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Abstract

Nanophotonics, the field that merges photonics and nanotechnology, has in recent years revolutionized the field of

optics by enabling the manipulation of light–matter interactions with subwavelength structures. However, despite the

many advances in this field, the design, fabrication and characterization has remained widely an iterative process in

which the designer guesses a structure and solves the Maxwell’s equations for it. In contrast, the inverse problem, i.e.,

obtaining a geometry for a desired electromagnetic response, remains a challenging and time-consuming task within

the boundaries of very specific assumptions. Here, we experimentally demonstrate that a novel Deep Neural Network

trained with thousands of synthetic experiments is not only able to retrieve subwavelength dimensions from solely far-

field measurements but is also capable of directly addressing the inverse problem. Our approach allows the rapid

design and characterization of metasurface-based optical elements as well as optimal nanostructures for targeted

chemicals and biomolecules, which are critical for sensing, imaging and integrated spectroscopy applications.

Introduction

In recent decades, many breakthroughs in optics have led

to unprecedented imaging capabilities beyond the diffraction

limit, with applications in biology and nanotechnology. In

this context, nanophotonics has revolutionized the field of

optics in recent years by enabling the manipulation of

light–matter interactions with subwavelength structures1–3.

However, despite the many advances in this field, its impact

and penetration in our daily life has been hindered by a

convoluted and iterative process, cycling through modeling,

nanofabrication and nanocharacterization. The fundamental

reason starts with the fact that the prediction of the optical

response is very time consuming and requires solving

Maxwell's equations with dedicated numerical packages4,5

http://www.lumerical.com/tcad-products/fdtd/. Next, more

significantly, the inverse problem, i.e., designing a nanos-

tructure with an on-demand optical response, is currently a

prohibitive task even with the most advanced numerical

tools due to the high nonlinearity of the problem6,7. In

parallel, for many years, computer science has been har-

nessed to address challenging tasks in nanophotonic ima-

ging, design and characterization. In general, the approaches

were either to target enhancing/resolving imaging and

characterization beyond the diffraction limit (super-resolu-

tion techniques such as PALM and STORM techniques and

more https://www.nobelprize.org/nobel_prizes/chemistry/

laureates/2014/advanced-chemistryprize2014.pdf 8–10) or to

assist with the design process of nanophotonic devices11–17.

However, to date, very few computational techniques are

capable of addressing both aspects in an integrated manner

for nanoplasmonics. In this context, Deep Learning (DL) has

emerged in recent years as a very powerful computational

method that has achieved state-of-the-art results in various

tasks, including computer vision18, speech recognition19,

natural language processing20, face recognition and other

applications21. Inspired by the layered and hierarchical deep

architecture of the human brain, DL uses multiple layers of

nonlinear transformation to model high-level abstraction in

data. DL has also been successfully employed in research

areas beyond computer science, such as in particle physics22,
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ultra cold science23, condensed matter24, chemical physics25

and conventional microscopy26,27.

Here we present an integrated DL approach and show

how deep neural networks (DNNs) can streamline the

design process and provide a unique, robust, time-

efficient and accurate characterization capability for

complex nanostructures based on their far-field optical

responses. The complexity of the DNN can address the

high level of nonlinearity of the inference tasks by creating

a model that holds bidirectional knowledge. While it is

common practice in DL to separate different problems

and to train multiple separate networks for each problem,

We show that our approach of training a bidirectional

network that goes from the optical response spectrum to

the nanoparticle geometry and back is significantly more

effective for both the design and characterization tasks.

Furthermore, we show that this DL approach not only can

predict the spectral response of nanostructures with high

accuracy but also can address the inverse problem and

provide a single nanostructure’s design, geometry and

dimension, for a targeted optical response for both

polarizations.

This DL approach provides a method for direct on-

demand engineering of plasmonic structures and meta-

surfaces for applications in sensing, targeted therapy and

more. Moreover, the predictive capability of the DL model

also holds great promise for multivariate characterization

of nanostructures beyond the diffraction limit.

Results

To demonstrate the paradigm shift that is enabled by

our Deep Learning approach, we consider the interaction

of light with subwavelength structures such as plasmonic

nanostructures, metamaterials and composite layered

metallic nanostructures embedded in dielectrics, which

allow control of the properties of the outgoing light28.

Predicting the far-field optical response for a defined

nanostructure geometry and composition involves solving

the full set of Maxwell equations at each location in space

and for each wavelength. However, whereas the far-field

spectrum is directly connected to the nanostructure

geometry, the solvability of the ‘inverse’ problem, i.e.,

inferring the nanoscale geometry from a measured or

desired far-field spectrum, depends to a large extent on

the complexity of the system of interest (Fig. 1a).

For a simple nanostructure, which exhibits single

resonance peaks in each polarization, one can solve it

semi-analytically or in an intuitive manner29; however, for

a general spectral response associated with more complex

geometries, no analytical solution is known, and time-

consuming numerical methods such as Finite Element

Method (FEM) or Finite Difference Time Domain

(FDTD) method must be used. Further optimization

methods such as shallow neural networks, evolutionary

algorithms and linear regression11,13,30,31 have gained

some success in solving the inverse problem task. How-

ever, current techniques are still limited in accuracy and

practical feasibility and fall short in the modeling of

nonlinear problems with high complexity of the under-

lying physical processes. To date, none of these approa-

ches can efficiently address the inverse problem, and it

still takes many cycles of trial and error of modeling and

characterization to predict or design a nanostructure for a

desired or measured far-field optical spectral response31.

We emphasize that the Deep Learning approach pre-

sented here is fundamentally different from evolutionary

approaches since, for every single design task, the evolu-

tionary approaches search the parameter space over

dozens (sometimes hundreds) of generations, with each

generation encompassing dozens/hundreds of individuals

(Fig. 1b). For this reason, the individuals should be simple

enough to enable their electromagnetic response to be

analytically solved; otherwise, the optimization task takes

a prohibitive amount of time, which limits the usefulness

of such an approach. Our approach is radically different

(Fig. 1c). We train our DNN on a set encompassing

structures that are not trivial and for which responses

must be calculated using time-consuming numerical

approaches. However, once the data set is created and

learned, this task is nonrecurring and each design task

requires only a query of the DNN that takes not more

than a few milliseconds.

To illustrate our approach, we design a novel deep

network that uses a fully connected neural network. We

introduce a bidirectional deep neural network archi-

tecture that is composed of two networks (Fig. 2a), where

the first is a Geometry-predicting-network (GPN) that

predicts a geometry based on the spectra (the inverse

path) and the second is a Spectrum-predicting-network

(SPN) that predicts the spectra based on the nanoparticle

geometry (the direct path). The geometry predicted by the

GPN is fed into the SPN which, in turn, predicts the

spectrum. We thus solve the harder inverse problem first,

i.e., predicting the geometry based on two spectra for both

polarizations, and then, using the predicted geometry, we

match the recovered spectrum with the original one

(see Supplemental Document for further information). It

is worthwhile to note that the training of such a bidirec-

tional network requires a dedicated learning procedure,

since the input to the SPN is a predicted geometry rather

than the actual geometry (see Supplemental Document

for more information). Furthermore, we also observe a

significant gain from training one network on all the

training sets rather than the alternative of training mul-

tiple separate networks. It is crucial to stress that the

learning phase in the DNN is a nonrecurring effort, which

means that once the data set is learned, the query phase is

quasi instantaneous. This approach is a clear departure
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from evolutionary methods in which for every query, the

whole parameter space is searched for optimization.

To train our DNN, we created a large set of synthetic

data using COMSOL Multiphysics4. The data contain

more than 15,000 experiments, where each experiment is

composed of a plasmonic nanostructure with a defined

geometry, its metal properties, the host's permittivity and

the optical response spectrum for both horizontal and

vertical polarizations of the incoming field. While we

maintain a constant thickness of the nanoparticle, the

thickness can of course influence the transmission spectra

(blueshift and resonance strength). This variable can be
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Fig. 1 Comparison of the different computational approaches to plasmonic nanostructure design a To date, the approaches enabled by the

computational tools available are efficient only for ‘direct’ modeling, i.e., predicting the optical response in both polarizations of a nanostructure

based on its geometry, constituent and surrounding media. However, the ‘inverse’ problem, where the tool outputs a nanostructure for an input

desired optical response, is much more relevant from a designer’s point of view and is currently inefficient and time consuming. The more complex

the desired optical response, the more unattainable the solution of the inverse problem. b, c Optimization algorithm vs. DL in nanophotonics and the

‘inverse’ problem. b The Genetic Algorithm applied to the field of predicting nanophotonic geometries and their responses. The typical Genetic

Algorithm contains the following five phases: (A) Create the genetic diversity that serves as an initial population of various nanostructures. (B)

Calculate the spectrum for each configuration, which is a time-consuming task for complex nanostructures. (C) Evaluate the fitness. (D) Eliminate the

least fit nanostructures (the selection phase). The population is examined to find a set number of top scores, and any solution with a poorer fitness

score is eliminated from the population. (E) Clone and mutate the most fitted structures (the reproduction phase). The frequencies and types

(deletion, addition, variations) of the mutations can vary. The output is the best fit sample found throughout the generations. GA is a classic example

of an optimization algorithm, where a multidimensional space is searched for each and every design task. c Building a Deep Learning model typically

involves the following four phases: (A) Create a data set with diverse experiments. (B) Calculate the spectrum for each configuration. This step is a

time-consuming task for complex nanostructures. (C) Learn an optimized model using the data set. (D) Query the trained model with new

experiments. To predict beyond the training data, the network must learn the inner set of rules of the nanostructure optical response phenomena.

This approach can therefore be considered to be an optimization that is performed once for all future cases. Once the inner set of rules is learned, the

query phase is extremely fast and accurate
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added as a parameter to the learning data set and allow

refined predictions. In our proof of concept, we choose a

nanostructure geometry represented by a general "H"

form that can be easily fabricated using top-down

approaches, where each of the outer edges can vary in

length and angle or can be omitted (Fig. 2). Such variable

geometry is sufficiently complex to span a wide variety of

optical response spectra for both polarizations. We then

feed the DNN with these synthetic optical experiments

and let it learn the multivariate relationship between the

spectra and all of the aforementioned geometric

parameters. During this training process, the prediction

provided by the DNN on a set of synthetic experiments is

compared to the COMSOL solutions, and the network

weights are optimized to minimize the discrepancy. A set

of similarly created samples, unseen during training, is

used to evaluate the network’s performance.

We then demonstrate our DNN’s ability to accurately

predict the fabricated nanostructures’ parameters beyond

simulations, by fabricating a set of different geometries

that encompass some geometries that the network has

never seen before. Those geometries were fabricated with
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Fig. 2 Deep-learning network architecture and results. a The deep networks have a cascaded structure of many layers of nonlinear processing

units, where each layer uses the output from the previous layer as input. The training of our bidirectional network consists of two phases. We first

train the inverse network to predict the geometry based on the transmission spectrum. In the second phase, we train the direct network on top of

the first network. The inverse network receives, as input parameters, two spectra and material properties, and for each experiment, it learns the

corresponding geometry, material properties and resonances of the unknown geometry. For more detail, see the Supplemental document. Once this

DNN is trained, the nanostructure's geometry is retrieved based on the measured/desired transmission spectrum by querying the inverse network.

b, c Deep Learning retrieval results for two different gold nanostructures that we fabricated are depicted. The measured spectrum is depicted in a red

(blue) dotted line for the horizontal (vertical) input polarization. The DL predicted geometry is represented by the different lengths in the table. The

DL spectrum based on the predicted geometry is depicted as full circles. The results of the COMSOL simulations based on the DL predicted geometry

are represented as full lines. For all of the nanostructures, the gold thickness is maintained at 40 nm. Further information on the Deep Learning

network and a comparison of simple structures can be found in the Supplemental Document
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gold on ITO covered glass (see “Methods” section). We

measured the transmission spectra on a home-built

reflection-transmission setup (see “Methods” section).

We fed these measured spectra into our trained DNN

and obtained excellent agreement between the retrieved

dimensions and those actually measured by the SEM

(Fig. 2). These excellent predictions were obtained once

the DNN was trained with an additional training set of

1500 simulated geometries (each of the geometries was

considered under the two polarization illuminations), for

which the network was able to learn the different geo-

metries’ responses in the presence of the measured dis-

persion of the indium tin oxide layer (ITO). We

emphasize that our DNN allows the retrieval of geome-

trical dimensions and optical properties of a sub-

wavelength geometry that reproduce its far-field spectra

from the family of subwavelength H-geometries.

This finding is, to our knowledge, an impressive cap-

ability of multivariate parameter retrieval. We note that

this achievement is enabled by the unique bidirectional

architecture and the simultaneous learning process

between the GPN and SPN, which leads to co-adaptation

between the networks. Compared to the simultaneous

bidirectional training, we observed that the performance

of the two separately trained GPN and SPN is significantly

inferior.

The bidirectionality, where the output of the inverse

network serves as an input to the direct network and is

used to predict the two spectrums of the predicted

geometry, constitutes a unique feature of our network and

is therefore further investigated. As an example, we

demonstrate the bidirectionality advantage in the case of

the dispersive ITO. This advantage is apparent from the

Mean Squared Error (MSE) achieved on the error func-

tion in both approaches, i.e., bidirectional versus com-

posite direct (SPN) and inverse (GPN) networks (more

information can be found in Supplemental Document).

The bidirectional network exhibits a significantly lower

MSE of 0.16 compared to the MSE achieved with the

composite approach (MSE= 0.37).

To gain insight on the effect of the network’s depth on

the prediction performance, we conduct an extensive

comparison between different network architectures. We

show that different network depths have a dramatic effect

on the results. We vary the number of fully connected

layers at the second part of the inverse network, and by

comparing the results to one another, we see a significant

effect on the accuracy of the prediction, as seen in Fig. 3.

We find that the best inverse network architecture for our

case is three parallel group layers followed by eight

sequential fully connected join layers. Interestingly, we

observe a significant gain in accuracy when using eight

join layers compared to five or seven layers in the

sequential part of the network. The benefit of such a deep

network is directly derived from the complexity and

nonlinearity of the underlying physical process. We

observe a significant gain from training one network on all

of the training set over the alternative of training multiple
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better accuracy. However, there is a certain depth, in our case eight layers, in which the addition of extra layers does not improve the results or leads

to the vanishing gradient phenomenon. The importance of the parallel group layer part of the GPN is also demonstrated. Adding parallel layers forces

the network to represent each one of the three data groups separately and only then join them together into one large inner representation. Using

parallel group layers improves the results, but the number of layers should be chosen carefully. For comparison, a classical shallow network that has

only one hidden layer completely fails at the prediction task, with an MSE of over 0.7
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separate networks. While this finding can be attributed to

the so-called transfer of knowledge32, where knowledge

learned from one problem is transferred to another, we

are not aware of other instances in which it is that crucial

to train one single generalist network instead of applying a

divide-and-conquer strategy with multiple specialist

networks.

To test the boundaries of the DDN retrieval, we check

the performance of our DNN to address radically unseen

cases such as no nanostructures being present in the

queried spectra (meaning that the spectra will be

approximately flat with 100% transmission in both axes).

The DNN is presented with the horizontal and vertical

input polarization spectra.

We observe (Fig. 4) that out of all of the infinite pos-

sibilities (the returned lengths could have, for example,

blown), the network output matched the reality without

previously seeing this geometry. This finding shows that

the DNN is not simply “interpolating”, as there is nothing

even close to the “none” case in the training set; in fact,

the DNN performed generalization. Additionally, it is

worthwhile to mention that even in the angle parameters

and the two lengths, the output of the network was at the

appropriate scale.

Next, we have examined the strength of the inverse

predictive approach for sensing applications in which

plasmonic nanostructures are used to enhance the

light–matter interactions with various chemicals and

biomolecules. Organic compounds typically exhibit pro-

nounced resonances across the spectrum from ultraviolet

to mid-infrared. We show that our trained DNN allows us

to find the nanostructure configuration to best interact

with a given molecule with target multiple resonances in

the two polarizations. More specifically, we wish to design

a nanostructure that is targeted at enhancing the inter-

action with dichloromethane, an important chemical used

in industrial processes. This organic compound exhibits

one resonance at ~1150 nm and another at approximately

1400–1500 nm https://commons.wikimedia.org/wiki/File:

Dichloromethane_near_IR_spectrum.png#/media/File:

Dichloromethane_near_IR_spectrum.png. Our design

goal is to achieve a nanostructure that will resonate in an

aqueous solution (at both wavelengths for one polariza-

tion and with completely different resonances at the

orthogonal polarization, at ~820 nm (matching a Ti:Sap-

phire femtosecond laser excitation for a pump-probe

experiment), 1064 nm and 1550 nm (Fig. 5a, b). In the

existing design process, this task would require to iterate

through different designs using the standard FEM or

FDTD simulation tools, a process that can be extremely

time consuming. The DNN’s inverse solution yields, in a

few seconds, the parameters shown in Fig. 5c). We also

applied this design approach to the asymmetrical phtha-

locyanine dimer 1a, a synthetic molecule that has more

complex polarization characteristics (Fig. 5d, e) and has

potential applications due to its charge transfer proper-

ties33. The DNN inverse design for this targeted molecule

and polarizations results in the configuration shown in

Fig. 5f. This finding demonstrates the capability of our

DNN to address various targeted resonances in different

polarizations and emphasizes that this approach can be

extended to other molecules for sensing in biology,

chemistry and material science.

Discussion

In conclusion, we introduce a novel deep-learning

approach for predicting the geometries of nanos-

tructures based solely on their far-field responses. We

have designed, trained and tested the proposed scheme,

showing a very accurate prediction of the geometry of a

complex nanostructure. This approach could be extended

to other physical and optical parameters of the host

materials and compounds. The approach also effectively

addresses the currently inaccessible inverse problem of

designing a geometry for a desired optical response

spectrum and significantly speeds up the direct spectrum
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prediction of such subwavelength structures. This

approach allows for the on-demand design of optical

responses of nanostructures and metasurfaces for many

applications, such as sensing, imaging and more.

Materials and Methods

Preparation

ITO covered glass (Sigma Aldrich) were covered with

PMMA-A4 polymer and spin-coated for one minute at

7,000 RPM. The electron beam (Raith150) used was a

10 kV beam, aperture 6 mm WD, and a dose was depos-

ited in single-pixel lines. Samples were then developed in

MIBK/IPA (1:3) for 1 min and rinsed in isopropanol for

20 s. A concentration of 40 nm of gold was then evapo-

rated on the sample with an E-Beam Evaporator (VST

evaporator). Lift-off was performed with acetone and

followed with a final wash in isopropanol.

Sample characterization

Sample sizes were verified using an electron microscope

and were optically characterized using an OSL2 Broad-

band Halogen Fiber Optic Illuminator (Thorlabs) light-

source and LPNIR050 (Thorlabs) broad band polarizer.

Transmitted light was filtered in an imaging plane by an

iris such that only light that passed through the sample

was collected and then analyzed by an AQ6370D

(Yokogawa) spectrometer.

COMSOL simulation

We performed finite element method (FEM) simula-

tions using the 'Electromagnetic Waves, Frequency

Domain' module of the COMSOL 4.3b commercial soft-

ware. For consistency, the edges were made using fillets

with a constant radius of 15 nm. We have considered

geometries based on a five edges shape of 'H' while

varying an angle of one of the edges, the existing edges

and the edges’ lengths.

The nanostructure is simulated in a homogeneous

dielectric medium with a chosen real effective-

permittivity. For preventing reflections from the far

planes, PMLs with a depth of the maximum wavelength

were placed on both far ends of the homogeneous med-

ium in the propagation direction of the radiating field.

For the data set predicting the fabrications, the nanos-

tructure made of Gold was modeled with a wavelength-

dependent homogeneous medium permittivity, and where

the ITO permittivity is wavelength dependent, such that

its imaginary part can be neglected in the measured

spectrum range. It has been shown that changes in the

thickness of a Titanium adhesion layer higher than 40% of

0.9

a b c

d e f

0.9

1

0.8

0.80.7

0.6 0.7

0.6

0.5

T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n

T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n

0.5

0.4

0.3

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.20

600 750

Desired vertical response

DL predicted vertical response

COMSOL simulated vertical response

Desired vertical response

O

O

O

O
N

N

N

N
N N

N
Ni

N

DL predicted vertical response

Comsol simulated vertical response

Desired horizontal response

DL predicted horizontal response

Comsol simulated horizontal response

Desired horizontal response

DL predicted horizontal response

COMSOL simulated horizontal response

900 1050 1200

Wavelength (nm)

Wavelength (nm) Wavelength (nm)

Wavelength (nm)

1350 1500 1650

600 750 900 1050 1200 1350 1500 1650 600 750 900 1050 1200 1350 1500 1650

600 750 900 1050 1200 1350 1500 1650

2

2

1

1

1

1

1

1

0

92 deg

Leg 1

Leg 2

Leg 3

Leg 4

Leg 5

Parameter

Parameter

Value

Value

186 nm

184 nm

1

0

1

1

0

6 deg

230 nm

208 nm

�

�

�

3

3

4

4

5

5

L
1

L
1

L
0

L
0

L
0

L
1

Leg 1

Leg 2

Leg 3

Leg 4

Leg 5

�

L
0

L
1

W

W

Fig. 5 Prediction of the nanostructure’s geometry for chemical sensing. a–c DNN-based design of a gold plasmonic structure targeted to the

organic molecule dichloromethane with different spectral polarization responses (a, b) on one polarization axis. It has two resonances on 1150 nm

and a broad resonance between 1400 and 1600 nm, whereas on the orthogonal polarization axis, it has three resonances, at approximately 820 nm

(matching a Ti:Sapphire femtosecond laser excitation for a pump-probe experiment), 1064 nm and 1550 nm. c Configuration and dimensions of the

plasmonic structure found by the DNN. d, e The targeted molecule is asymmetrical phthalocyanine dimer 1a, a synthetic molecule that has more

complex polarization characteristics and has potential applications due to its charge transfer properties. f Configuration and dimensions of the

plasmonic structure found by the DNN. In both geometries, after prediction of the geometry, COMSOL simulations were performed, which showed

excellent agreement with the desired spectra. This design approach can be extended to other molecules for biology, chemistry or material sciences
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the nanostructures’ height do not affect the plasmon

resonance. Furthermore, for an Au nanoparticle with a

diameter of 10 nm and a graphene layer, the LSPR shifting

saturates when the distance is >20 nm.

A prediction for a similar behavior of the ITO layer is

assumed. In our case, the ITO thickness is ~100 nm,

which is approximately 250% of the nanostructure

thickness of ~40 nm.

Data availability

The open source code for the DNN presented in this work can be found at the

following URL https://github.com/ItzikMalkiel/DeepNanoDesign
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