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Abstract

Human cancer is largely driven by the acquisition of mutations. One

class of such mutations is copy number polymorphisms, comprised of devia-

tions from the normal diploid two copies of each autosomal chromosome per

cell. We describe a probe-level allele-specific quantitation (PLASQ) proce-

dure to determine copy number contributions from each of the parental

chromosomes in cancer cells from SNP microarray data. Our approach is
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based upon a generalized linear model that takes advantage of a novel clas-

sification of probes on the array. As a result of this classification, we are

able to fit the model to the data using an expectation-maximization algo-

rithm designed for the purpose. We demonstrate a strong model fit to data

from a variety of cell types. In normal diploid samples, PLASQ is able to

genotype with very high accuracy. Moreover, we are able to provide a gen-

eralized genotype in cancer samples (e.g. CCCCT at an amplified SNP).

Our approach is illustrated on a variety of lung cancer cell lines and tu-

mors, and a number of events are validated by independent computational

and experimental means. An R software package containing the methods

is freely available.
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1. Introduction

Over the course of the past decade, high throughput probe-based microarray tech-

nology has become a vital tool in genomic research. These microarrays contain

thousands of unique nucleotide probe sequences, each designed to hybridize to a

“target” nucleic acid molecule. When a DNA or RNA sample is properly prepared

and applied to the array, specialized equipment can produce a measure of the in-

tensity of hybridization between each probe and its target in the sample. The

underlying principle is that the hybridization intensity depends upon the amount

of target DNA or RNA in the sample, as well as the affinity between target and

probe. Extensive processing and analysis of these raw intensity measures gives

estimates of some characteristic of the target sequences in the sample. The sub-

ject of this paper is the analysis of data from a specific array type, the single

nucleotide polymorphism (SNP) array.

The GeneChip Mapping 100K Set (Affymetrix, 2004) is a pair of arrays able

to interrogate over 100 000 human SNPs. Herein, we shall refer to this pair sim-

ply as the SNP array. The original aim of the SNP array was to identify which

of the two SNP alleles — arbitrarily labeled allele A and allele B — occurs for

each chromosome copy (maternal and paternal) at each SNP in an individual’s

genome. Thus, the individual can be genotyped at a SNP as either homozygous

AA, homozygous BB, or heterozygous AB. More recently, it has been demon-

strated that these arrays may be used to identify loss-of-heterozygosity (LOH)

(Lindblad-Toh et al., 2000; Lin et al., 2004), as well as to produce a measure of

genomic copy number at each SNP (Bignell et al., 2004; Zhao et al., 2005), in

cancer samples. Regions of LOH are loci at which one of the two parental copies

of a chromosome is deleted. Typically, one may use SNP array data to detect
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LOH at SNPs where the cancer cell is homozygous, but its matched normal (same

individual) counterpart is heterozygous. In copy number inference, the goal is

to identify chromosomal regions in which the number of copies deviates from the

normal diploid two. These lesions include amplifications (copy number greater

than two), heterozygous deletions (copy number one), and homozygous deletions

(copy number zero).

The SNP array is designed so that each probe is a sequence of length 25 bases,

and is a member of a probe set comprised of 40 unique sequences. Within a probe

set, half of all probes are “perfect match” (PM) probes. All PM probes within the

set are perfectly complementary to some 25-base subsegment of the same target

DNA fragment. Additionally, every PM probe has a corresponding “mismatch”

(MM) probe that is identical to its PM counterpart, save that the central (13th)

base is altered so as not to be perfectly complementary to the target sequence.

The PM probes are complementary to either the A or B allele of the SNP, and

thus the SNP array probes have been typically classified as either PMA, PMB,

MMA, or MMB. In fact, the probes on the array may be grouped as quartets

comprised of one of each of these four classes, with each quartet interrogating the

same 25-base subsequence of the target genomic DNA fragment.

In this paper, we provide a generalization of the three applications — geno-

typing, LOH detection, and copy number inference — of SNP arrays. Specifically,

we present a probe level allele-specific quantitation (PLASQ) procedure to infer

allele-specific copy number (ASCN) and parent-specific copy number (PSCN). The

ASCN is a generalization of both genotype and copy number at a SNP, in that all

sample SNPs are assigned a genotype, regardless of copy number. Thus, ASCNs

for normal (diploid) regions are simply the usual AA, AB, or BB. However, a
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SNP in an amplified region may have ASCN AAAAB; a SNP in a heterozygously

deleted region may have ASCN B. PSCN, on the other hand, refers to the con-

tributions to copy number of each of the two parental chromosomes. Within this

framework, for example, we may more precisely identify LOH as a region in which

the PSCNs are (c, 0) for some positive integer c.

Our PLASQ procedure is rooted in a generalized linear model for the behavior

of probe intensities, exploiting a novel classification of the SNP array probes that is

fundamentally different from the usual PMA, MMA, PMB, MMB classification.

An earlier version of the procedure (LaFramboise et al., 2005) — also termed

PLASQ — used a simpler general linear model, and its performance with regard

to genotyping and copy number determination was inferior to the version we

present here. In the present work we analyze statistical properties (which were

not discussed in our earlier paper) of this updated model, demonstrating the

improvements in fit and performance. In light of these improvements, our intent

is that the current PLASQ replace the version described in our previous work.

After specifying our model in Section 2, its fitting, via an expectation-maximization

(EM) (Dempster et al., 1977) algorithm that takes advantage of the inherently

discrete nature of the quantity being measured, is detailed in Section 3. In Section

4, we apply our approach to a variety of cell types, demonstrating the ability to:

a) very accurately genotype over 100 000 SNPs in normal samples as either AA,

AB, or BB; b) determine copy number, genome-wide, at a very high resolution

in cancer samples; c) reveal the contributions of each of the two parental chromo-

somes to the amplifications and deletions in these aberrant samples; and d) infer

ASCNs at each of the SNPs on the array. We provide statistical justification for

the suitability of our model, and our in silico results are validated using a variety
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of independent in silico and in vitro methods. We conclude in Section 5 with a

discussion of the relevance of our results in cancer genomics research.

2. Array design and model specification

Studies employing SNP arrays have focused almost exclusively on the PMA,

MMA, PMB, and MMB probe classification. However, another classification

is relevant. A PM/MM pair may either be centered precisely so that the middle

(13th) base of the PM probe is complementary to the SNP site, or may be offset

(by between 1 and 4 bases in either direction). The three dichotomizations of the

probe set therefore leave us with eight probe types: PM c
A, MM c

A, PM c
B, MM c

B,

PM o
A, MM o

A, PM o
B, and MM o

B, where the superscript denotes centered (c) or off-

set (o). Our method focuses on the nucleotide-level affinities between each probe

and the two target DNA sequences (corresponding to the two SNP alleles). We

can count the number of bases at which each probe mismatches each of the target

alleles; indeed, this information is encoded in the .CDF (Chip Definition File)

provided by the manufacturer. Each probe mismatches each of the two target

alleles by either 0, 1, or 2 bases, and the eight probe classes completely determine

these counts. See Supplementary Figure 1 for a specific example of a probe set.

Our model is motivated by the following set of principles. First, the rela-

tionship between the target quantity and probe intensity is approximately linear

(with an additive term) on a log-log scale, as demonstrated in studies involv-

ing known quantities of RNA (Irizarry et al., 2003) and genomic DNA (Huang

et al., 2004). Second, the authors in Irizarry et al. (2003) justified, via spike-in

studies, a multiplicative stochastic error term on the standard (non-log) scale,

as evidenced by larger probe variance at higher intensity levels. Third, within
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a probe set, each probe is complementary to a subsegment of either the forward

or reverse strand in the target DNA fragment. This “forward” or “reverse” dis-

tinction is referred to as the probe’s orientation, and empirical evidence indicates

differences in hybridization intensities between the orientations. Finally, it is rea-

sonable that, aside from orientation, the main factor determining probe/target

hybridization affinity within the same probe set would be the number of bases

that the probe mismatches the target. More specifically, we reasonably assume

that the hybridization affinity of a target for a probe is a decreasing function of

the number of bases at which the probe is not complementary to the target. The

exception to this assumption arises in differences in the hybridization affinities

of the A and B target fragments. Since the A and B difference represents the

only potential significant difference in GC content between the probes in a set,

we have accommodated target-allele-specific differences in hybridization affinity

in our model.

In an array with J probe sets/SNPs (so J > 100 000 in our case) let C
(ij)
A

and C
(ij)
B denote the number of copies of the alleles A and B, respectively, in

the ith sample at the jth SNP site (j = 1, . . . , J). The model we propose for the

normalized, log-transformed intensity Y (ijk) of probe k in the probe set for SNP

j in an array interrogating sample i is

Y (ijk) = log(γ
(j)
Ojk

+ α
(j)
AjkOjk

C
(ij)
A + β

(j)
BjkOjk

C
(ij)
B ) + e(ijk). (2.1)

Here Ojk = F (forward) or R (reverse) denotes the orientation of the probe, Ajk,

Bjk = 0, 1, or 2 indicate the number of bases at which the probe mismatches

the A and B allele targets, respectively, and γ
(j)
F , γ

(j)
R represent the unwanted

background contributions of optical noise and non-specific binding to the forward

5 Hosted by The Berkeley Electronic Press



and reverse orientation probe intensities, respectively. One may think of these last

terms as representing the signal from a probe whose target is completely absent.

The independent, normally distributed, mean zero error terms e(ijk) are meant

to capture additional sources of variation. They are assumed to have standard

deviation σ
(j)
F when Ojk = F and σ

(j)
R when Ojk = R. The distributions of these

error terms are the same for any fixed values of j and Ojk, but are allowed to

vary for different probe sets and different orientations within the same probe sets.

Finally, we have found in practice that hybridization intensities between probes

and targets that mismatch at two bases are indistinguishable from background

noise, and thus we fix

α
(j)
2F = β

(j)
2F = α

(j)
2R = β

(j)
2R = 0.

Thus, the parameters of interest for each probe set/SNP j are γ
(j)
F , γ

(j)
R , α

(j)
0F , α

(j)
0R,

α
(j)
1F , α

(j)
1R, β

(j)
0F , β

(j)
0R , β

(j)
1F , and β

(j)
1R .

3. Model fitting and copy number inference

Equation (2.1) above models mean log-transformed probe intensity as a log-linear

function of copy number. There are some complications to fitting the model.

First, the log transformation on the right side of the equation precludes the use of

ordinary least squares. However, the model is a generalized linear model (McCul-

lagh and Nedler, 1989) with an exponential link, and thus we fit the model using

iteratively reweighted least squares (IRLS). A more severe obstacle to model fit-

ting is the fact that we usually know neither parameter nor covariate values C
(ij)
A

and C
(ij)
B a priori. We do know that, in a normal sample, each SNP is in one of
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three states — AA, AB, or BB. This implies three different covariate combina-

tions, and therefore an EM algorithm is a natural approach to fitting the model

to diploid data. The first step is to quantile normalize (Bolstad et al., 2003) the

raw probe intensity data from these normal references together with those from

the test cancer samples we wish to analyze. This step ensures that the results

are comparable across arrays by removing differences (such as overall brightness)

unrelated to the underlying molecular biology. After next estimating the model

parameters from the normal references using the EM procedure, we fit to data

from cancer samples (again using IRLS), which yields raw ASCNs at each SNP

site. Further processing produces our final ASCN and PSCN calls. In this section,

we describe each of these steps.

3.1 Model calibration on normal samples

For SNP arrays, normal samples provide a convenient basis for model fitting and

testing, as the pairwise ASCN sums C
(ij)
A +C

(ij)
B are known to be two. We exploit

this fact to find estimates γ̂
(j)
F , γ̂

(j)
R , α̂

(j)
0F , α̂

(j)
0R, α̂

(j)
1F , α̂

(j)
1R, β̂

(j)
0F , β̂

(j)
0R , β̂

(j)
1F , and β̂

(j)
1R

of γ
(j)
F , γ

(j)
R , α

(j)
0F , α

(j)
0R, α

(j)
1F , α

(j)
1R, β

(j)
0F , β

(j)
0R , β

(j)
1F , and β

(j)
1R , respectively. Model

(2.1) may be fit to (normalized) probe intensities using an EM algorithm, and the

genotyping inferences automatically result. Details of this procedure are given in

the Appendix.

3.2 Parent- and allele-specific copy numbers in tumor samples

Supplementary Figure 2 gives a diagrammtic overview of the procedure to obtain

ASCNs and PSCNs from (normalized) probe-level data from tumor sample i0. We

assume that parameters have been estimated as above from a battery of normal

samples, and we replace the parameters in the model with these estimates at each
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SNP. Our model becomes

Y (i0jk) = log(γ̂
(j)
Ojk

+ α̂
(j)
AjkOjk

C
(i0j)
A + β̂

(j)
BjkOjk

C
(i0j)
B ) + e(i0jk). (3.1)

We may now obtain raw ASCN inferences (C
(i0j)
A raw, C

(i0j)
B raw) via IRLS as applied

to model (3.1). In effect, we are treating the covariates C
(i0j)
A and C

(i0j)
B as pa-

rameters to be estimated. The ASCN inferences at this stage are “raw” because

we have not yet taken advantage of the fact that total copy number is locally

constant; that is, chromosomal copy number aberrations occur in discrete seg-

ments, typically spanning many consecutive SNP sites. We may therefore apply

a smoothing or break point procedure to the pairwise sums of the raw ASCNs,

mapped to their genomic locations. For our study, we have employed the GLAD

algorithm (Hupé et al., 2004) because of its sensitivity, specificity, and computa-

tional efficiency. GLAD attempts to detect chromosomal segments with constant

total copy number using an adapted weights smoothing (Polzehl and Spokoiny,

2000) breakpoint-detection algorithm. Our inferred total copy number T (i0s) for

a GLAD-determined segment s is the rounded median of the pairwise raw ASCN

sums in the segment.

Next, we infer PSCNs in each segment s from inferred total copy number

T (i0s) and raw ASCNs as follows. First, if the inferred total copy number is 0 or

1, then our PSCN calls are obviously (major chromosome, minor chromosome)=

(0, 0) or (1, 0), respectively. If not, we next decide whether LOH has occurred.

When a matched normal sample is available, this is easily determined by querying

for homozygosity SNPs that are heterozygous in the matched normal. In the

absence of a matched normal sample, we make use of the fact that the average

heterozygosity rate for SNPs on the array is approximately 30% (Affymetrix,
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2004). Therefore, we may think of the number of homozygous SNPs in a segement

with m SNPs as an approximate Binomial(m, 0.7) variable. Making a Bonferroni

correction for the number S of segments, we call LOH for segments in which

the number of homozygous SNPs is greater than the 1 − 0.05/S quantile in the

Binomial(m, 0.7) distribution (here a SNP j is assumed to be homozygous when

the rounded minimum(C
(i0j)
A raw, C

(i0j)
B raw) is less than one). If LOH is deemed to

have occurred, our PSCNs for the segment are (T (i0s), 0). Otherwise we ignore

homozygous SNPs, as they are noninformative with regard to PSCN, and our

PSCN call is (T (i0s) − ν, ν) where

ν = T (i0s) ×

∑

minimum(C
(i0j)
A raw, C

(i0j)
B raw)

∑

(C
(i0j)
A raw + C

(i0j)
B raw)

rounded to the nearest integer. Both sums in this expression are taken over all

heterozygous SNPs j in segment s.

Finally, we determine ASCNs from PSCNs and raw ASCNs at each SNP j. If

the SNP is heterozygous, then the ASCNs are the same as the PSCNs, with the

copy number of the major SNP allele (as determined by raw ASCNs) identical to

that of the major parental chromosome segment. If the SNP is homozygous, the

allele with the higher raw ASCN is assigned ASCN T (i0s), and the other 0.

4. Application to normal and cancer data

4.1 Data sets

The SNP array data are encoded in a pair of .cel files (one for each chip type)

for each sample. We employed data from 21 normal samples in our study. These

data include 24 .cel files from Zhao et al. (2005) that corresponded to all of the
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normal samples in that study, as well as 18 .cel files (corresponding to samples

NA6985, NA6991, NA6993, NA12707, NA12716, NA12717, NA12801, NA12812,

and NA12813) that were generated as part of the International HapMap Project

(http://www.hapmap.org). The latter samples, which we refer to as the HapMap

data set, are available for download at the Affymetrix web site (http://www.affymetrix.com).

For cancer samples, we used .cel files from 12 lung tumors and cell lines (see Tables

2 and 3) that were generated in Zhao et al. (2005).

4.2 Application to normal samples

To validate the assumptions of our model, we first fit it to the HapMap data

set. We examined the residuals from the model to check the assumption of nor-

mally distributed error terms. Note that, although the error terms are assumed

to be identically distributed within same-orientation subsets of a probe set, their

variances are allowed to differ across probe sets and orientations. We therefore

constructed a normal quantile-quantile (q-q) plot (Figure 1a) of the standardized

residuals, with the understanding that the model implies a standard normal dis-

tribution for these across all probe sets. For clarity, we randomly selected 10 000

such residuals to plot. To demonstrate the necessity of the log-log transformation,

we also plotted the standardized residuals resulting from fitting the linear model

Ỹ (ijk) = γ
(j)
Ojk

+ α
(j)
AjkOjk

C
(ij)
A + β

(j)
BjkOjk

C
(ij)
B + e(ijk), (4.1)

where Ỹ (ijk) now denotes the normalized, but untransformed, probe intensity. We

note that the model in LaFramboise et al. (2005) was similar to (4.1), but even

simpler — it did not allow for different coefficients for the CA and CB terms,

and thus forced α
(j)
AjkOjk

= β
(j)
BjkOjk

for each j = 1, . . . , J and k = 1, . . . , 40. We fit
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(4.1) using the EM algorithm as with model (2.1), except that the M-step involves

ordinary least squares rather than IRLS. The resulting q-q plot (Figure 1b) clearly

shows a severe departure from normality. This demonstrates the improvement of

our new generalized linear model-based approach over the previous work.

As mentioned above, probes on SNP arrays have traditionally been classified in

PM/MM or A allele/B allele terms. The advantage of our approach — classifying

probes by base mismatch count — can be seen in Figure 2. The first scatterplot

shows the mean MM o
A intensity versus the mean MM c

A intensity across 10 782

HapMap sample SNPs. Each point represents one orientation (F or R) of one SNP

for one sample. The means are taken over all MM c
A (x-axis) or MM o

A (y-axis)

probe intensities for the given orientation/SNP/sample. Each point is colored

according to HapMap genotype. Although the traditional classification treats

these two probe types as being equivalent measures, there is clearly a separation of

the three genotypes visible in the plot. As expected, the centered probes generally

have a greater affinity for the B target than the offset probes, and both types have

roughly the same affinity for the A target. This effect is even more dramatic when

the background γ term is subtracted, as shown in Figure 2b. These figures show

that the practice of ignoring MM probes, as some approaches do, in fact discards

relevant information. Moreover, if we construct a similar plot for MM c
A versus

MM c
B (Figure 2c), no separation of the genotypes is discernible, even though the

traditional classification would treat these two intensities as being measures of

separate quantities.

Many of the SNPs in the HapMap data set have been independently genotyped,

using a variety of genotyping platforms. Of these, 1198 were genotyped by at

least two different HapMap centers. Calls that were concurrent among at least
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two different centers may be considered as being very close to ground truth, and

we employed these as the “gold standard” data set against which we compared

our PLASQ method. As shown in Table 1, our method performs quite well. The

rate of agreement between PLASQ and the HapMap concordant calls is similar

to the HapMap Project’s concordance rate, and our No Call rate is considerably

lower. We should note that the 16 sample SNPs in the Table for which PLASQ

called AA and the HapMap effort called BB are all from the same two SNP loci.

Close inspection of the raw array data from these SNPs reveals a strong AA signal

(data not shown). Thus, we suspect that this is simply a case of an error being

made by Affymetrix when the “A” and “B” labels were assigned to the nucleotide

residues. In any case, the results in the Table clearly indicate that the model

captures the relevant aspects of the data, and underscore the validity of our EM

fitting approach.

4.3 Application to lung cancer

We applied our PLASQ method to SNP array data from 12 lung cancer samples,

using the 12 diploid samples from the same study as normal references on which

to train the model. Figure 3 shows an example of a genome-wide view of PSCN

for one of these samples, the cell line H2087. Note that LOH is clearly identifiable

as a region comprised of only the major chromosome (all green). For example, all

of one copy of chromosome 13 appears to be lost, though the total copy number

remains at two. This phenomenon is referred to as copy-neutral LOH.

To assess the accuracy of our method, we compared our results to PCR-based

copy number estimates. A total of 16 deletions and 10 amplifications in our 12

lung cancer samples were previously PCR-measured in Zhao et al. (2005). These

PCR measurements quantified only total (not allele-specific) copy number, so we
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have developed an experimental method to measure copy number on an allele-

specific basis. This quantitative PCR-based method is described in LaFramboise

et al. (2005). Tables 2 and 3 compare the PLASQ results with the PCR results. As

quantitative real-time PCR is a very sensitive technique, the putative homozygous

deletions in Table 2 are most likely valid. Our PLASQ procedure is able to

identify each deletion, and in fact they are almost always apparent at the raw

ASCN level. The estimates for amplifications are, however, not as concordant.

Although PLASQ detects each amplification, the results tend to be lower than

the PCR-based estimates in the higher-copy-number alleles. This is quite possibly

due to well-known saturation effects in oligonucleotide arrays (Naef et al., 2003),

and is difficult to mitigate. On the other hand, it is possible that our allele-

specific quantitative PCR technique may not be a precise measure. In any case,

an argument could be made that these errors are of little consequence, as the

aim in these studies is to identify amplifications, deletions, and the haplotypes

involved, all of which PLASQ can clearly uncover.

5. Discussion

Human cancer is driven by the acquisition of genomic changes in the cell. One

extremely important class of such changes is amplifications and deletions — de-

viations from the normal two copies of each chromosome in a cell. Regions of

amplification may harbor cancer-causing oncogenes, while deletions often contain

tumor suppressor genes. The localization of such alterations is therefore a central

goal in cancer research. We have presented a procedure, PLASQ, for determining

the copy numbers of SNP alleles and parental chromosomes in cancer cells from

SNP array data. Our SNP allele copy number result is particularly of interest in
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LOH determination, since existing methods often mistakenly call LOH where in

fact allelic balance (due to amplification of one allele) has occurred, resulting in

apparent (though false) homozygosity. We avoid these false LOH calls by taking

into accont the contribution to copy number from both alleles. Two recent pa-

pers (Ishikawa et al., 2005; Nannya et al., 2005) have been published that aim to

determine parent-specific copy number. However, their approaches require addi-

tional SNP array data from matched normal cells, which are often unavailable.

Moreover, both methods ignore MM probes, and thereby discard half of the in-

formation available in SNP arrays. As we have shown, MM probes are in fact

informative.

Finally, we should mention two potential weaknesses of our approach. First,

we are assuming a diploid copy number two in autosomal chromosomes of normal

cells. Recent studies (Iafrate et al., 2004; Sebat et al., 2004) have uncovered copy

number polymorphisms in normal cells. Given that our approach (and all others

that we are aware of) compares signal intensities to normal references, this could

in theory present a problem. In practice, however, we feel that this problem is

mitigated by the fact that we use a sizable collection of normal reference samples,

and that polymorphic genomic regions common to most normal reference samples

are likely rare, small in length, or both. A second concern is our practice of fitting

the model to normal samples and then applying the result to data from tumors.

We are implicitly assuming that the model parameters are appropriate outside of

the range of covariates with which they were estimated. Although this is indeed

a concern (and may be partially to blame for copy number underestimation of

high-level amplifications), we would argue that the results shown in Tables 2 and

3 demonstrate the value of the model, even for aberrant copy numbers.
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All procedures described herein are available in an R (R Development Core

Team, 2006) package, freely downloadable at

http://genome.dfci.harvard.edu/∼tlaframb/PLASQ
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APPENDIX

We describe in detail the EM approach to fitting model (2.1) to probe-level SNP

array data from normal samples.

Notation. Fix an arbitrarily chosen SNP j0. Suppose that we have N normal

samples. For i = 1, . . . , N and l = 0, 1, 2, let Zij0l denote the (unobserved)

indicator variable I(C
(ij0)
A = l). Model (2.1) may be rewritten, using this notation,

as

Y (ij0k) = log(γ
(j0)
Oj0k

+ α
(j0)
Aj0kOj0k

(Zij01 + 2Zij02) + β
(j0)
Bj0kOj0k

(2Zij00 + Zij01)) + e(ij0k).

(A.1)

We think of the Zij0l as missing data, whose values provide the genotypes of our

samples. Let φ(x | µ, τ) denote the density function of the normal distribution with

mean µ and variance τ 2, and let Y(ij0) denote the data vector (Y (ij0k))k=1,...,40 from

probe set j0 for sample i. For l = 0, 1, 2, let pj0l denote the (unknown) proportion

of samples for which C
(ij0)
A is l at the SNP j0. We consider the pj0l to be part of the
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set Ψ of parameters (which also includes the α, β, γ, and σ model parameters) to

be estimated during the M-step. It follows from (A.1) that the density function

for Y(ij0) is

f
Y(ij0)(y) =

2
∑

l=0

pj0lfj0l(y)

where

fj00(y) =
40
∏

k=1

φ(yk | log(γ
(j0)
Oj0k

+ 2β
(j0)
Bj0kOj0k

), σ
(j0)
Oj0k

)

fj01(y) =
40
∏

k=1

φ(yk | log(γ
(j0)
Oj0k

+ α
(j0)
Aj0kOj0k

+ β
(j0)
Bj0kOj0k

), σ
(j0)
Oj0k

)

fj02(y) =
40
∏

k=1

φ(yk | log(γ
(j0)
Oj0k

+ 2α
(j0)
Aj0kOj0k

), σ
(j0)
Oj0k

)

We refer to the vector (Yij0 ,Zij0) = (Y (ij0k), Zij0l)k=1,...,40; l=0,1,2 as a the complete

data vector. The complete data density is

f comp

(Y(ij0),Zij0
)
(y, z) = (pj00fj00(y))z1(pj01fj01(y))z2(pj02fj02(y))z3

= pz1
j00p

z2
j01p

z3
j02gj0(y, z), (A.2)

where

gj0(y, z) =
40
∏

k=1

φ(yk | log(γ
(j0)
Oj0k

+ α
(j0)
Aj0kOj0k

(z2 + 2z3) + β
(j0)
Bj0kOj0k

(2z1 + z2)), σ
(j0)
Oj0k

)

and z = (z1, z2, z3).

Initialization. We have found our procedure to be somewhat sensitive to start-

ing values for the missing data. Therefore, rather than randomly assigning these

values as a first step, we use a reasonable yet crude t-test approach to provide ini-

tial values z
(0)
ij0l of the expectations of the Zij0l. For each i, a one-sided t-test is per-
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formed for the null hypothesis that the mean of the (normalized, log-transformed)

PMA probe intensities is larger than that of the PMB probes. Let P denote the

resulting P -value. If P ≤ 0.5, we assign initial probabilities (z
(0)
ij00, z

(0)
ij01, z

(0)
ij02) =

(P
2
, P, 1 − 3P

2
). If P > 0.5, we assign (z

(0)
ij00, z

(0)
ij01, z

(0)
ij02) = (3P

2
− 1

2
, 1 − P, 1−P

2
).

M-step. For the mth M-step, we consider the complete data log likelihood,

assuming the current expectations z
(m−1)
ij00 , z

(m−1)
ij01 , and z

(m−1)
ij02 for the values of the

missing data along with the observed data Y(ij0) = y(ij0). By the factorization in

expression (A.2), this log likelihood can be written as

logL(m) =
N

∑

i=1

2
∑

l=0

z
(m−1)
ij0l log pj0l +

N
∑

i=1

log gj0(y
(ij0), z

(m−1)
ij0

).

On the right side of this equation, the pj0l appear only in the first term, while

the α, β, γ, and σ parameters appear only in the second term. Thus, we may

maximize each term separately. It is easy to see that the first expression, subject

to the constraint pj00 + pj01 + pj02 = 1, is maximized at the values

p̂
(m)
j0l =

N
∑

i=1

z
(m−1)
ij0l /N.

The maximum likelihood estimates for the model parameters may be computed

using iteratively reweighted least squares, as applied to the model (A.1) with the

Zij0l replaced by z
(m−1)
ij0l and the Y(ij0) by y(ij0).

E-step. We find the expected values z
(m)
ij0l of the Zij0l based on the mth M-step

parameter estimates Ψ̂(m). Given that the value of Zij0l is either 0 or 1, we have

z
(m)
ij0l = E

Ψ̂(m) [Zij0l|Y
(ij0) = y(ij0)] = P

Ψ̂(m) [Zij0l = 1|Y(ij0) = y(ij0)].
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By Bayes’ Theorem and (A.2), we have

z
(m)
ij0l = p̂

(m)
j0l fj0l(y

(ij0))/f
Y(ij0)(y(ij0)),

where the density functions use Ψ̂(m) for their parameter values.

The E- and M-steps are alternated repeatedly until the changes in the estimates

are very small, say after m0 steps. In this way, we obtain two important results.

First, model parameter estimates are produced, which can be used in (2.1) to fit to

SNP data from any sample, producing raw allele-specific copy number estimates

at the SNP as demonstrated in Section 3.2. Second, the z
(m0)
ij0l may be used to

infer genotypes for the normal samples. If a call is desired for sample i, a simple

rule would be:

genotypei =































homozygous AA if arg maxl(z
(m0)
ij0l ) = 2

heterozygous AB if arg maxl(z
(m0)
ij0l ) = 1

homozygous BB if arg maxl(z
(m0)
ij0l ) = 0

This scheme automatically provides a way to measure uncertainty in the genotype

calls. The researcher may set a threshold for the value of maxl(z
(m)
ij0l ), below

which the call is considered uncertain and a “No Call” determination is given. In

practice, we have found 99% to be a suitable such threshold.
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FIGURES
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Figure 1: Normal quantile-quantile plots comparing standardized residuals to the
standard Gaussian distribution. a) 10 000 randomly-selected residuals from the
generalized linear model (2.1) fit to SNP array data from HapMap samples. b)
10 000 randomly-selected residuals from the linear model (4.1) fit to SNP array
data from HapMap samples.
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Figure 2: Scatterplots of mean intensities of probe types across 10 782 sample
SNPs. a) MM o

A probes vs. MM c
A probes. Although traditionally considered

to be of the same type, these probes clearly behave differently with different
genotypes. b) The differences from a) are even more pronounced when background
is subtracted. c) No such difference is apparent in MM c

B vs. MM c
A, even though

these are traditionally considered to be measuring different alleles.
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H2087 lung cancer cell line

chromosome number
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Figure 3: Parent-specific copy number of the H2087 cell line, as determined by the
PLASQ procedure. Various types of genomic lesions are apparent in this view.
For example, there are high-level amplifications on chromosome 12, copy-neutral
LOH on chromosome 13, heterozygous deletion of the p arm of chromosome 3,
and a focal homozygous deletion (thin black bar) on chromsome 4.

21 Hosted by The Berkeley Electronic Press



Tables

PLASQ PLASQ PLASQ PLASQ
AA AB BB No Call totals

HapMap 3787 4 1 2 3794
AA (35.12%) (0.04%) (0.01%) (0.02%) (35.19%)

HapMap 15 3158 4 6 3183
AB (0.14%) (29.29%) (0.04%) (0.05%) (29.52%)

HapMap 16∗ 4 3595 11 3626
BB (0.15%) (0.04%) (33.34%) (0.10%) (33.63%)

HapMap 44 49 46 2 141
No Call (0.41%) (0.45%) (0.43%) (0.02%) (1.31%)

HapMap 5 24 9 0 38
Discordant (0.05%) (0.22%) (0.08%) (0%) (0.35%)

totals 3867 3239 3655 21 10,782
(35.87%) (30.04%) (33.90%) (0.19%) (100%)

Table 1: Concordance between our procedure’s calls and those made by more
than one center in the International HapMap Project effort. The HapMap calls
are considered discordant if any two centers, neither producing a No Call for the
SNP, call it differently. If all but one center produce a No Call, the SNP is placed
in the table’s “HapMap No Call” category. ∗Likely the result of mislabeled A and
B alleles (see text).
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Real-time
raw raw PLASQ PLASQ PCR

SNPID Position allele A allele B allele A allele B copy
(rs) Chromosome (Mb) Sample ASCN ASCN ASCN ASCN numbera

4133302 2 142.07 H2126 −0.05 −0.03 0 0 0.00
4133302 2 142.07 H2122 −0.04 −0.07 0 0 0.01
4133302 2 142.07 H157 0.63 −0.06 0 0 0.06
10496876 2 142.29 HCC95 −0.02 0.01 0 0 0.00

2687167 3 60.32 HCC95 −0.01 −0.05 0 0 0.00
930589 3 152.87 H2882 0.09 −0.03 0 0 0.00
930589 3 152.87 S0177T 0.13 0.01 0 0 0.02

2033554 9 8.73 S0177T −0.12 0.15 0 0 0.01
655125 9 9.59 HCC1171 0.22 0.04 0 0 0.08
4074785 9 21.97 HCC1359 −0.04 −0.08 0 0 0.00
4074785 9 21.97 H2126 −0.04 0.00 0 0 0.00
4074785 9 21.97 H2122 0.05 −0.04 0 0 0.01
4074785 9 21.97 H2882 0.05 −0.05 0 0 0.00
4074785 9 21.97 HCC1171 −0.05 0.10 0 0 0.00
4074785 9 21.97 HCC95 0.00 0.12 0 0 0.00
1162609 9 24.58 H157 0.03 −0.03 0 0 0.03

Table 2: Comparison of raw and inferred ASCNs with PCR results for deletions.
aFrom Zhao et al. (2005).
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raw raw PLASQ PLASQ PCR allele PCR allele
SNP ID Position allele A allele B allele A allele B A copy B copy

(rs) Chromosome (Mb) Sample ASCN ASCN ASCN ASCN number number

4859257 3 183.98 S0465T 6.89 0.70 6 1 25.18 1.68
2049284 3 183.49 S0515T −0.38 22.90 0 14 2.42 38.37

1569265 7 54.61 HCC827 10.72 0.99 11 1 135.92 1.97

2893603 8 128.04 H2122 6.61 −0.11 7 0 58.46 3.39
9283954 8 128.33 HCC827 0.28 6.69 0 6 0.06 7.58
2392827 8 128.91 H2087 5.63 0.87 5 1 6.03 1.23

10506101 12 32.60 S0515T −0.13 10.94 0 10 0.06 7.12
1486883 12 33.80 H2087 7.55 0.10 9 0 17.32 0.03
3913094 12 57.20 H2087 9.19 0.21 10 0 4.86 0.17

448041 22 19.77 HCC1359 0.93 6.32 1 4 1.03 8.36

Table 3: Comparison of raw and inferred ASCNs with PCR results for amplifica-
tions.
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