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Abstract

Nanophotonics, the field that merges photonics and nanotechnology, has in recent years revolutionized the field of
optics by enabling the manipulation of light-matter interactions with subwavelength structures. However, despite the
many advances in this field, the design, fabrication and characterization has remained widely an iterative process in
which the designer guesses a structure and solves the Maxwell's equations for it. In contrast, the inverse problem, ie,
obtaining a geometry for a desired electromagnetic response, remains a challenging and time-consuming task within
the boundaries of very specific assumptions. Here, we experimentally demonstrate that a novel Deep Neural Network
trained with thousands of synthetic experiments is not only able to retrieve subwavelength dimensions from solely far-
field measurements but is also capable of directly addressing the inverse problem. Our approach allows the rapid
design and characterization of metasurface-based optical elements as well as optimal nanostructures for targeted

chemicals and biomolecules, which are critical for sensing, imaging and integrated spectroscopy applications.

Introduction

In recent decades, many breakthroughs in optics have led
to unprecedented imaging capabilities beyond the diffraction
limit, with applications in biology and nanotechnology. In
this context, nanophotonics has revolutionized the field of
optics in recent years by enabling the manipulation of
light—matter interactions with subwavelength structures' .
However, despite the many advances in this field, its impact
and penetration in our daily life has been hindered by a
convoluted and iterative process, cycling through modeling,
nanofabrication and nanocharacterization. The fundamental
reason starts with the fact that the prediction of the optical
response is very time consuming and requires solving
Maxwell's equations with dedicated numerical packages®”
http://www.lumerical.com/tcad-products/fdtd/. Next, more
significantly, the inverse problem, ie., designing a nanos-
tructure with an on-demand optical response, is currently a
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prohibitive task even with the most advanced numerical
tools due to the high nonlinearity of the problem®’. In
parallel, for many years, computer science has been har-
nessed to address challenging tasks in nanophotonic ima-
ging, design and characterization. In general, the approaches
were either to target enhancing/resolving imaging and
characterization beyond the diffraction limit (super-resolu-
tion techniques such as PALM and STORM techniques and
more  https://www.nobelprize.org/nobel_prizes/chemistry/
laureates/2014/advanced-chemistryprize2014.pdf *~'°) or to
assist with the design process of nanophotonic devices' ™.
However, to date, very few computational techniques are
capable of addressing both aspects in an integrated manner
for nanoplasmonics. In this context, Deep Learning (DL) has
emerged in recent years as a very powerful computational
method that has achieved state-of-the-art results in various
tasks, including computer vision'®, speech recognition®,
natural language processing®’, face recognition and other
applications®". Inspired by the layered and hierarchical deep
architecture of the human brain, DL uses multiple layers of
nonlinear transformation to model high-level abstraction in
data. DL has also been successfully employed in research
areas beyond computer science, such as in particle physics,
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ultra cold science™, condensed matter**, chemical physics™
and conventional microscopy”®”

Here we present an integrated DL approach and show
how deep neural networks (DNNs) can streamline the
design process and provide a unique, robust, time-
efficient and accurate characterization capability for
complex nanostructures based on their far-field optical
responses. The complexity of the DNN can address the
high level of nonlinearity of the inference tasks by creating
a model that holds bidirectional knowledge. While it is
common practice in DL to separate different problems
and to train multiple separate networks for each problem,
We show that our approach of training a bidirectional
network that goes from the optical response spectrum to
the nanoparticle geometry and back is significantly more
effective for both the design and characterization tasks.
Furthermore, we show that this DL approach not only can
predict the spectral response of nanostructures with high
accuracy but also can address the inverse problem and
provide a single nanostructure’s design, geometry and
dimension, for a targeted optical response for both
polarizations.

This DL approach provides a method for direct on-
demand engineering of plasmonic structures and meta-
surfaces for applications in sensing, targeted therapy and
more. Moreover, the predictive capability of the DL model
also holds great promise for multivariate characterization
of nanostructures beyond the diffraction limit.

Results

To demonstrate the paradigm shift that is enabled by
our Deep Learning approach, we consider the interaction
of light with subwavelength structures such as plasmonic
nanostructures, metamaterials and composite layered
metallic nanostructures embedded in dielectrics, which
allow control of the properties of the outgoing light®®,
Predicting the far-field optical response for a defined
nanostructure geometry and composition involves solving
the full set of Maxwell equations at each location in space
and for each wavelength. However, whereas the far-field
spectrum is directly connected to the nanostructure
geometry, the solvability of the ‘inverse’ problem, i.e.,
inferring the nanoscale geometry from a measured or
desired far-field spectrum, depends to a large extent on
the complexity of the system of interest (Fig. 1a).

For a simple nanostructure, which exhibits single
resonance peaks in each polarization, one can solve it
semi-analytically or in an intuitive manner>’; however, for
a general spectral response associated with more complex
geometries, no analytical solution is known, and time-
consuming numerical methods such as Finite Element
Method (FEM) or Finite Difference Time Domain
(FDTD) method must be used. Further optimization
methods such as shallow neural networks, evolutionary
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algorithms and linear regression'"'*>?%*! have gained

some success in solving the inverse problem task. How-
ever, current techniques are still limited in accuracy and
practical feasibility and fall short in the modeling of
nonlinear problems with high complexity of the under-
lying physical processes. To date, none of these approa-
ches can efficiently address the inverse problem, and it
still takes many cycles of trial and error of modeling and
characterization to predict or design a nanostructure for a
desired or measured far-field optical spectral response®'.

We emphasize that the Deep Learning approach pre-
sented here is fundamentally different from evolutionary
approaches since, for every single design task, the evolu-
tionary approaches search the parameter space over
dozens (sometimes hundreds) of generations, with each
generation encompassing dozens/hundreds of individuals
(Fig. 1b). For this reason, the individuals should be simple
enough to enable their electromagnetic response to be
analytically solved; otherwise, the optimization task takes
a prohibitive amount of time, which limits the usefulness
of such an approach. Our approach is radically different
(Fig. 1c). We train our DNN on a set encompassing
structures that are not trivial and for which responses
must be calculated using time-consuming numerical
approaches. However, once the data set is created and
learned, this task is nonrecurring and each design task
requires only a query of the DNN that takes not more
than a few milliseconds.

To illustrate our approach, we design a novel deep
network that uses a fully connected neural network. We
introduce a bidirectional deep neural network archi-
tecture that is composed of two networks (Fig. 2a), where
the first is a Geometry-predicting-network (GPN) that
predicts a geometry based on the spectra (the inverse
path) and the second is a Spectrum-predicting-network
(SPN) that predicts the spectra based on the nanoparticle
geometry (the direct path). The geometry predicted by the
GPN is fed into the SPN which, in turn, predicts the
spectrum. We thus solve the harder inverse problem first,
i.e., predicting the geometry based on two spectra for both
polarizations, and then, using the predicted geometry, we
match the recovered spectrum with the original one
(see Supplemental Document for further information). It
is worthwhile to note that the training of such a bidirec-
tional network requires a dedicated learning procedure,
since the input to the SPN is a predicted geometry rather
than the actual geometry (see Supplemental Document
for more information). Furthermore, we also observe a
significant gain from training one network on all the
training sets rather than the alternative of training mul-
tiple separate networks. It is crucial to stress that the
learning phase in the DNN is a nonrecurring effort, which
means that once the data set is learned, the query phase is
quasi instantaneous. This approach is a clear departure
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Fig. 1 Comparison of the different computational approaches to plasmonic nanostructure design a To date, the approaches enabled by the
computational tools available are efficient only for ‘direct’ modeling, i.e., predicting the optical response in both polarizations of a nanostructure
based on its geometry, constituent and surrounding media. However, the ‘inverse’ problem, where the tool outputs a nanostructure for an input
desired optical response, is much more relevant from a designer’s point of view and is currently inefficient and time consuming. The more complex
the desired optical response, the more unattainable the solution of the inverse problem. b, ¢ Optimization algorithm vs. DL in nanophotonics and the
‘inverse’ problem. b The Genetic Algorithm applied to the field of predicting nanophotonic geometries and their responses. The typical Genetic
Algorithm contains the following five phases: (A) Create the genetic diversity that serves as an initial population of various nanostructures. (B)
Calculate the spectrum for each configuration, which is a time-consuming task for complex nanostructures. (C) Evaluate the fitness. (D) Eliminate the
least fit nanostructures (the selection phase). The population is examined to find a set number of top scores, and any solution with a poorer fitness
score is eliminated from the population. (F) Clone and mutate the most fitted structures (the reproduction phase). The frequencies and types
(deletion, addition, variations) of the mutations can vary. The output is the best fit sample found throughout the generations. GA is a classic example
of an optimization algorithm, where a multidimensional space is searched for each and every design task. ¢ Building a Deep Learning model typically
involves the following four phases: (A) Create a data set with diverse experiments. (B) Calculate the spectrum for each configuration. This step is a
time-consuming task for complex nanostructures. (C) Learn an optimized model using the data set. (D) Query the trained model with new
experiments. To predict beyond the training data, the network must learn the inner set of rules of the nanostructure optical response phenomena.
This approach can therefore be considered to be an optimization that is performed once for all future cases. Once the inner set of rules is learned, the
query phase is extremely fast and accurate
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from evolutionary methods in which for every query, the
whole parameter space is searched for optimization.

To train our DNN, we created a large set of synthetic
data using COMSOL Multiphysics*. The data contain
more than 15,000 experiments, where each experiment is
composed of a plasmonic nanostructure with a defined

geometry, its metal properties, the host's permittivity and
the optical response spectrum for both horizontal and
vertical polarizations of the incoming field. While we
maintain a constant thickness of the nanoparticle, the
thickness can of course influence the transmission spectra
(blueshift and resonance strength). This variable can be
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Fig. 2 Deep-learning network architecture and results. a The deep networks have a cascaded structure of many layers of nonlinear processing
units, where each layer uses the output from the previous layer as input. The training of our bidirectional network consists of two phases. We first
train the inverse network to predict the geometry based on the transmission spectrum. In the second phase, we train the direct network on top of
the first network. The inverse network receives, as input parameters, two spectra and material properties, and for each experiment, it learns the
corresponding geometry, material properties and resonances of the unknown geometry. For more detail, see the Supplemental document. Once this
DNN is trained, the nanostructure's geometry is retrieved based on the measured/desired transmission spectrum by querying the inverse network.
b, ¢ Deep Learning retrieval results for two different gold nanostructures that we fabricated are depicted. The measured spectrum is depicted in a red
(blue) dotted line for the horizontal (vertical) input polarization. The DL predicted geometry is represented by the different lengths in the table. The
DL spectrum based on the predicted geometry is depicted as full circles. The results of the COMSOL simulations based on the DL predicted geometry
are represented as full lines. For all of the nanostructures, the gold thickness is maintained at 40 nm. Further information on the Deep Learning
network and a comparison of simple structures can be found in the Supplemental Document
A

added as a parameter to the learning data set and allow
refined predictions. In our proof of concept, we choose a
nanostructure geometry represented by a general "H"
form that can be easily fabricated using top-down
approaches, where each of the outer edges can vary in
length and angle or can be omitted (Fig. 2). Such variable
geometry is sufficiently complex to span a wide variety of
optical response spectra for both polarizations. We then
feed the DNN with these synthetic optical experiments
and let it learn the multivariate relationship between the
spectra and all of the aforementioned geometric

parameters. During this training process, the prediction
provided by the DNN on a set of synthetic experiments is
compared to the COMSOL solutions, and the network
weights are optimized to minimize the discrepancy. A set
of similarly created samples, unseen during training, is
used to evaluate the network’s performance.

We then demonstrate our DNN’s ability to accurately
predict the fabricated nanostructures’ parameters beyond
simulations, by fabricating a set of different geometries
that encompass some geometries that the network has
never seen before. Those geometries were fabricated with
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Fig. 3 Analysis of the depth and parallelism of the network. The performances of a trained GPN with different architectures are presented. For
each number of parallel layers, we change the number of fully connected layers, namely, the Join-layers depth. In this case, a deeper DNN leads to
better accuracy. However, there is a certain depth, in our case eight layers, in which the addition of extra layers does not improve the results or leads
to the vanishing gradient phenomenon. The importance of the parallel group layer part of the GPN is also demonstrated. Adding parallel layers forces
the network to represent each one of the three data groups separately and only then join them together into one large inner representation. Using
parallel group layers improves the results, but the number of layers should be chosen carefully. For comparison, a classical shallow network that has
only one hidden layer completely fails at the prediction task, with an MSE of over 0.7

gold on ITO covered glass (see “Methods” section). We
measured the transmission spectra on a home-built
reflection-transmission setup (see “Methods” section).

We fed these measured spectra into our trained DNN
and obtained excellent agreement between the retrieved
dimensions and those actually measured by the SEM
(Fig. 2). These excellent predictions were obtained once
the DNN was trained with an additional training set of
1500 simulated geometries (each of the geometries was
considered under the two polarization illuminations), for
which the network was able to learn the different geo-
metries’ responses in the presence of the measured dis-
persion of the indium tin oxide layer (ITO). We
emphasize that our DNN allows the retrieval of geome-
trical dimensions and optical properties of a sub-
wavelength geometry that reproduce its far-field spectra
from the family of subwavelength H-geometries.

This finding is, to our knowledge, an impressive cap-
ability of multivariate parameter retrieval. We note that
this achievement is enabled by the unique bidirectional
architecture and the simultaneous learning process
between the GPN and SPN, which leads to co-adaptation
between the networks. Compared to the simultaneous
bidirectional training, we observed that the performance
of the two separately trained GPN and SPN is significantly
inferior.

The bidirectionality, where the output of the inverse
network serves as an input to the direct network and is
used to predict the two spectrums of the predicted

geometry, constitutes a unique feature of our network and
is therefore further investigated. As an example, we
demonstrate the bidirectionality advantage in the case of
the dispersive ITO. This advantage is apparent from the
Mean Squared Error (MSE) achieved on the error func-
tion in both approaches, i.e., bidirectional versus com-
posite direct (SPN) and inverse (GPN) networks (more
information can be found in Supplemental Document).
The bidirectional network exhibits a significantly lower
MSE of 0.16 compared to the MSE achieved with the
composite approach (MSE = 0.37).

To gain insight on the effect of the network’s depth on
the prediction performance, we conduct an extensive
comparison between different network architectures. We
show that different network depths have a dramatic effect
on the results. We vary the number of fully connected
layers at the second part of the inverse network, and by
comparing the results to one another, we see a significant
effect on the accuracy of the prediction, as seen in Fig. 3.
We find that the best inverse network architecture for our
case is three parallel group layers followed by eight
sequential fully connected join layers. Interestingly, we
observe a significant gain in accuracy when using eight
join layers compared to five or seven layers in the
sequential part of the network. The benefit of such a deep
network is directly derived from the complexity and
nonlinearity of the underlying physical process. We
observe a significant gain from training one network on all
of the training set over the alternative of training multiple
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separate networks. While this finding can be attributed to
the so-called transfer of knowledge®, where knowledge
learned from one problem is transferred to another, we
are not aware of other instances in which it is that crucial
to train one single generalist network instead of applying a
divide-and-conquer strategy with multiple specialist
networks.

To test the boundaries of the DDN retrieval, we check
the performance of our DNN to address radically unseen
cases such as no nanostructures being present in the
queried spectra (meaning that the spectra will be
approximately flat with 100% transmission in both axes).
The DNN is presented with the horizontal and vertical
input polarization spectra.

We observe (Fig. 4) that out of all of the infinite pos-
sibilities (the returned lengths could have, for example,
blown), the network output matched the reality without
previously seeing this geometry. This finding shows that
the DNN is not simply “interpolating”, as there is nothing
even close to the “none” case in the training set; in fact,
the DNN performed generalization. Additionally, it is
worthwhile to mention that even in the angle parameters
and the two lengths, the output of the network was at the
appropriate scale.

Next, we have examined the strength of the inverse
predictive approach for sensing applications in which
plasmonic nanostructures are used to enhance the
light—-matter interactions with various chemicals and
biomolecules. Organic compounds typically exhibit pro-
nounced resonances across the spectrum from ultraviolet
to mid-infrared. We show that our trained DNN allows us
to find the nanostructure configuration to best interact
with a given molecule with target multiple resonances in
the two polarizations. More specifically, we wish to design
a nanostructure that is targeted at enhancing the inter-
action with dichloromethane, an important chemical used
in industrial processes. This organic compound exhibits
one resonance at ~1150 nm and another at approximately

1400-1500 nm https://commons.wikimedia.org/wiki/File:
Dichloromethane_near_IR_spectrum.png#/media/File:
Dichloromethane_near_IR_spectrum.png. Our design
goal is to achieve a nanostructure that will resonate in an
aqueous solution (at both wavelengths for one polariza-
tion and with completely different resonances at the
orthogonal polarization, at ~820 nm (matching a Ti:Sap-
phire femtosecond laser excitation for a pump-probe
experiment), 1064 nm and 1550 nm (Fig. 5a, b). In the
existing design process, this task would require to iterate
through different designs using the standard FEM or
FDTD simulation tools, a process that can be extremely
time consuming. The DNN'’s inverse solution yields, in a
few seconds, the parameters shown in Fig. 5c). We also
applied this design approach to the asymmetrical phtha-
locyanine dimer 1a, a synthetic molecule that has more
complex polarization characteristics (Fig. 5d, e) and has
potential applications due to its charge transfer proper-
ties®>. The DNN inverse design for this targeted molecule
and polarizations results in the configuration shown in
Fig. 5f. This finding demonstrates the capability of our
DNN to address various targeted resonances in different
polarizations and emphasizes that this approach can be
extended to other molecules for sensing in biology,
chemistry and material science.

Discussion

In conclusion, we introduce a novel deep-learning
approach for predicting the geometries of nanos-
tructures based solely on their far-field responses. We
have designed, trained and tested the proposed scheme,
showing a very accurate prediction of the geometry of a
complex nanostructure. This approach could be extended
to other physical and optical parameters of the host
materials and compounds. The approach also effectively
addresses the currently inaccessible inverse problem of
designing a geometry for a desired optical response
spectrum and significantly speeds up the direct spectrum
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Fig. 5 Prediction of the nanostructure’s geometry for chemical sensing. a-c DNN-based design of a gold plasmonic structure targeted to the
organic molecule dichloromethane with different spectral polarization responses (a, b) on one polarization axis. It has two resonances on 1150 nm
and a broad resonance between 1400 and 1600 nm, whereas on the orthogonal polarization axis, it has three resonances, at approximately 820 nm
(matching a Ti:Sapphire femtosecond laser excitation for a pump-probe experiment), 1064 nm and 1550 nm. ¢ Configuration and dimensions of the
plasmonic structure found by the DNN. d, e The targeted molecule is asymmetrical phthalocyanine dimer 1a, a synthetic molecule that has more
complex polarization characteristics and has potential applications due to its charge transfer properties. f Configuration and dimensions of the
plasmonic structure found by the DNN. In both geometries, after prediction of the geometry, COMSOL simulations were performed, which showed
excellent agreement with the desired spectra. This design approach can be extended to other molecules for biology, chemistry or material sciences

prediction of such subwavelength structures. This
approach allows for the on-demand design of optical
responses of nanostructures and metasurfaces for many
applications, such as sensing, imaging and more.

Materials and Methods
Preparation

ITO covered glass (Sigma Aldrich) were covered with
PMMA-A4 polymer and spin-coated for one minute at
7,000 RPM. The electron beam (Raith150) used was a
10kV beam, aperture 6 mm WD, and a dose was depos-
ited in single-pixel lines. Samples were then developed in
MIBK/IPA (1:3) for 1 min and rinsed in isopropanol for
20s. A concentration of 40 nm of gold was then evapo-
rated on the sample with an E-Beam Evaporator (VST
evaporator). Lift-off was performed with acetone and
followed with a final wash in isopropanol.

Sample characterization

Sample sizes were verified using an electron microscope
and were optically characterized using an OSL2 Broad-
band Halogen Fiber Optic Illuminator (Thorlabs) light-
source and LPNIR050 (Thorlabs) broad band polarizer.
Transmitted light was filtered in an imaging plane by an
iris such that only light that passed through the sample

was collected and then analyzed by an AQ6370D
(Yokogawa) spectrometer.

COMSOL simulation

We performed finite element method (FEM) simula-
tions using the 'Electromagnetic Waves, Frequency
Domain' module of the COMSOL 4.3b commercial soft-
ware. For consistency, the edges were made using fillets
with a constant radius of 15nm. We have considered
geometries based on a five edges shape of 'H' while
varying an angle of one of the edges, the existing edges
and the edges’ lengths.

The nanostructure is simulated in a homogeneous
dielectric medium with a chosen real effective-
permittivity. For preventing reflections from the far
planes, PMLs with a depth of the maximum wavelength
were placed on both far ends of the homogeneous med-
ium in the propagation direction of the radiating field.

For the data set predicting the fabrications, the nanos-
tructure made of Gold was modeled with a wavelength-
dependent homogeneous medium permittivity, and where
the ITO permittivity is wavelength dependent, such that
its imaginary part can be neglected in the measured
spectrum range. It has been shown that changes in the
thickness of a Titanium adhesion layer higher than 40% of
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the nanostructures’ height do not affect the plasmon
resonance. Furthermore, for an Au nanoparticle with a
diameter of 10 nm and a graphene layer, the LSPR shifting
saturates when the distance is >20 nm.

A prediction for a similar behavior of the ITO layer is
assumed. In our case, the ITO thickness is ~100 nm,
which is approximately 250% of the nanostructure
thickness of ~40 nm.

Data availability
The open source code for the DNN presented in this work can be found at the
following URL https://github.com/ItzikMalkiel/DeepNanoDesign
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