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Abstract: Metal nanostructures show great applications in chemical sensing, biomedical detection, optical-thermal 

therapy, and optical communications because of their electromagnetic field enhancement properties at the visible and the 

near-field infrared wavelengths. Such strong optical field enhancement induced by the localized surface plasmon 

resonance is dependent on the configurations and the sizes of the metal nanoparticles. We presented a numerical 

investigation of the plasmonic properties of the individually welded silver nanoparticles fabricated by nanojoining 

technique. It shows that the field enhancement factor in welded silver nanostructures is much larger than in separated 

silver nanoparticles. The size dependent localized surface plasmon resonance spectra and the polarization sensitivity 

property of such configurations are also discussed. 
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INTRODUCTION 

 The surface plasmon resonance in metallic 
nanostructures arises from the collective oscillation of 
conduction electrons at the surface of metal induced by the 
incident electromagnetic waves. When the frequency of the 
movement of the free electrons is approximately the same as 
the incident light, it leads to the strongest enhancement for 
the plasmon so called the localized surface plasmon 
resonance (LSPR). It is one of the major approaches to 
localize the electromagnetic waves in nanoscale which 
results in the enormous field enhancement, scattering and 
absorption of electromagnetic waves. Such unique optical 
properties open up revolutionary applications in many 
research fields such as optical microscopy, biochemical 
sensing and imaging, optical communications, solar-cell 
designs and targeted therapy [1-7]. For instance, the Raman 
scattering signals of molecules in the vicinity of the metal 
nanostructures are on the order of 10

14
-10

15
, leading to the 

development of the surface-enhanced Raman scattering 
(SERS) spectroscopy which has been widely used in 
molecular identification [8, 9] and targeting of tumor cells 
[10]. Another important application of the surface plasmons 
is the development of nanoscale waveguides and devices. 
Tight localization and strong enhancement in nanoscale 
makes the metallic nanostructures promising candidates to 
develop passive long-chain waveguides [11, 12], activity  
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plasmonic lasers [13, 14] and tunable optical filters [15] for 
the next generation high-density integration. It is also the 
current interest to study the single-molecule fluorescence 
[16] and the high-order nonlinear optical response [14, 17] 
using the metallic nanostructures because of the strong near-
field enhancement arisen from the interaction of the excited-
state optical signals with the local electric fields of the 
metallic nanoparticles. 

 Many efforts have been devoted to the fabrication of 
metallic nanostructures by using chemical synthesis. Among 
the various metallic materials, silver and gold are widely 
investigated because the plasmon frequencies of these noble 
metals are in the visible region and can be extended to the 
near-infrared region. As the resonance frequencies and the 
field enhancement factors are dependent on several factors, 
for example, the shapes and the sizes of the nanoparticles, 
the interaction between the adjacent nanoparticles and the 
influence of the surrounded dielectrics, the fabrication 
techniques of the metallic nanostructures is of considerable 
interest for plasmonics. Varieties of silver and gold 
nanostructures with different shapes and sizes have been 
synthesized chemically and studied systematically in 
previous [2, 18-23]. Generally speaking, the plasmon 
resonance peaks of the anisotropic structures such as 
nanoplates and nanorods shift towards longer wavelengths 
compared with the spherical nanoparticles [2]. The LSPR 
spectra of anisotropically etched nanoparticles such as 
nanoflowers, nanostars and nanopyramids show multi-
resonance peaks or broad bandwidths [18-23]. In additional, 
complex nanostructures such as aggregative nanoparticles 
with polymer cladding, core-shell nanospheres and dimers 
have also been synthesized for the development of high 
sensitive SERS probes [10, 24-31]. The field enhancement 
factors of such complex nanostructures can be increased 
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significantly compared with the individual metallic 
nanoparticle. 

 Compared with chemical synthesis methods, nanolitho-
graphy and nanoimprint show advantages in the production 
of complex planar metallic nanostructures and ordered arrays 
of plasmonic structures [4]. These techniques offer a scalable 
approach to construct large-scale complex nanostructures 
with unique optical properties. Ordered nanoparticle array 
[32, 33] and nanopin resonator array [34] with tunable LSPR 
spectra have been demonstrated. The optical properties of 
such plasmonic arrays can be tuned accurately by changing 
the gap distances and the shapes of the adjacent 
nanonparticles. Nanolithography is also used to develop 
plasmonic structures supporting Fano resonances [35, 36]. 

 The chemical anisotropically etching and nanolitho-
graphy have been thoroughly investigated to construct 
complex metallic nanostructures. There is, however, only a 
few pioneer works on the nanojoining for the development 
of metallic building blocks in nanoscale [6, 37-44]. 
Nanojoining here is referred to the welding and sintering 
approaches to construct permanent unions or connections 
between nanoscaled building blocks by physical or chemical 
triggering. Such techniques have been shown as the critical 
methods to fabricate nanoscaled single electron transistor, 
metal-semiconductor junctions, and functional circuits using 
nanowires, nanotubes and nanoparticles [38, 39]. Recently, it 
has been demonstrated that the adjacent metallic 
nanoparticles can be jointed permanently by laser welding 
[6, 37, 40] and sintering triggered thermally [41, 42] or 
chemically [43, 44]. It provides a new strategy to fabricate 
large-scale metallic nanostructures with interesting 
plasmonic properties. In this paper, we investigated the 
plasmonic properties of welded silver nanospheres using 
three-dimensional (3D) finite element method (FEM). We 
displayed the near-field intensity enhancement and the 
movement of the LSPR peaks of the welded nanoparticles. 
Compared simulation results showed that nanojoining is a 
simple approach to achieve nanostructures with tunable 
LSPR spectral and polarization-sensitivity properties in long-
wavelength range. 

NUMERICAL MODELING 

 3D models based on the numerical methods such as the 
discrete dipole approximation (DDA), the finite difference 
time domain (FDTD) method, and FEM have been used to 
simulate the near-field intensity distribution of metallic 
nanostructures with arbitrary geometries by solving the 
Maxwell’s equations numerically [45-48]. Compared with 
other numerical methods, 3D-FEM shows high accuracy for 
modeling irregular structures and simulating fine elements 
within large domains. In the algorithm, non-uniform meshes 
are efficient to produce convergence and save the computing 
resources. Our results are obtained from COMSOL 
Multiphysics, a numerical simulation package based on 3D-
FEM which has been widely used in the simulation of 
plasmonic devices [48-50]. Khoury et al. have demonstrated 
the validity and the accuracy for plasmonic-nanostructure 
modeling using COMSOL Multiphysics [48]. 

 

 

 In our model, silver nanospheres were chosen as the 
basic elements for nanojoing because the optical loss of 
silver is much lower compared with other noble metals in the 
visible range. It should be noted that the simulation results 
including the intensity distributions and the peak position of 
the LSPR spectra are also dependent on the data and the 
fitting methods of the dielectric constant of metals [51]. 
However, there are still some controversies of which 
experimental data are more suitable and accurate for the 
numerical model [51-53]. In our model, the complex 
permittivity of the silver is analytically fitted by Drude-
Lorentz models [54] using experimental data from [55]. 

 The geometries of the silver nanostructures we 
considered are illustrated in Fig. (1). Fig. (1a, b) show the 
cross section views (x-y plane) of two adjacent nanospheres 
and two welded nanospheres, respectively. The radius of the 
nanosphere is R and the gap distance between the two 
nanospheres is D. Fig. (1c, d) shows the Transmission 
electron microscopy (TEM) images of the silver 
nanostructures achieved in our experiment. TEM samples 
were prepared by dripping irradiated Ag nanoparticles 
solution on carbon films coated Cu grids. The TEM 
observation was gotten by the JEOL JEM-2010F device with 
the voltage of 200 kV and the current of 100 μA. Silver 
dimers with a positive gap distance (shown in Fig.1c) can be 
obtained easily by chemical synthesis [28, 29]. By using 
femtosecond laser radiation [6], the two adjacent silver 
nanospheres can be welded permanently with a negative gap 
distance (as shown in Fig. 1d). In our numerical model, the 
silver nanostructures were surrounded by air with a 
refractive index n = 1. The shell surrounded the silver 
nanoparticles as shown in Fig. (1c, d) is the dielectric layer 
which has been identified in our previous work [42]. 
Because the thickness of the shell is only about 2 nm or 
thinner, we ignored this layer in our model. The input and 
output boundaries were set to be the port condition. The 
rectangular wave with a transverse magnetic (TM) 01 mode 
is used as the incident light. Scattering boundary condition is 
used at other boundaries. 

RESULTS AND DISCUSSION 

 Fig. (2) shows the cross-sectional views of the 
normalized electric field |E| distributed at the surface of the 
silver dimer and the welded spheres at resonance. Fig. (2a, 
b) show the electric field distribution at the center of the 
nanostructures at the x-y plane as illustrated in Fig. (1a, b). 
Fig. (2c, d) show the electric field distribution at the neck 
position of the dimer and the welded nanospheres from the 
view of z-x plane, respectively. One can see clearly the 
distinct intensity distributions at the junction of the 
nanospheres before and after the nanospheres are welded. 
For silver dimer with a positive gap distance, the near-field 
intensity distributes mainly in the center of the gap region 
between the nanospheres. In comparison, for welded 
nanospheres, the intensity mainly distributes in the sharp 
corner region like a bright ring. The field distribution of the 
welded nanospheres is exceptional and different from that of 
other anisotropic structures such as nanoplates and nanorods 
which the intensity mainly distributes at their edges. 
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 Fig. (3) shows the comparison of the normalized electric 
fields as a function of the wavelength for different 
nanostructures. Compared with an individual nanosphere 
(the red curve), the amplitudes of the electric field at 
resonance can be enhanced by three orders of magnitude 
when two nanospheres are closely adjacent or welded 
permanently. A smaller peak at about 370 nm is observed for 
both silver dimers and welded spheres which may 
correspond to the quadrupole resonance. For silver dimers, 
the peak at the longitude plasmon resonance (long-
wavelength resonance) shows slightly red-shift phenomenon 

when the distance of the two adjacent nanospheres is 
decreased from 5nm to 0.5nm. Two main resonance peaks 
corresponding to the transverse resonance (at the wavelength 
of 420nm) and the longitude resonance (at the wavelength of 
540nm) are observed with D = 0.5nm. When the two 
nanospheres are welded with a nearly zero distance (D = -
0.5nm), the longitude resonance peak shows a significant 
red-shift phenomenon up to 1080 nm. However, the 
amplitude of the peak is lower than that of the transverse 
resonance at about 470nm. By increasing the negative 
distance between the two nanospheres from -0.5nm to -5nm, 

 

Fig. (1). The geometries of the adjacent silver nanospheres and welded nanospheres are shown in (a) and (b), respectively. The TEM images 

of the silver nanospheres synthesized chemically before and after the laser radiation are shown in (c) and (d), respectively. 

 

Fig. (2). The cross-sectional views of the normalized electric field |E| distributed at the surface of the nanostructures. (a) and (b) show the 

electric field distribution at the center of the silver dimer and the welded spheres at resonance from the view of x-y plane. (c) and (d) show 

the electric field distribution at the neck position of the dimer and the welded nanospheres from the view of z-x plane. The wavelength of the 

incident light is 415 nm in (a) and (c), and 619 nm in (b) and (d). 
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these plasmon resonance peaks show blue-shift phenomenon 
and the amplitude of the short-wavelength resonance peaks 
decreases significantly. For the most common geometries of 
the welded spheres obtained in our experiment (D is about -
5nm), the primary resonance is the longitudinal plasmon 
resonance at the wavelength range between 600nm and 
700nm. Such strong electromagnetic field enhancement at 
the long wavelength makes the welded silver nanospheres 
very useful for the development of SERS probes for single 
molecular detecting and imaging. 

 

Fig. (3). The comparison of the LSPR spectra as a function of the 

wavelength for individual silver nanosphere, two adjacent silver 

nanospheres with D = 0.5nm, 2nm and 5nm and two welded silver 

nanospheres with D = -0.5nm, 2nm and -5nm. The radius of the 

nanosphere is 25nm. 

 Meantime, we found that the full width at half maximum 
(FWHM) of the LSPR spectra is dependent on the maximum 
amplitude of the resonance peak. For separated silver 
nanosphere, the FWHM of the LSPR spectrum is much 
wider than that of the other nanostructures because the 
maximum amplitude of the resonance peak of the separated 
nanosphere is only about 15 V/m. In comparison, the 
FWHM of the main peak for welded nanospheres with D = -
0.5 becomes much narrower. It is only 1/3 of that of the 
separated silver nanosphere. Therefore, we believe that 
nanojoining is an effective method to create welded metallic 
nanostrucutres with shape resonance peaks of the LSPR 
spectra. 

 Fig. (4) shows the size-dependent near-field electric field 
distribution as a function of the wavelength for the welded 
nanospheres. We set a fiducial radius R0 = 25nm. By 
enlarging or reducing the volume of the welded nanospheres 
proportionally, the position and the amplitude of the primary 
resonance peak are changed significantly. It shows that the 
resonance peak moves red-shiftily in a wide range when the 
radius R of the nanospheres increases. The maximum value 
of the amplitude of the electric field at resonance is obtained 
when the radius of the nanospheres is about 25nm. For 
welded nanospheres with a large radius (R = 50nm), the 
electric-field enhancement at the long wavelengths is no 
longer obvious. This result indicates that choosing silver 
nanoparticles with appropriate sizes is critical to achieve the 
strongest field enhancement for welded nanostructures. 

 

Fig. (4). The size-dependent LSPR spectra as a function of the 

wavelength for the welded nanospheres. R0 = 25nm which is a 

fiducial radius. 

 We further investigated the angular dependent near-field 
electric-field distribution of the welded nanospheres as 
shown in Fig. (5). As shown, the excitation of the LSPR is 
highly dependent on the angle  between the direction of the 
electric-field of the incident light and the longitudinal 
direction of the welded nanospheres (x-y plane). Fig. (5a-d) 
show the cross-sectional views of the normalized electric 
field |E| distributed at the surface of the welded nanospheres 
with different  at resonance. When  = 0°, the 
electromagnetic wave gets resonance and mainly distributes 
at the corner region. The electric-field distribution changes in 
according to the rotation angle of the nanostructure. When  
= 90°, the electromagnetic wave distributes mainly at the 
surface of the nanospheres, no longer at the corner region. 
Fig. (5e) shows the LSPR spectra as a function of . By 
rotating the welded nanospheres counterclockwise from 0° to 
90°, the maximum value of |E| at resonance decreases 
significantly. When  = 90°, the resonance peak at the long 
wavelength disappear. Fig. (5f) shows the maximum value of 
the amplitude at the resonance wavelength of 619nm as a 
function of . Such polarization sensitive property of the 
welded nanospheres is mainly induced by the anisotropic 
surface plasmon excitation nature of metallic nanostructures 
and can be used to control the resonant intensity of the 
nanostructures. It is useful in the development of nanoscaled 
SERS probes and nanoscaled optical switches. 

CONCLUSION 

 In this paper, we investigated the plasmonic properties 
for the silver nanostructures fabricated using nanojoining. 
We showed that nanojoining is a simple technique to 
develop welded metallic nanostructures with unique LSPR 
spectra and polarization-sensitivity properties different from 
the conventional chemically synthesized metallic 
nanostructures. We showed that the LSPR spectra of such 
welded nanospheres can be tuned in a wide range and the 
field enhancement factor in welded silver nanostructures is 
much larger than in separated silver nanoparticles. Such 
welded silver nanostructures are useful for the development 
of high sensitive SERS probe and other nanoscaled photonic 
devices. 
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