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Abstract Plasmons are fundamental collective excitations
in many particle charged systems like in free electron liq-
uid in metals, high energy nuclear plasma in solar core
or in fusion devices, in ion gas in ionosphere or in intra-
and inter-galactic gas clouds. Plasmons play a central role
also in small systems, in particular in metallic nanoparti-
cles and in their arrays allowing for subdiffraction light
manipulation. In analogy to metallic nanoparticles, we have
developed description of the soft plasmonics in finite elec-
trolyte systems confined in micrometer scale by insulating
membranes. Plasmon-type excitations in such finite ionic
systems are determined via originally formulated theoretical
model allowing to describe surface and volume plasmons in
confined geometry of the ion liquid. Size-effect for attenu-
ation of surface plasmons in the finite electrolyte system is
described and its various regimes are identified. The cross-
over in the plasmon damping system-size-dependence is
demonstrated including scattering of ions and their energy
losses via irradiation. The plasmon resonances in ion sys-
tems replicate the metal cluster plasmon phenomena, though
in distinct energy and size scale related to larger ion mass
and lower ion concentration (in low energy plasma) in com-
parison to electrons in metals. The possibility for tuning
plasmon resonances in finite ionic systems in a wide range
by changing system size, ion, and electrolyte parameters is
demonstrated.
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Introduction

Recent experimental and theoretical investigations of plas-
mon oscillations in metallic nanoparticles have focused
attention on their fundamental character and numerous
applications. In particular, the so-called plasmon effect in
solar cells modified on the nanoscale with surface-deposited
metallic particles has led to improvements of their effi-
ciency [1–6]. The surface plasmon oscillations in these
particles play a mediating role in harvesting energy from
sunlight because of the particle’s radiative properties. The
radiated energy from plasmon oscillations is preferable for
transport applications. As was observed experimentally and
predicted theoretically, irradiation losses of plasmon energy
are strongly sensitive to the size of metallic nanoparticles
[7, 8].

The strong irradiation of plasmon oscillations in metal-
lic nanoparticles also plays a major role in the construction
of plasmonic waveguides with high transference efficiency.
Several experimental studies [9, 10] have indicated that
periodic linear structures of metallic nanoparticles serve as
efficient plasmon waveguides with low damping [11–13].
The wavelengths of plasmon polaritons propagating in such
structures are typically shorter than wavelengths of light
with the same frequency by one or two orders of magnitude,
enabling avoidance of diffraction limits in light circuits
[14–16]. This avoidance enables construction of plasmonic
opto-electronic nanodevices not available when using only
light waveguides limited by diffraction constraints. The
efficient energy transfer in plasmonic waveguides is also
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supported by the radiative properties of surface plasmons in
metallic nanocomponents.

Accelerating charges irradiate electromagnetic waves,
and the related energy loss can be accounted for by an effec-
tive electric field that hampers charge movement called as
the Lorentz friction [17, 18]. In the case of an oscillating
dipole such as the dipole-type surface plasmons in a metal-
lic cluster, the Lorentz friction force is proportional to the
third-order time-derivative of the dipole [17]. Let us empha-
size here that the strong irradiation of surface plasmons in
metallic clusters is exclusively present in sufficiently large
metallic particles (larger than ca. 15 nm in diameter, for Au
or Ag). Ultra-small metallic clusters with diameters of 2–
10 nm do not exhibit irradiation efficiency as high as that of
nanospheres with radii a > 15 nm, mostly because of the
much lower number of electrons in so small clusters in com-
parison to the number of electrons in larger nanospheres.
In particular, extensive attention has been focused on large
nanoparticles of noble metals (gold, silver, and copper)
because their plasmon resonances are located within the
visible region of the electromagnetic spectrum.

Plasmons in metallic nanostructures focused interest on
similar local charge density oscillations in amorphous mate-
rials or in other unconventional systems [19–21] including
also ionic systems and interaction of ions with metallic
plasmons [22] as well as soft flexible photonic crystals
with wide applications [23]. Combining metallic nanoparti-
cles with host materials whose dielectric properties can be
tuned by means of an external control is one route to create
active plasmonics. By exploiting the outstanding properties
of self-organizing materials, so-called smart matter, includ-
ing plasmons interacting with light, a bridge between two
branches of physics: ‘hard matter’ and ‘soft matter’ can
be built. The soft plasmonics and plasmonic crystals have
found already many applications in photonics and in sensing
[24].

Some examples of natural and man-made plasma besides
of the metal-electron-plasma can be listed as follows: lab-
oratory gas discharge, e.g., in vacuum tubes, spark gaps,
welding arcs, and neon or fluorescent lights, controlled
thermonuclear fusion experiments, e.g., in tokamak, earth
ionosphere that is partially photo-ionized by solar ultra-
violet radiation, sun’s core, where fusion of hydrogen to
form helium generates the sun’s heat, solar wind, i.e., the
wind of plasma that blows off the sun, interstellar, and
intergalactic ionic gas medium. The plasmon oscillations—
local fluctuations of the charge density—have the frequency
proportional to the square root of the charge carrier den-
sity and this frequency varies between 1018 1/s (for solar
core), across 108 1/s (ionosphere) to 102−4 1/s (interstel-
lar and intergalactic ionized gas). The plasmon excitations
in the ionosphere have, in particular, a great importance

in radio-communication and in over-horizon radar tech-
niques. Much attention, also in experiments with ionized
fullerene gas, has been recently paid to electrostatic waves
in so-called pair-ion-plasma consisting of only positive- and
negative-charged equal mass particles with a time-space
parity kept because the mobility of the equal mass particles
in electromagnetic fields is the same [25, 26]. The magneto-
hydrodynamics of such a system may have importance in
understanding of cosmic ion systems in electromagnetic
field and in fusion plasma, previously analyzed upon the
Vlasov kinetic equation [27]. Despite the ionic plasmons are
thus well recognized in various large and open systems [28,
29], their counterparts in small confined electrolytes are not
penetrated as of yet, but probably offer a rich physics as they
might replicate the plasmonics in small metallic particles.
Micrometer scale of electrolyte confinement is frequent in
bio-cell organization, where a cytoplasm containing vari-
ous ions is separated from surroundings by lipid cellular
membrane. The local charge fluctuations in such ionic finite
systems can be important in biophysical phenomena of com-
munication and signaling as well as in local energy trans-
port. An example is the newly developed plasmon-polariton
model of the so-called saltatory-conduction in neuron long
axon [30].

An interesting question arises as to whether similar to
complicated metallic plasmonic effects are possible with
ionic carriers instead of electrons. Many finite ionic systems
in the form of electrolyte enclosed by membranes are found
in biological structures. The question then arises as to what
role plasmonic phenomena would play in such structures
and whether the radiative properties of plasmon fluctuations
would be as significant in ionic systems as in metals. One
can reasonably expect that ionic plasmon effects would be
located in different energy and wavelength scale regions
compared to those of metallic systems due to the larger mass
of ions and smaller concentration than for metal electrons.
The ionic soft plasmonics could be linked to the functional-
ity of biological systems in which electricity is of an ionic
rather than an electronic character, such as cell signaling,
membrane transfer, and nerve-cell conductivity.

Ionic systems are much more complicated in comparison
to a metal crystal structure with free electrons. Therefore,
identification of appropriate model simplifications is of pri-
mary significance to properly describe collective charge
excitations in electrolytes along with keeping analogy with
metal plasmonics.

In the present paper, we will consider a finite spheri-
cal ionic system (e.g., liquid electrolyte confined within a
spherical membrane) to identify plasmonic excitation. We
will determine their energies with respect to various param-
eters of the ionic system, with special attention paid to the
irradiation properties of ionic plasmons.
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The paper is organized as follows. In the first paragraph,
the effective model for plasmon fluctuations in finite spher-
ical binary electrolyte system is formulated via introducing
of specially defined two ion-jellium components (for elec-
trolytes, the jellium is fictitious and an auxiliary model
construction unlike to metals where the jellium is the real
rigid crystal positive core). The model is utilized in the
next paragraph to identify surface and volume ionic plas-
mon excitations in finite spherical electrolyte system ranged
by neutral dielectric membrane. Both self-frequencies and
the attenuation rates are next estimated for ionic surface and
volume plasmons in the considered system, for various ion
and electrolyte concentration parameters and system sizes.
The radiative properties of the ion surface dipole plasmons
are next examined in details which are of importance for the
energy and information transfer in ionic systems in possi-
ble application to electrolyte finite components in biological
cellular structures and their electrical functioning.

Fluctuations of Charge Density in a Finite
Spherical Ionic System

For a simple two-component ionic system, we address the
water solution of ions of both signs, creating an elec-
trolyte with balanced total charge, enclosed in finite size
spherical volume ranged by electrically neutral insulating
membrane. At equilibrium, also local charge cancellation
holds. Both types of ionic carriers can form, however, den-
sity fluctuations, resulting in disruption of the local electric
equilibrium. The total charge conservation and neutrality
condition require that any density fluctuation of negative
charges must be accompanied by equivalent fluctuation in
the positive ions, possibly in another even distant place
of the system, and vice versa. Therefore, we effectively
deal with density fluctuations of ions, positive and nega-
tive (but always mutually compensated), with respect to a
uniform fictitious background charge distributions of the
opposite sign in some analogy to the jellium model in met-
als. In the case of two component electrolyte, these auxiliary
uniform background charge distributions cancel mutually
themselves and do not modify the system and its energy.
Each of these auxiliary ionic jelliums has the total charge
equaled to the sum of charges of all ions of the opposite
sign. Thus, the opposite oscillations of both types of ions are
represented here as the equivalent sum of two ion-jellium
systems also simultaneously oscillating.

Definition of the Model

To develop a model according to these guidelines, let us
consider a spherical system with a radius a and a balanced

total charge of both sign ions with uniform equilibrium den-
sity distributions n+(−)(r) = n�(a − r) (where �(r) is
the Heaviside step function). The equilibrium density of the
charged liquid, denoted by n, will be treated as a parame-
ter and n = ηN0 will be assumed, where η is the molarity
of the electrolyte within the sphere and N0 is the one-molar
electrolyte concentration of ions.

The Hamiltonian for the simplest two-component ion
system has the form,

Ĥion = −
N−∑

i=1

�
2∇2

i

2m− −
N+∑

j=1

�
2∇2

j

2m+ −
N−,N+∑

i,j

q−q+

ε|ri − rj |

+1

2

N−∑

i,i′,i �=i′

(q−)2
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2
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(q+)2

ε|rj − rj ′ | , (1)

where q−(+), m−(+), and N−(+) are the charge, mass, and
total number of the −(+) ions, respectively. Indices i and
j are introduced to distinguish two sorts of ions. To ana-
lyze this complicated system, we propose the following
approximation. Assume, for simplicity, q− = −q+ = q,
N− = N+ = N , and m− = m+ = m (the generalization to
distinct charges and masses of both sign ions is straightfor-
ward), and let us add and subtract the same terms (the last
four terms in the following expression for the Hamiltonian),
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In this way, we have formally introduced a jellium of
spherical shape for both types of ions, with the density n ide-
ally compensating opposite charges of uniformly distributed
ions, n(r) = n�(a − r), a is the sphere radius. Assuming
now, upon a rough approximation that,
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one can can separate the Hamiltonian (1) into the sum
Ĥions = Ĥ− + Ĥ+, where

Ĥ−(+) =
∑

j

[
−�

2∇2
j

2m
− q2

∫
n(r)d3r
ε|rj − r|

]

+1

2

∑

j �=j ′

q2

ε|rj − rj ′ | . (4)

The latter term in the right-hand side of Eq. 4 corresponds
to the interaction between ions of the same sign, whereas
the second term in the first sum describes the interaction
of these ions with the jelliums of opposite sign (ε is the
dielectric constant of the electrolyte medium). Because of
the separation of the Hamiltonian (1), one can consider a
single Hamiltonian (4).

The question is the applicability of the condition (3).
This condition means that the mutual interaction between
two sign ion fluctuations is equal to the sum of interactions
of these fluctuations with the fictitious jelliums of opposite
signs ideally neutralized themselves. For small fluctuations,
one can argue that the total energy of the ion interaction is
not changed by the approximation (3) and it may be used
to the assessment of energy scale of ion fluctuations. The
advantage of such an approach is the close analogy to the
description of plasmons in metals, including the direct def-
inition of the shape of the system with the explicit rigid
jellium form. Let us emphasize that the apparent decoupling
of both sign ion fluctuations via Eq. 3 is not complete in
fact. Each fluctuation of ion density beyond the uniform
equilibrium distribution, let say of negative ions, produces
noncompensated positive charging of the fictitious jellium
being in fact the fluctuation of positive ions in the real sys-
tem. The decoupling corresponds thus to duplication of the
ion-jellium dynamics description for both ion types, with-
out, however, the change of interaction energy, for small
fluctuations at least. Both the ion-jellium dynamics describe
the same fluctuations of ion densities in terms of opposite
sign ions, which are actually coupled in the binary elec-
trolyte. Such a picture is of particular usefulness for the case
of the same charges and masses of ions, whereas it wors-
ens with rising differences between ion parameters, when
asymmetry between separate ion-jellium oscillations grows.
The alternative way to introduce the jellium model for ions
in the electrolyte might be the definition of an effective ion
(with effective charge and mass in a far analogy to the two
body problem) comprising all the two component dynamics
described as fluctuations with respect to the single oppo-
site sign jellium. Such a model would diminish, however,
the level of degrees of freedom in comparison to the real
system and in opposition to the two component ion-jellium
model. Therefore, we will develop and test the two compo-
nent ion-jellium model resulted from the approximate Eq. 3

aiming on even rough assessment of the energy scale of ion
plasmon fluctuations.

Upon the proposed model, the equilibrium ion density
determines the bulk plasmon frequency for the ion system
(for each type of ions) according to the formula analogous

to bulk metal [31], ω2
p = 4πnq2

m
, where n and m are the

equilibrium uniform concentration and the mass of ions with
charge q, respectively. Because m is larger than the elec-
tron mass, me, and the ion concentration is usually smaller
than that of electrons in metals, ωp can be considerably
reduced, even by several orders of magnitude. Noticeably,
for electrons in metals, �ωp � 10 eV and typically falls
in the ultraviolet region. In an ionic system, the plasmon
frequency �ωp can be much lower: in the infrared or even
lower-energy regions.

The form of the Hamiltonian (4) allows for its utiliza-
tion in the scheme applied to electrons in metals [31–33]. A
local density of ions can be written, analogous to the semi-
classical Pines-Bhom random-phase approximation (RPA)
of electrons in metals [31, 32], in the following form:

ρ(r, t) =< �ion(t)|
∑

j

δ(r − rj )|�ion(t) >, (5)

where rj denotes the coordinate of the j − th ion and the
Dirac delta semiclassically fixes the j − th ion position;
�ion(t) denotes the ion wave-function corresponding to the
Hamiltonian (4). The Fourier picture of the local density of
ions has the form:

ρ̃(k, t) =
∫

ρ(r, t)e−ik·rd3r =< �ion(t)|ρ̂(k)|�ion(t) >,

(6)

where the operator ρ̂(k) =∑
j

e−ik·rj .

Using the aforementioned notation, one can rewrite Ĥion

in the following form, analogous to the case for metallic
plasmons [31–33]:
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2∇2
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, (7)

where ñ(k) = ∫
d3rn(r)e−ik·r is the Fourier picture of the

jellium distribution (in the derivation of Eq. 7 we have taken

into account that 4π

k2 = ∫ d3r 1
r
e−ik·r), q ′2 = q2

ε
.

Utilizing this form of the effective ion Hamiltonian, one
can write out the dynamic equation in Heisenberg repre-
sentation for the ion density fluctuations ([..] denotes the
commutator),

d2ρ̂(k)

dt2
= 1

(i�)2

[[
ρ̂(k), Ĥion

]
, Ĥion

]
, (8)
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which attains the following form:

d2δρ̂(k)
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p2

δρ̂(p). (9)

where δρ̂(k) = ρ̂(k) − ñ(k) describes the operator of
local ion density fluctuations with respect to the equilibrium
uniform density.

Averaging over the quantum states |�ion >, we obtain
the following equation for the ion density fluctuations:
δρ̃(k, t) =< �ion|δρ̂(k, t)|�ion >= ρ̃(k, t) − ñ(k),

∂2δρ̃(k, t)

∂t2
= − < �ion|
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− 4πq ′2
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− 4πq ′2

m(2π)3
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k · p
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× < �ion|δρ̂(k − p)δρ̂(p)|�ion > . (10)

For small k, as with the semiclassical approximation for
electrons [31, 33], the contributions of the second and third
components of the first term on the right-hand side of Eq.
10 can be neglected as small in comparison to the first com-
ponent (with the lowest power of k). The third term in the
right-hand side of Eq. 10 is also small (and thus negligible),
involving a product of two δρ̃ (which we assumed to be
small, δρ̃/n << 1). This approach corresponds to the RPA
formulated for bulk metal [31, 32]. Within the RPA, Eq. 10
takes the following shape:

∂2δρ̃(k, t)
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(11)

and, because of spherical symmetry,
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Equation 11 can be rewritten in the position representa-
tion:

∂2δρ̃(r, t)
∂t2

= − 2
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In the case of metals, the Thomas-Fermi formula is used
to assess the averaged kinetic energy [32]:
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n
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(13)

This formula, however, refers to fermionic and degen-
erate quantum systems, such as electrons in metals. For
ionic systems, such an estimation of kinetic energy is inap-
propriate because the ion concentration is usually much
lower than the concentration of electrons in metals and
because the system is not degenerate even if the ions are
fermions. The Maxwell-Boltzmann distribution should be
applied instead of the Fermi-Dirac or Bose-Einstein distri-
bution. Independent of fermionic or bosonic ion statistics,
the Maxwell-Boltzmann distribution allows for an estima-
tion of the averaged kinetic energy of ions located inside a
sphere of radius a in the following form:

< �ion|−
∑

j

δ(r−rj )
�

2∇2
j

2m
|�ion >� (n+δρ(r, t))�(a−r)

3kT

2
,

(14)

where k is the Boltzmann constant and T is the temperature.
For ionic molecules with 3D or linear shapes, the inclusion
of rotational degrees of freedom results in the factor 6kT

2
or 5kT

2 , respectively, rather than 3kT
2 for the point-like ion

model.
Using the formula (14) and taking into account that

∇�(a − r) = − r
r
δ(a − r), Eq. 12 can be rewritten in the

following manner:
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In this formula, ωp is the bulk ion-plasmon frequency,

ω2
p = 4πnq ′2

m
. The solution of Eq. 15 can be decomposed
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into two components related to the distinct domains inside
the sphere and on the sphere surface:

δρ̃(r, t) =
{

δρ̃1(r, t), f or r < a,

δρ̃2(r, t), f or r ≥ a, (r → a+),
(16)

The domains correspond to volume and surface exci-
tations, respectively. These two parts of local ion density
fluctuations satisfy the equations (according to Eq. 15),

∂2δρ̃1(r, t)
∂t2

= kT

m
∇2δρ̃1(r, t) − ω2

pδρ̃1(r, t), (17)

and (here ε = 0+),

∂2δρ̃2(r,t)
∂t2 = − kT

m
∇ {[n + δρ̃2(r, t)

] r
r
δ(a + ε − r)

}

−
[

kT
m

r
r
∇δρ̃2(r, t) + ω2

p

4π
r
r
∇ ∫ d3r1

1
|r−r1| (δρ̃1(r1, t)�(a − r1)

+δρ̃2(r1, t)�(r1 − a))

]
δ(a + ε − r).

(18)

The Dirac delta in Eq. 18 results from the derivative of
the Heaviside step function, the ideal jellium charge dis-
tribution. In Eq. 18, an infinitesimal shift, ε = 0+, is
introduced to fulfill the requirements of the Dirac delta
definition (its singular point must be an inner point of an
open subset of the domain). This shift is only of a formal
character and does not reflect any asymmetry.

The electric field due to surface charges is zero inside
the sphere and therefore cannot influence the volume exci-
tations. Conversely, the volume charge fluctuation-induced
electric field can excite surface fluctuations. Therefore, the
equation for volume plasmons is independent of surface
plasmons, whereas the volume plasmons contribute to the
equation for the surface plasmons.

The problem of separation between surface and vol-
ume plasmons has been thoroughly analyzed for metal
clusters and has been identified as particularly signifi-
cant for very small clusters. In the size scale of 1–3 nm
for metallic clusters, the effect of so-called electron spill-
out beyond the jellium edge is important and causes a
fuzzy surface resulting in the coupling of volume and sur-
face plasmon oscillations. Direct numerical simulations of
time-dependent local density approximation (TDLDA) [34,
35] have verified that the volume–surface excitation mish-
mash gradually disappears in larger metallic clusters [34,
35], which supports the accuracy of the semiclassical RPA
description, within which volume plasmons are separated
from surface ones. The role of spill-out effect diminishes
gradually with growing sphere size as the ratio of surface
to volume falls down and spill-out becomes negligible in
the range of several nanometers for metals and similarly
for large ionic spheres. Moreover, for the electrolyte sys-
tem confined by the insulating membrane, the spill-out of
ions is irrelevant. Therefore, the RPA description of ionic

density fluctuations is a proper model. Moreover, the ana-
lytical RPA semiclassical picture in the form of an oscillator
equation allows for convenient inclusion of damping effects,
which is especially important since the plasmon damping
caused by irradiation losses turns out to be an overwhelming
physical property of plasmons in the case of large metallic
nanospheres [7, 33] (with a > 15 nm for Au or Ag) as well
as of large ionic systems, as demonstrated in the paragraph
“Damping of Plasmon Oscillations in Ionic Systems.”

Solution of RPA Equations: Volume and Surface Ionic
Plasmon Frequencies

Equations 17 and 18 are solved for metallic nanospheres
[33], and these solutions can be directly applied to ionic sys-
tems. To briefly summarize this analysis, we represent both
parts of the plasma fluctuation as follows:

δρ̃1(r, t) = nF(r, t), f or r < a,

δρ̃2(r, t) = σ(, t)δ(r + ε − a),

ε = 0+, f or r ≥ a, (r → a+), (19)

with initial conditions F(r, t)|t=0 = 0, σ (, t)|t=0 = 0,
( is the spherical angle), F(r, t)|r=a = 0,

∫
ρ(r, t)d3r =

N (neutrality condition). With the above initial and bound-
ary conditions and taking advantage of the spherical sym-
metry, we write the time-dependent parts of the ion con-
centration fluctuations in the form [33] (cf. Appendix):

F(r, t) =
∞∑

l=1

l∑

m=−l

∞∑

i=1

Almnjl(knlr)Ylm()sin(ωli t),

(20)

and

σ(, t) =
∞∑

l=1

l∑

m=−l

Blm

a2
Ylm()sin(ω0l t)

+
∞∑

l=1

l∑

m=−l

∞∑

i=1

Almn

(l + 1)ω2
p

lω2
p − (2l + 1)ω2

li

Ylm()ne

×
a∫

0

dr1
rl+2

1

al+2
jl(klir1)sin(ωli t), (21)

where jl(ξ) =
√

π
2ξ

Il+1/2(ξ) is the spherical Bessel

function, Ylm() is the spherical function (some exam-

ples are presented in Fig. 1), ωli = ωp

√
1 + kT x2

li

ω2
pa2m

are

the frequencies of the ion volume self-oscillations (volume
plasmon frequencies), xli are the nodes of the Bessel func-
tion jl(ξ) with i = 1, 2, 3 . . . (cf. Fig. 2), kli = xli/a, and

ωl0 = ωp

√
l

2l+1 are the frequencies of the ion surface self-
oscillations (surface plasmon frequencies). The derivation
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Fig. 1 Dipole D(t) creation in a
single sphere by the simplest
surface plasmon oscillations
(left); examples of surface
plasmon charge distribution
with various multiplicity l, m,
different colors indicate distinct
values of local charge density
from negative-red to
positive-blue (right) +

+
++
+

-

-

-
--A+ B-

l=1,m=0,1

l=2,m=0,1,2

l=3,m=0,1,2,3

D(t)

of the self-frequencies for ionic plasmon oscillations is pre-
sented in more detail in the Appendix. The amplitudes Almi

and Blm are arbitrary in the homogeneous problem and can
be adjusted to the initial conditions for the first derivatives
of the density fluctuations.

The function F(r, t) describes volume plasmon oscilla-
tions, whereas σ(, t) describes surface plasmon oscilla-
tions. We emphasize that the first term in Eq. 21 corresponds
to the surface self-oscillations, whereas the second describes
the surface oscillations induced by the volume plasmons.
The frequencies of the surface self-oscillations are equal to

ω0l = ωp

√
l

2l + 1
, (22)

which, for l = 1, is a dipole-type surface oscillation fre-
quency, described for metallic nanospheres by Mie [36],
ω01 = ωp/

√
3.

Ionic Surface Plasmon Frequencies for Nanospheres
Embedded in a Dielectric Medium

The influence of dielectric surroundings (generally distinct
from the inner dielectric of the ionic system) on plasmons
in this system can now be included. Let us assume that ions
on the surface (r = a+, i.e., r ≥ a, r → a) interact with

Coulomb forces renormalized by the relative dielectric con-
stant ε1 > 1 (distinct from the ε of the inner medium). Thus,
a small modification of Eq. 18 is in order:

∂2δρ̃2(r)
∂t2 = − 2

3m
∇
{[

3
5 εF n + εF δρ̃2(r, t)

]
r
r
δ(a + ε − r)

}

−
[

2
3

εF

m
r
r
∇δρ̃2(r, t)+ ω2

p

4π
r
r
∇ ∫ d3r1

1
|r−r1| (δρ̃1(r1, t)�(a − r1)

+ 1
ε1

δρ̃2(r1, t)�(r1 − a)
)]

δ(a + ε − r),

(23)

(note that Eq. 17 is not affected by the outer medium). The
solution of Eq. 23 is of the same form as that of Eq. 18, but
with renormalized surface plasmon frequencies:

ω0l = ωp

√
l

2l + 1

1

ε1
. (24)

Damping of Plasmon Oscillations in Ionic Systems

The presented above semiclassical RPA treatment of plas-
mon excitations in finite ion systems does not account for
plasmon damping. The damping of plasmon oscillations can
be included in a phenomenological manner by the addition
of an attenuation term to the plasmon dynamic equations,

l 0

l 1

l 2
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] sti nu . br a[

Fig. 2 The spherical Bessel functions Jl(r) for l = 0, 1, 2 displaying
possible charge density fluctuations in the sphere along the radius r

for volume plasmon modes. The angular distribution of these modes is
governed by the real spherical functions Ylm(), similar to the surface

plasmon modes (cf. Fig. 1 right). Right: the exemplary temperature
dependence of the self-frequencies of the volume plasmon modes ωli ,
li = 11, 12, 21 for a dilute electrolyte n � 1014 1/m3 and ion mass
∼ 104me, a ∼ 50μm
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i.e., the term − 2
τ0

∂δρ(r,t)
∂t

added to the right-hand sides of
both Eqs. 17 and 18, taking into account their oscillatory
form. The introduced damping ratio 1

τ0
accounts for ion

scattering losses and can be approximated, in analogy to
metallic systems, by the inclusion of energy dissipation
caused by its irreversible transformation into heat via vari-
ous microscopic channels, similar to Ohmic resistivity [37]:

1

τ0
� v

2λb

+ Cv

2a
, (25)

where a is the sphere radius, v =
√

3kT
m

is the mean velocity
of ions, and λb is the ion mean free path in the bulk elec-
trolyte material (comprising effects of scattering of ions on
other ions, on solvent particles and admixtures). The sec-
ond term in Eq. 25 accounts for the scattering of ions on the
boundary of the finite ionic sphere of radius a, where the
constant C is of the order of unity and reflects the type of
scattering of ions by the boundary of the sphere dependent
of microscopic particularities of the membrane [37].

To explicitly express a forcing field that moves ions in
the system, the inhomogeneous time-dependent term should
be added to the homogeneous equations (17) and (18). The
forcing field may be a time-dependent electric field (e.g.,
the electric component of the incident e-m wave which may
excite plasmons). Similarly as for metallic nanospheres, the
surface plasmon resonant wavelength highly exceeds the
system dimension in the case of finite ionic systems and the
e-m forcing field is essentially space-homogeneous along
the whole sphere. Such a perturbation fulfills the so-called
dipole approximation requirements and excites only surface
dipole plasmons, i.e., the mode with l = 1, which can
be described by the function Q1m(t) (l = 1 and m are
angular momentum numbers related to the assumed spher-
ical symmetry). The corresponding dynamical equation for
the surface plasmons reduced to only mode Q1m(t) has the
following form:

∂2Q1m(t)

∂t2
+ 2

τ0

∂Q1m(t)

∂t
+ ω2

1Q1m(t)

=
√

4π

3

qn

m

[
Ez(t)δm,0 + √

2
(
Ex(t)δm,1 + Ey(t)δm,−1

)]
,

(26)

where ω1 = ωp√
3ε1

(a dipole surface plasmon frequency,

ε1 is the dielectric susceptibility of the system surround-
ings). Because only Q1m modes contribute to the plasmon
response to the homogeneous electric field, the effective ion
density fluctuation has the form [33]

δρ(r, t) =
⎧
⎨

⎩

0, r < a,
1∑

m=−1
Q1m(t)Y1m() r ≥ a, r → a+,

(27)

where Ylm() is the spherical function with l = 1. One
can also explicitly calculate the dipole D(t) corresponding
to surface plasmon oscillations given by Eq. 27:
⎧
⎪⎪⎨

⎪⎪⎩

Dx(t) = q ′ ∫ d3rxδρ(r, t) =
√

2π√
3

q ′Q1,1(t)a
3,

Dy(t) = q ′ ∫ d3ryδρ(r, t) =
√

2π√
3

q ′Q1,−1(t)a
3,

Dz(t) = q ′ ∫ d3rzδρ(r, t) =
√

4π√
3

q ′Q1,0(t)a
3.

(28)

The dipole D(t) satisfies the equation (from Eq. 26)
[

∂2

∂t2
+ 2

τ0

∂

∂t
+ ω2

1

]
D(t) = a34πq ′2n

3m
E(t) = εa3ω2

1E(t).

(29)

Noticeably, the dipole (28) scales as the system vol-
ume, ∼ a3, indicating that all ions actually contribute to
the surface plasmon oscillations. This observation is con-
nected with the fact that the surface modes correspond to
uniform translation-type oscillations of ions in the system
when the charge of ions inside the sphere is exactly compen-
sated by oppositely signed ions, whereas unbalanced charge
density occurs only on the surface, despite all the ions
oscillating. For volume plasmons, non-compensated charge
density fluctuations are present inside the sphere because
volume plasmon modes have compressional character with
unbalanced charge fluctuations along the system radius.

The scattering effects accounted for by the approximate
formula (25) cause damping of plasmons and are especially
strong for small systems because of the nanosphere-edge
scattering contribution, which is proportional to 1

a
. The sig-

nificance of this term, however, decreases with increasing
radius. We will show that radiation losses (due to Lorentz
friction) scales initially as a3 and that, for increasing a, these
irradiative energy losses quickly dominate plasmon atten-
uation. Because of the opposite size dependencies of the
scattering and irradiation contributions to plasmon damp-
ing, we observe a cross-over of damping with respect to the
size, as depicted in Fig. 3. In addition, the radius a∗ for
which the total attenuation rate of surface plasmons is mini-

mal, a∗ =
(

9Cvε1c
3

2ω4
p

)1/4

=
(

9Cε1c
3

2ω4
p

√
3kT /m

)1/4

, can also

be determined. The system sizes a∗ for two distinct ionic
systems are listed in Table 1.

The radiative energy loss of the oscillating dipole is
expressed by the Lorentz friction [17], i.e., the effective
electric field slowing the motion of charges:

EL = 2

3c3

∂3D(t)
∂t3

. (30)

Hence, we can rewrite Eq. 29 to include the Lorentz
friction term:
[

∂2

∂t2
+ 2

τ0

∂

∂t
+ ω2

1

]
D(t) = εa3ω2

1E(t) + εa3ω2
1EL, (31)
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Fig. 3 The cross-over in the system size-dependence of the surface
plasmon damping rate for T = 300 K, m = 104me, q = 3e, n =
10−2N0 (where N0 is the concentration of one molar electrolyte) (left)

and for n = 10−3N0 (right); in the region close to the cross-over,
the perturbative treatment for Lorentz friction well coincides with the
exact approach

or for E = 0,

[
∂2

∂t2
+ ω2

1

]
D(t) = ∂

∂t

[
− 2

τ0
D(t) + 2

3ω1
√

ε1

(
ωpa

c
√

3

)3
∂2

∂t2
D(t)

]
.

(32)

The perturbation method can be applied for a solution of
Eq. 32 when the right-hand side of this equation is treated
as a small perturbation. In the zeroth step of the perturba-

tion, we have
[

∂2

∂t2 + ω2
1

]
D(t) = 0, from which ∂2

∂t2 D(t) =
−ω2

1D(t). Hence, for the first step of the perturbation, we
substitute the latter formula into the right-hand side of Eq.
32, i.e.,

[
∂2

∂t2
+ 2

τ

∂

∂t
+ ω2

1

]
D(t) = 0, (33)

where

1

τ
= 1

τ0
+ ω1

3
√

ε1

(
ωpa

c
√

3

)3

. (34)

Within the first step of perturbation, the Lorentz friction
can be included in the total attenuation rate 1

τ
. Nevertheless,

this approximation is justified only for sufficiently small
perturbations, i.e., when the second term in Eq. 34, which
is proportional to a3, is sufficiently small to fulfill the per-
turbation restrictions. The related limiting value, ã, of the
ionic system size depends on the ion concentration, charge,
mass, and dielectric susceptibility, as is exemplified in the
following paragraph.

The solution of Eq. 33 is of the form D(t) =
Ae−t/τ cos(ω′

1t +φ), where ω′
1 = ω′

1

√
1 − 1

(ω1τ)2 and gives

Table 1 The ion system parameters assumed for the calculation of damping rate and self-frequency for dipole surface plasmons

Material Ionic system Sample 1 Sample 2

Ion concentration n (N0 is one-molar concentration) 10−2 N0 10−3 N0

Effective ion mass m (me electron mass) 104 me 104 me

Effective ion charge q/
√

ε 3 e 3 e

Temperature T 300 K 300 K

Mean velocity of ions v =
√

3kT
m

1168 m/s 1168 m/s

Bulk plasmon frequency ωp 9.3 × 1013 1/s 2.93 × 1012 1/s

Dielectric constant of surroundings ε1 2 2

Mie frequency ω1 = ωp/
√

3ε1 3.8 × 1013 1/s 1.2 × 1012 1/s

Constant in Eq. 25 C 2 2

Bulk mean free path (room temp.) λb 0.1 μm 0.3 μm

Radius for minimal damping a∗ =
(

9ε1Cc3v

2ω3
p

)1/4

2.7 × 10−7 m 8.6 × 10−7 m

Radius for maximal damping a∗∗ from maximum of Im2 given by Eq. 36 8 × 10−6 m 25 × 10−6 m



646 Plasmonics (2016) 11:637–651

a red shift to the plasmon resonance because of a strong
(∼ a3) increase of attenuation caused by the irradiation.
The Lorentz friction term in Eq. 34 dominates the plasmon
damping for a∗ < a < ã because of this a3 depen-
dence (cf. Fig. 3). Plasmon damping grows rapidly with a,
which results in the pronounced red shift of the resonance
frequency.

Exact Inclusion of Lorentz Damping to the Attenuation
of Ionic Dipole Surface Plasmons

Let us now consider the dynamic equation for surface plas-
mons in an ionic spherical system, Eq. 32, with the Lorentz
friction term, but without applying the perturbation method
for a solution. To compare various contributions to Eq. 32,
we change to a dimensionless variable t → t ′ = ω1t .
Equation 32 becomes the form,

∂2D(t ′)
∂t ′2

+ 2

τ0ω1

∂D(t ′)
∂t ′

+D(t ′) = 2

3
√

ε1

(
ωpa

v
√

3

)3
∂3D(t ′)

∂t ′3
.

(35)

When solving Eq. 35 by perturbation, we obtain a renor-
malized attenuation rate for an effective damping term,

1
ω1τ0

+ 1
3
√

ε1

(
ωpa

v
√

3

)3
. This term quickly reaches unity, for

which the oscillator falls into the over-damped regime. For
the system parameters assumed for Fig. 3, the attenuation
rate reaches unity at 25.5 and 8 μm for n = 10−3N0 and
n = 10−2N0, respectively. At these values of a, the fre-

quency ω′
1 = ω′

1

√
1 − 1

(ω1τ)2 goes to zero, which indicates

an apparent artifact of the perturbation method. To verify
the exact damped frequency behavior in this system, one
must solve the dynamical equation (35) without any approx-
imations. As this equation is a third-order linear differential

equation, its solution takes the form ∼ eit ′ , with analytical
expressions for three possible values of the exponent:

1 = − i
3g

− i21/3(1+6gu)

3gA1/3 − iA1/3

3×21/3g
∈ Im(= iα),

2 = − i
3g

+ i(1+i
√

3)(1+6gu)

3×22/3gA1/3 + i(1−i
√

3)A1/3

6×21/3g
= ω + i 1

τ
,

3 = − i
3g

+ i(1−i
√

3)(1+6gu)

3×22/3gA1/3 + i(1+i
√

3)A1/3

6×21/3g
= −ω + i 1

τ
,

(36)

where A = 2 + 27g2 + 18gu +√
4(−1 − 6gu)3 + (2 + 27g2 + 18gu)2, u = 1

τ0ω1
and

g = 2
3
√

ε1

(
aωp

c
√

3

)3
.

In Fig. 4, we have plotted the damping rate (Im2) and
the self-frequency (Re2, in right panel the corresponding
wavelength is visualized) with respect to the system radius
a. For comparison, the approximate perturbative solutions
are also plotted (in blue line whereas the exact solution of
Eq. 35 in red line). The blue line ends at alimit when the
attenuation rate within the perturbation approach reaches
the critical value 1 (then λ → ∞). For an accurate solu-
tion of Eq. 35, this singular behavior disappears and the
oscillating solution exists for larger a as well.

We note that the red shift of the plasmon resonance is
strongly overestimated in the framework of the perturbative
approach to Lorentz friction unless a < ã, where ã is sen-
sitive to ionic system parameters and especially to the ion
concentration (demonstrated in Fig. 4).

We emphasize that the Eq. 35 has, in general, two types
of particular solutions: eit ′ , with complex self-frequencies
. The solutions given by 2 and 3 are of the damped
oscillator type (i2 and i3 are mutually conjugated, thus
2 and 3 have real parts of opposite sign and the same
imaginary parts, with the latter being positive and displaying
the damping rate), whereas that given by 1 is an unsta-

Fig. 4 Comparison of the
damping rate and the resonance
frequency (the latter expressed
in the right panel by the
resonance wavelength), i.e., the
damping rate and frequency
(wavelength) of the oscillating
solution of Eq. 35, exact one
(given by Eq. 36—red line) and
perturbation approximation
(given by Eq. 34—blue line),
both with respect to the finite
ionic system radius a
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ble and exponentially rising solution (negative imaginary
solution). This unstable solution is a well-known artifact in
Maxwell electrodynamics (cf. e.g., $ 75 in [17]) and corre-
sponds to infinite self-acceleration of the free charge due to
the Lorentz friction force (i.e., the singular solution of the
equation mv̇ = const.×v̈, which is associated with a formal
renormalization of the field-mass of the charge: infinite for a
point-like charge and canceled in an artificial manner by an
arbitrarily assumed negative infinite non-field mass, result-
ing in the ordinary mass of, e.g., an electron, although not
defined in a properly mathematical way). This unphysical
singular particular solution (1) should thus be discarded.
The other oscillatory solution resembles that of the ordinary
damped harmonic oscillator, though with a distinct attenua-
tion rate and frequency. This attenuation rate and frequency
are expressed by analytical formulae for 2 (or equivalently,
3) by Eq. 36 and are calculated for various values of a and
compared with the corresponding quantities found within
the perturbation approach. This comparison is presented in
Fig. 4. This comparison reveals that the application of the
perturbation approach leads to a high overestimation of the
damping rate for a > ã. Therefore, we conclude that the use
of the approximate formula for Lorentz friction damping in
Eq. 34 is justified up to a � ã, whereas for a > ã, this
approximate expression causes a large error, rapidly grow-
ing with a, in comparison to the exact solution. The value
ã < alimit sharply depends on ionic system parameters and
can be approximated by ã � alimit

2 , where alimit denotes
here the sphere radius at which the oscillatory perturbation
solution terminates (cf. Fig. 4).

It must be emphasized, however, that in the electrolyte
systems there occur additional excitations of the system
components which may mix with plasmon oscillations and
even could wash out plasmonic effects in similar time scale
of oscillations. The most pronounced such an effect is the
strong absorption of microwave e-m radiation by rotational
degrees of freedom of water dipole molecules. In wide
region of GHz, water molecules in liquids and in other mate-
rials heavily absorb energy, rotate, and dissipate it next as
the heat to the surroundings (for utilization of this effect
in microwave ovens typically is used 2.5 GHz e-m wave).
Besides of rotational excitations, a separate water molecule
exhibits the vibration resonant absorption at ca. 100 THz
in vapor phase, whereas in a liquid phase at ca. 50 THz.
Therefore, the plasmon frequencies of GHz order and of
several THz order frequencies inconveniently are placed in
the region of water absorption: the micro-wave rotational
one at wide range between 1 and 300 GHz and the vibra-
tional one at ca. 50 THz. To avoid the overlap between
plasmon frequencies and absorption frequencies of water,
one can address the soft plasmonics of water electrolytes
toward lower (of MHz range frequencies) via reduction of
the ion concentration and taking advantage of significant

increase of water dielectric permittivity in MHz range, low-
ering plasmon frequency (the relative permittivity of water
is ε � 80 for frequencies in the MHz range [38], although
for higher frequencies, beginning at approximately 10 GHz,
this value decreases to approximately 1.7, corresponding to
the optical refractive index of water, η � √

ε1 = 1.33).
Moreover, in non-spherical geometry of an elongate cylin-
der or strongly prolate ellipsoid, the lowering of longitudinal
surface plasmon frequency might be very effective [39, 40],
and this frequency can be pushed below the inconvenient
GHz window for even larger ion concentrations. Note that
such a situation can occur in biological electrolyte systems,
e.g., in thin and long electrolyte neuron cords [30].

The developed above model of plasmons allowed for
description of plasmon-polaritons in ionic micro-chains
of periodically confined electrolytes which has been next
utilized to elucidate of previously not known and long-
searched mechanism of so-called saltatory conduction in
myelinated axons in peripheral nervous system and in the
white substance of central nervous system. The transfer
of action potential in long axons covered with white lipid
myelin (and therefore the name of white substance in brain
and in spinal cord) thick sheath exhibits much larger veloc-
ity (100 times larger) than the diffusive velocity of ions
in neuron cytoplasm. The mechanism of this acceleration
is not known and according to observed jumps of the sig-
nal between neighboring small intervals in myelin layer
called as Ranvier nodes, the related behavior has been called
as the saltatory conduction. This jumping of the signal
across the myelinated sectors of length typically of 100 μm
between consecutive Ranvier nodes accelerates the transfer
of action potential and causes that so-called firing of the
axon is quick, which in turn is essential for communication
and functioning of the body. Upon the assumption of the
plasmon-polariton mechanism of neuron firing in the case of
periodically myelinated axons, a very good coincidence of
signal velocity for realistic parameters of neuron cord size,
internal cytoplasm electrolyte molarity, and thickness of the
myelin sheath can be achieved [30].

Conclusions

In summary, we can state that in finite ionic systems, one
can observe plasmons similar to those in metallic nanopar-
ticles. The structure of ionic surface and volume plasmons
is analogous to similar properties of electronic plasmons
in metallic spherical systems, albeit with a significant red
shift of resonance energy corresponding to the far larger
mass of ions compared to that of the electrons and the lower
concentration of ions in electrolytes compared to the con-
centration of electrons in metals. Thus, corresponding to the
resonance energy, wavelength is shifted to deep-infrared or



648 Plasmonics (2016) 11:637–651

even longer wavelengths depending on ion concentration.
The typical cross-over in the plasmon damping size depen-
dence for metal clusters between the scattering, Ohmic-type
energy dissipation, and the radiative losses is observable
in spherical ionic systems. This dependence is similar to
the size-dependence in metals, though shifted toward the
micrometer scale for ions instead of toward the nanometer
scale for metals. Of particular interest is the high irradiation
regime for dipole plasmons in ionic systems, with potential
applications for signaling and energy transfer. The initial
strong enhancement of the efficiency of the Lorentz friction
with increasing radius of the electrolyte sphere is observed
on the micrometer scale with typical a3 radius dependence
above some threshold that depends on the electrolyte param-
eters. At a certain value of the radius (which also strongly
depends on the ion system parameters), this enhancement
saturates and the radiative losses slowly diminish, which
allows for the definition of the most convenient size of the
finite electrolyte system for optimizing radiation-mediated
energy transport efficiency, preferring the highest radiation
losses.
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Appendix: Derivation of Plasmon Frequencies

Volume Plasmons

To determine the self-frequencies of volume ionic plasmons
in a sphere, we must solve Eq. 17 in the form of the relevant
solution given by Eq. 19. For the initial conditions listed
below Eq. 19, we assume F(r, t) = Fω(r)sin(ωt), and, by
substitution of this function into Eq. 17, we obtain,

�Fω(r) + k2Fω(r) = 0, (37)

where k2 = (ω2−ω2
p)m

kT
. This equation is a well-known

Helmholtz differential equation with solutions (finite at the
origin) expressed by the spherical Bessel functions (for the
radial dependence of Fω(r)),

Fω(r) = Ajl(kr)Ylm(), (38)

where jl(x) =
√

π
2x

Il+1/2(x) is the lth spherical Bessel

function of the first kind (the angle dependence is given by
the spherical functions Ylm()). The boundary condition,

F(a) = 0, gives quantization of k, kli = xli

a
, where xli is the

ith zero of the lth Bessel function (cf. Fig. 2 left). After this
quantization, we arrive at the corresponding self-frequency
quantization:

ω2
li = ω2

p

(
1 + kT xli

ω2
pma2

)
. (39)

Thus, the volume ionic plasmons in the sphere are
described by

δρ1(r, t) = n

∞∑

l=1

m=l∑

m=−l

∞∑

i=1

Almijl(klir)Ylm()sin(ωli t),

(40)

where Almi are arbitrary constants. The component with
l = 0 vanishes because of the neutrality condition,
a∫

0
r2drdF(r, t) = 0 (as

∫
dYlm() = √

4πδl0δm0,

d = sin�d�dφ). Note that, in ionic systems, self-
frequencies of volume plasmons in the sphere are temper-
ature dependent (cf Eq. 39 and Fig. 2 right) contrary to
plasmons in metals.

Surface Plasmons

To determine self-frequencies for surface plasmons, Eq. 18
and its solution given by Eq. 19 must be considered. The
first term in the right-hand side of Eq. 18 can be rewritten in
the form,
kT
m

∇(n + δρ2)∇�(a − r) + kT
m

(n + δρ)��

= − kT
m

δ(a − r) ∂
∂r

(n + δρ) = kT
m

1
r2

∂
∂r

(r2δ(a − r)

= − kT
m

1
r2

∂
∂r

[
(n + δρ2)r

2δ(a − r)
]
,

(41)

where we used ∇�(a − r) = − r
r
δ(a − r), r

r
∇ = ∂

∂r
. The

next term in the right-hand side of Eq. 18 can be transformed
into,

− kT
m

δ(a − r) r
r
∇δρ2 − ω2

p

4π
δ(a − r) r

r
∇ ∫ d3r1δρ(r1)|r−r1|

= − kT
m

δ(a − r) ∂
∂r

δρ − 2 − ω2
p

4π
δ(a − r) ∂

∂r

∫
d3r1δρ(r1)|r−r1| .

(42)

Equation 18 thus becomes,

∂2ρ2

∂t2
= −kT

m

1

r2

∂

∂r

[
(n + δρ2)r

2δ(a − r)
]

−kT

m
δ(a − r)

∂

∂r
δρ − 2 − ω2

p

4π
δ(a − r)

∂

∂r

×
∫

d3r1δρ(r1)

|r − r1| . (43)

We suppose the solution of Eq. 43 to be in the form, δρ2 =
σ(, t)δ(a+0+−r) and multiply both sides of this equation
by r2 and integrate with respect to r in arbitrary limits, i.e.,

http://creativecommons.org/licenses/by/4.0/
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L∫

l

r2dr . . . , such that a ∈ (l, L) (in order to remove Dirac

deltas). This operation leads to the equation,

a2 ∂2σ(, t)

∂t2
= − kT

m

L∫

l

dr
∂

∂r

[
(n + δρ2)r

2δ(a − r)
]

− kT

m
σ(, t)

L∫

l

r2drδ(a − r)
∂

∂r
δ(a − r)

−ω2
p

4π

L∫

l

r2drδ(a − r)
∂

∂r

∞∫

a

r2
1 dr1

∫
d

δρ2(r1)

|r − r1|

−ω2
p

4π

L∫

l

r2drδ(a − r)
∂

∂r

a∫

0

r2
1 dr1

∫
d

δρ1(r1)

|r − r1| . (44)

The first two terms in the right-hand side of Eq. 44 vanish
because,

−kT

m

L∫

l

dr
∂

∂r

[
(n + δρ2)r

2δ(a − r)
]

= −kT

m

[
(n + δρ2)r

2δ(r − a)
]
|Ll = 0 (45)

and

−kT

m
σ(, t)

L∫

l

r2drδ(a − r)
∂

∂r
δ(a − r)

= −kT

m
a2

L∫

l

dr
1

2

∂

∂r
δ2(a − r)

= −kT

m

a2

2
δ2(a − r)|Ll

= −kT

m

a2

2
limμ→0

1

π

μ

μ2 + (a − r)2
δ(a − r)|Ll = 0. (46)

The last two terms of the right-hand side of Eq. 44 can
be transformed using the generating function for Legendre
polynomials [41],

1
√

1 + z2 − 2zcosγ
=

∞∑

l=0

Pl(cosγ )zl, f or z < 1, (47)

where Pl(cosγ ) = 4π
2l+1

l∑
m=−l

Ylm()Y ∗
lm() are Legendre

polynomials. This formula leads to the following one:

∂

∂a

1

|a − r1| =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
l=0

lal−1

rl+1
1

Pl(cosγ ), f or a < r1,

−
∞∑
l=0

(l+1)rl
1

al+2 Pl(cosγ ), f or a > r1,

(48)

where a = a r
r

and cosγ = a·r1
ar1

. Employing Eq. 48, the last
two terms in Eq. 44 can be transformed as follows:

−ω2
p

4π

L∫

l

r2drδ(a − r) ∂
∂r

∞∫
a

r2
1dr1

∫
d1

δρ2(r1)|r−r1|

= −ω2
p

4π
a2
∫

d1

∞∫
a

r2
1dr1δρ2(r1)

∂
∂a

1√
a2+r2

1 −2ar1cosγ

= −ω2
p

4π
a2
∫

d1

∞∫
a

r2
1dr1σ(1)δ(a + 0 + −r1)

×
∞∑
l=0

lal−1

rl+1
1

Pl(cosγ )

= −ω2
p

4π
a2
∫

d1σ(1)
1
a2

∞∑
l=0

4πl
2l+1

l∑
m=−l

Ylm()Y ∗
lm(1)

= −ω2
pa2

∞∑
l=0

l∑
m=−l

l
2l+1Ylm()

∫
d1σ(1)Y

∗
lm(1),

(49)

and

−ω2
p

4π

L∫

l

r2drδ(a − r) ∂
∂r

a∫

0
r2

1dr1
∫

d1
δρ1(r1)|r−r1|

= −ω2
p

4π
a2
∫

d1

a∫

0
r2

1dr1nF(r1, t)(r1)
∂
∂a

1√
a2+r2

1 −2ar1cosγ

= ω2
p

4π
a2
∫

d1nF(r1, t)
∞∑
l=0

(l+1)rl
1

al+2 Pl(cosγ )

= ω2
pn

∞∑
l=0

l+1
2l+1Ylm()

a∫

0
r2

1dr1
rl
1

al

∞∑
l1=1

l1∑
m1=−l1

×∑
i

Almijl1(kl1i r1)sin(ωl1i t)
∫

d1Y
∗
lm(1)Yl1m1(1)

= ω2
pn

∞∑
l=0

l∑
m=−l

∑
i

l+1
2l+1Ylm()Almi

×
a∫

0

rl+2
1 dr1

al jl(klir1)sin(ωli t).

(50)

Equation 44 thus becomes,

∂2σ(, t)

∂t2
= −ω2

pa2
∞∑

l=0

l∑

m=−l

l

2l + 1
Ylm()

×
∫

d1σ(1)Y
∗
lm(1)

+ω2
pn

∞∑

l=0

l∑

m=−l

∑

i

l + 1

2l + 1
Ylm()Almi

×
a∫

0

rl+2
1 dr1

al
jl(klir1)sin(ωli t), (51)



650 Plasmonics (2016) 11:637–651

Assuming that σ(, t) =
∞∑
l=0

l∑
m=−l

qlm(t)Ylm() and

substituting it into the above equation, we obtain,

∞∑

l=0

l∑

m=−l

Ylm()
∂2qlm(t)

∂t2
= −

∞∑

l=0

l∑

m=−l

ω2
pl

2l + 1
Ylm()qlm(t)

+ω2
p

∞∑

l=1

l∑

m=−l

∑

i

l + 1

2l + 1
Ylm()Alm

×
a∫

0

rl+2
1 dr1

al+2
jl(kli r1)sin(ωli t). (52)

We note that, for l = 0 we obtain ∂2q00
∂t2 = 0, thus,

q00(t) = 0 (as q(0) = 0 and limt→∞ q(t) < ∞). For l ≥ 1,
we obtain,

∂2qlm(t)

∂t2
= − ω2

pl

2l + 1
qlm(t) +

∑

i

ω2
p

l + 1

2l + 1
Almn

×
a∫

0

rl+2
1 dr1

al+2
jl(klir1)sin(ωli t), (53)

which requires a solution of the form,

qlm(t) = Blm

a2
sin(ωp

√
l

2l + 1
t)

+
∑

i

Alm

(l + 1)ω2
p

ω2
p − (2l + 1)ω2

li

n

×
a∫

0

rl+2
1 dr1

al+2
jl(klir1)sin(ωli t), (54)

and δρ2(r, t) =
∞∑
l=1

l∑
m=−l

qlm(t)Ylm()δ(a − r). The first

term in Eq. 54 describes the self-oscillations of surface
plasmons, whereas the second term displays the surface
plasmon oscillations induced by the volume plasmons. The
volume-plasmon-induced component of the surface oscilla-
tions is nonzero only when the volume modes are excited
and their amplitudes, Almi , are nonzero. The frequencies
of the self-oscillations of the surface plasmons are equal to

ωl0 = ωp

√
l

2l+1 , corresponding to various multipole modes
(numbered with l). Noticeably, these frequencies are lower

that the bulk plasmon frequency ωp =
√

nq24π
m

, whereas the
volume plasmon modes oscillate with frequencies greater

than ωp (as ωli = ωp

√
1 + kT x2

li

ω2
pa2m

). Also noteworthy is

the absence of the temperature dependence of the ionic
surface plasmon resonances, unlike the volume plasmon
self-frequencies.
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(2000) Metal cluster enhanced organic solar cells. Sol Energy
Mater Sol Cells 61:97

6. Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, Lagemaat J
(2008) Plasmon-enhanced solar energy conversion in organic
bulk heterojunction photovoltaics. Appl Phys Lett 92:013504

7. Jacak W, Krasnyj J, Jacak J, Gonczarek R, Chepok A, Jacak
L, Hu D, Schaadt D (2010) Radius dependent shift in surface
plasmon frequency in large metallic nanospheres: theory and
experiment. J Appl Phys 107:124317

8. Bohren CF, Huffman DR (1983) Absorption and scattering of
light by small particles. Wiley, New York

9. Maier SA, Kik PG, Atwater HA (2003) Optical pulse propaga-
tion in metal nanoparticle chain waveguides. Phys Rev B 67:
205402

10. Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal
FJ (2010) Transformation optics for plasmonics. Nano Lett
10:1985–1990

11. Maier S. A. (2007) Plasmonics: fundamentals and applications.
Springer, Berlin

12. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics
of surface plasmon polaritons. Phys Rep 408:131

13. de Abajo FJG (2010) Optical excitations in electron microscopy.
Rev Mod Phys 82:209

14. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon
subwavelength optics. Nature 424:824

15. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) The-
ory of surface plasmons and surface-plasmon polaritons. Rep
Prog Phys 70:1–87

16. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt
Photon 1:484–588

17. Landau LD, Lifshitz EM (1973) Field theory. Nauka, Moscow
18. Jackson JD (1998) Classical electrodynamics. Wiley, New York
19. Caputo R, Sio LD, Cataldi U, Umeton C (2013) Amorphous

nanophotonics. In: Active plasmonics in self-organized soft mate-
rials. Springer

20. Aksu S, Huang M, Artar A, Yanik AA, Selvarasah S, Dokmeci
MR, Altug H (2011) Flexible plasmonics on unconventional and
nonplanar substrates. Adv Mater 23:4422

21. Yao J, Le A-P, Schulmerich MV, Maria J, Lee SKGT-W,
Bhargava R, Rogers JA, Nuzzo RG (2011) Soft embossing of
nanoscale optical and plasmonic structures in glass. Nano 5:5763

22. Baragiola RA, Ritzau SM, Monreal RC, Dukes CA, Riccardi P
(1999) Mechanisms for ion-induced plasmon excitation in metals.
Nucl Inst Methods Phys Res B 157:110

23. Zhang X, Zhang J, Liu H, Su X, Wang L (2014) Soft plasmons
with stretchable spectroscopic response based on thermally pat-
terned gold nanoparticles. Sci Report 4. doi:10.1038/srep04182.
Article number 4182

24. Genet C, Ebbesen TW Light in tiny holes. Nature 445:39, 207

http://dx.doi.org/10.1038/srep04182


Plasmonics (2016) 11:637–651 651

25. Oohara W, Date D, Hatakeyama R (2005) Electrostatic waves in
a paired fullerene-ion plasma. Phys Rev Lett 95:175003

26. Kono M, Vranjes J, Batool N (2014) Electrostatic ion cyclotron
and ion plasma waves in a symmetric pair-ion plasma cylinder.
Phys Rev Lett 112:105001

27. Vlasov AA (1961) Many-particle theory and its application to
plasma. Gordon and Breach

28. Choudhuri AR (1999) The physics of fluids and plasmas: an
introduction for astrophysicists. Space Sci Rev 88:613

29. Peratt AL (2014) Physics of the plasma universe. Springer
30. Jacak WA (2015) Propagation of collective surface plasmons in

linear periodic ionic structures: plasmon polariton mechanism of
saltatory conduction in axons. J Phys Chem C 119:10015

31. Bohm D, Pines D (1953) A collective description of electron
interactions: III. coulomb interactions in a degenerate electron
gas. Phys. Rev. 92:609

32. Pines D. (1999) Elementary Excitations in Solids. ABP Perseus
Books, Massachusetts

33. Jacak J, Krasnyj J, Jacak W, Gonczarek R, Chepok A, Jacak L
(2010) Surface and volume plasmons in metallic nanospheres in
semiclassical RPA-type approach; near-field coupling of surface
plasmons with semiconductor substrate. Phys Rev B 82:035418

34. Brack M (1993) The physics of simple metal clusters: self-
consistent jellium model and semiclassical approaches. Rev Mod
Phys 65:667

35. Ekardt W (1985) Size-dependent photoabsorption and photoe-
mission of small metal particles. Phys Rev B 31:6360

36. Mie G (1908) Beitrige zur Optik trüber Medien, speziell kol-
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