattice. The difference in
coercive fields makes it possible to obtain four stable hysteretic
states. After applying and removing an out-of-plane spatially-
uniform magnetic field HB, the four magnetic states of the het-
erostructure can be realized with mutually parallel (↑↑ and ↓↓) or
antiparallel (↑↓ and ↓↑) alignment of the magnetizations in the
layers28,30. In the notation adopted here, the first and second
arrow denotes the polarity of magnetization of gadolinium in the
top and bottom layer of GdFeCo respectively.

To evaluate whether deterministic layer-resolved all-optical
switching can be achieved, we employ static imaging of the
heterostructure using the polar magneto-optical Kerr effect.
Subsequent to all tests of all-optical switching, we recorded
magneto-optical images of the multi-layered system as a function
of HB. In Fig. 2b are shown raw images recorded for different
values of HB. The different magneto-optical signals from the two

layers allow us to directly distinguish the magnetic state of each
layer, via the different contrast levels (which is mainly propor-
tional to the out-of-plane component of magnetization Mz of
iron31. Moreover, by averaging all pixel intensities within the
magneto-optical images, we are able to generate a characteristic
hysteresis loop, as presented in Fig. 2a. This represents a
superposition of the hysteresis loops belonging to both layers27,30.
We use this loop to conclusively discern the four different
magnetic states that can be achieved in our binary heterostructure.

Layer-selective magnetization reversal. To test the scenario of
plasmon-enabled deterministic all-optical switching, we focused a
100 fs-long optical pulse, of central wavelength 800 nm, through
the coupling prism at an angle of incidence of 59° onto the
surface of the top Gd26(FeCo)74 layer (see Methods and Supple-
mentary Note 1 for details). It follows from Fig. 1b that absorp-
tion of the p-polarized pulse at 59° in the bottom layer is about
2.5 times larger than in the top layer. At the same time, for these
conditions the absorption of the s-polarized pulse in the top layer
is about 2.2 times larger than in the bottom layer. Therefore, at
this angle of incidence one should expect the layer-selective
switching. The diameter of the focused spot was characterized32

to be 37 µm. The magnetization of gadolinium within the het-
erostructure was initially set to the configuration ↓↑ (Fig. 2), and
the linear polarization of the optical pulse was rotated to achieve
p- or s-polarization. After exposing the sample to optical pulses,
magneto-optical images were recorded and identified with one of
the four states (↑↑, ↓↓, ↑↓ or ↓↑) using the values of the magneto-
optical contrast in different parts of the hysteresis loop.

Exactly as predicted, we observed layer-selective single-shot
switching of magnetization, with the choice of addressed layer
dictated by the polarization of the optical pulse. Figure 3a shows a
background-corrected magneto-optical image taken after the
multi-layered heterostructure was exposed to a single p-polarized
(left) and s-polarized (right) optical pulse, of fluence ∼10mJ/cm2

(electric field |E|∼720MV/m). There is a clear difference in
contrast between the two irradiated regions, indicating different
magnetic states have been obtained. To irrefutably identify which
layer(s) have undergone switching, we present also a cross-section
taken from the magneto-optical image. By comparing this cross-
section to those recorded in the presence of varying HB (Fig. 2),
we conclusively demonstrate that the magnetization in the
bottom Gd27(FeCo)73 and top Gd26(FeCo)74 layer has been
independently toggled by the p-polarized and s-polarized optical
pulse respectively. This layer-resolved magnetization reversal
effect was observed for all four different starting magnetic states
(see Supplementary Note 3), and the deterministic switching of
magnetization in different layers could be achieved by delivering
several optical pulses (see Supplementary Note 4). Finally, upon
removing the coupling prism, we were unable to achieve layer-
resolved all-optical switching, verifying further the critical role the
SPP plays in this mechanism.

As discussed earlier, the all-optical switching of magnetization
in a single layer can only be achieved if the density of the
absorbed optical fluence w exceeds a minimum threshold value
wthreshold, which is almost identical22 in both layers. Therefore, for
a certain incident optical fluence F, the density of the absorbed
fluence wj=AjF in layer j depends only on the angle of incidence
and polarization (which enter the absorption term, Aj). If one
increases the optical fluence, it is conceivable that one could
achieve all-optical switching in both layers, since the fluence
threshold in both layers can be simultaneously surpassed (i.e.,
wtop,bottom >wthreshold). Upon therefore increasing the optical
fluence to ∼12 mJ/cm2 (E∼790MV/m), as shown in Fig. 3b, we
observe a new feature with different contrast at the centre of the
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irradiated region. Due to the Gaussian distribution of the optical
pulse energy, it is expected that there is a higher thermal load
supplied at the centre. Quantitative analysis (bottom panel of
Fig. 3b) reveals that, at the centre, both layers have indeed
undergone all-optical switching, irrespective of the optical
polarization. These observations not only reveal an important
prerequisite for layer-resolved all-optical switching in terms of the
laser fluence, but also shows that by tuning both the polarization
and fluence of the laser pulses, one can realize all four states of the
magnetizations of the layers (↑↑, ↓↓, ↑↓ and ↓↑).

The crucial role of the plasmon-polariton in the layer selective
magnetic switching is further emphasized by experiments on
optical control of the magnetizations in the multi-layer structure
performed at different angles of incidence. The model presented
in Fig. 1d–e predicts that angles of incidence above ∼50° will
allow a p-polarized optical pulse to switch magnetization in the
bottom GdFeCo layer only. We therefore varied the angle of
incidence between 34° and 67°, and the switching of the bottom
layer was only seen within the range of 53° and 67°. If instead the
angle was tuned between 34° and 47°, the top Gd26(FeCo)74 layer
always underwent switching, irrespective of the optical polariza-
tion. All magneto-optical images underpinning this conclusion
are supplied in Supplementary Note 5. The black arrows in
Fig. 1d–e indicate the angles at which plasmon-enabled switching
was observed, and the grey arrows indicate the opposite,
demonstrating excellent agreement of the experimental results
with the model. This finding not only proves the important role
of the SPP in the demonstrated mechanism, but also uncovers the
robustness of the effect, since the reversal is unaffected despite
adjusting the angle of incidence by at least 30°.

Discussion
In conclusion, we have revealed an elegant solution to the pro-
blem of layer-selective all-optical magnetic recording in multi-
layered heterostructures. Our approach is based on the layer
selective deposition of optical energy through the polarization-
dependent excitation of a surface plasmon-polariton at a targeted
interface of the heterostructure. The numerically-predicted and
experimentally-verified fact that the polarization-selective mag-
netization reversal occurs only in the vicinity of the surface
plasmon-polariton’s resonance (and is otherwise absent) clearly
and conclusively shows the key role played by the surface
plasmon-polaritons in the process of layer-resolved all-optical
reversal of magnetization.

While, for the sake of simplicity, we have restricted ourselves to
studying a multi-layered heterostructure containing only two
magnetic layers, it is straightforward to incorporate more mag-
netic layers. To suitably address these different layers individually
without affecting the others, one needs to adjust not only the
polarization-axis of the incident optical pulse but also the wave-
length and/or the angle of incidence15. More intrinsically, each
GdFeCo layer could be neighboured by different dielectric layers
with specifically designed refractive indices. This could assist or
obstruct the process of switching within the particular layer for a
certain optical pulse. Indeed, since we do not need to tune the
energy of the optical pulse to switch either of the two GdFeCo
layers studied here, the ultimate recording density is limited not
by the number/thickness of magnetic layers but rather by the
number of distinct appropriately-tailored energy distributions
achievable across the multi-layered stack using different optical
parameters. The dielectric prism may also be replaced with an
etched or transient33 grating, with the SPP resonance position
controlled by the grating periodicity. In this way, a complete
multi-level magnetic recording architecture could be developed,
with different optical parameters dictating the choice of which
magnetic layer is addressed.

Methods
Numerical calculations. Partial and full absorption inside the lossy planar struc-
ture, in the case of the oblique optical incidence, is calculated using the energy
conservation law

W ¼ Sincz � sþ Stz � sþ Srz � s; ð2Þ

where Sz is the z-component of the Poynting vector of the incident (inc), trans-
mitted (t) or reflected (r) light, and s is the surface area parallel to the xy-plane. W
is the energy absorbed by the volume that, according to the Joule-Lenz law,
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depends on the conductivity σ via

W ¼
1

2

Z

σ Ej j2sdz: ð3Þ

Taking in to account A= 1 – R – T, where A, R and T correspond to the
absorption, reflection and transmission coefficients respectively, Eq. (2) can be
rearranged to obtain

W

Sincz

¼ 1� R� T; ð4Þ

Combining Eqs. (2) and (3) yields

A ¼
1

2

R

σ Ej j2sdz

Sincz

: ð5Þ

Using the identities σ ¼ ωIm ε½ �
4π and Sincz ¼

cnprism
8π Eincj j2cos θ, where ω and c are the

frequency and speed of light, and ε is the permittivity, one obtains Eq. 1, i.e.,

A ¼
R

δA zð Þdz ¼ k0
nprism cos θð Þ

R

e zð Þj j2Im εð Þdz. Here, e(z) is the electric field

normalized to the value of the electric field for the incident light, i.e., e(z)= E(z)/|

Einc|, and the magnitude of the electric field is given by Eincj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I=cε0nprism

q

.

Sample fabrication. For the experimental study, we prepared multi-layered
heterostructure deposited by magnetron sputtering on an atomically flat glass
substrate. The ferrimagnetic GdFeCo nanolayers were fabricated by co-
sputtering of Gd, Fe, and Co elements with the direct current (DC) magnetron
sputtering method. As an advantage of amorphous alloy systems, we can tune
concentration of alloy continuously by controlling the relative deposition rates
and can precisely design the coercive field at room temperature as shown in
Fig. 2. The thin Si3N4 layers were fabricated by reactive radio frequency (RF)
magnetron sputtering of Si with nitrogen gas. Calibration of deposition rate and
optical characterization were performed by spectroscopic ellipsometry. Thin film
with high refractive index (~2.00 at wavelength of 800 nm) was obtained on the
optimal deposition conditions.

Experimental setup for measuring the reflectance angular spectra. The
reflectance angular spectra at the pump wavelength was measured using a
rotating motorized platform STANDA 8MR174-11. Incident light was generated
by a single-mode diode laser THORLABS L785P090, with a spectral line width of
about 0.1 nm. The temperature of the laser case was stabilized with an accuracy
of 0.02 °C. A parallel light beam was formed using an aspheric lens with a focal
length of 6 mm. Then the light passed through a film polarizer, an optical
chopper modulating light at a frequency of about 500 Hz, and a diaphragm. The
intensity of the reflected light was measured using a THORLABS
FDS1010 silicon photodiode connected to a low-noise transimpedance amplifier.
The signal from the amplifier was digitized by a National Instruments USB-6351
data acquisition board.

Experimental setup for achieving and detecting polarization-dependent tog-

gle-switching. To achieve polarization-dependent all-optical switching of mag-
netization, we used an amplified Ti:Sapphire laser system to generate ∼100 fs
optical pulses, with a central wavelength of 800 nm and a Gaussian spatial dis-
tribution. The optical pulses either had a repetition rate of 1 kHz (used when
aligning or measuring the power) or were triggered in single-shot mode (when
achieving all-optical switching). A polarizer and half-wave plate were used to rotate
the polarization-axis of the linearly polarized pulse, and the pulse was then routed
towards the coupling prism, and focussed using a lens of focal length 25 cm. The
angle of incidence (relative to the coupling prism) was measured by taking and
analysing a photograph of two diaphragms centred on the laser beam.

Detection of the magnetic state of the multi-layered heterostructure was
achieved using a magneto-optical microscope. A Euromex 100 W halogen
LE.5210 lamp supplied illumination, which was linearly polarized by a polarizing
sheet and then directed through an objective lens (Mitsutoyo, G Plan APO × 20,
NA= 0.28). Upon reflection, the polarization-axis of the illuminating light was
rotated due to the polar magneto-optical Kerr effect. The reflected beam was
then spatially separated using a non-polarizing beam splitter, and passed
through a Glan-Taylor polarizer (the latter was almost crossed with the former
polarizing film). Finally, a spatially-resolved image (with an amplitude
proportional to the out-of-plane component of magnetization) was recorded
using a CCD (QImaging, Retiga R3) coupled to a variable magnifier. All images
were recorded with an exposure time of 250 ms. A short-pass filter, with a cut-off
wavelength of 750 nm, was used to prevent the 800 nm optical pulse from
polluting the CCD. An electromagnetic pole was positioned directly behind the
coupling prism in order to supply an out-of-plane magnetic field (maximum
attainable strength ± 320 Oe).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors Daria Ignatyeva (daria.ignatyeva@gmail.com)
or Carl Davies (c.davies@science.ru.nl) upon reasonable request.
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