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It is interesting to compare (14) with the solution obtained by Crout. In footnote 2, five

significant figures were kept in the computation and the solution of (11) was given as

(0.15942, 0.14687, 0.11261, 0.060806.). (15)

The equivalent matrices would be in better form of course, if a more careful calcula-

tion of (12) were made. Thus, keeping five significant figures in the solution of (6), a

pseudo diagonalizing operator was obtained for which the equivalent system was solved

to nine decimal accuracy in four iterations.

To illustrate the methods of Section IY, an approximate value of Qi in (9) was chosen

to accelerate the solution of (13). To maintain a reasonable number of significant figures,

the coefficients of (13) were mentally rounded off to two decimal points. By inspection,

therefore, the improving operator, Q, , becomes

Q. =

.89 -.04 .26 .23

.13 1.01 -.38 .06
-.10 -.18 .96 -.09

.11 .21 .02 1.02J
(16)

The equivalent system formed by multiplying (13) by (16) required only five iterations

to yield (14).

Acknowledgment: The author is indebted to Lyman B. Stewart, Watertown Arsenal,

for examination of the computational feasibility of the procedures.

PLASTIC DESIGN OF BEAMS AND PLANE FRAMES FOR

MINIMUM MATERIAL CONSUMPTION*

By JACQUES HEYMAN (Brown University)**

Abstract. This paper is concerned with the design of plane frames in such a way

that the material consumption is a minimum. The method of solution is to set up linear

inequalities for the variables involved, and to solve these inequalities by the Dines1

method. Three slightly different classes of problem are treated; collapse design under

fixed loads, collapse design under varying loads, and shakedown design under varying

loads. Illustrative examples of each are given.

1. Introduction. The problem discussed in this paper may be stated as follows:

Given the geometrical configuration of a frame which is acted upon by specified loads,

how should the various members of the frame be proportioned so that the total ma-

terial consumption is as small as possible? The type of frame to be considered consists

of straight members, all in the same plane. Between joints, the assumption is made

that any one member has a uniform cross-section. The moment-curvature curve for any

cross-section will be taken to have the general form shown in Fig. 1, where a limit
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moment M is attained at a finite curvature such that any further bending is accom-

panied by no increase in M. This limit value M is known as the full plastic moment,

and the section at which it occurs is called a plastic hinge. It will be assumed that the

joints connecting the members of the frame are sufficiently rigid for the full plastic

moments to be developed (if necessary) at those joints.

The total material consumption x for a given frame is given by the proportionality

s « Z M'1' . (1)
t = 1

where is the full plastic moment of the ith member of the frame, and U is its length.

This linearization of the material consumption is not strictly correct, but for the pur-

pose of developing suitable methods for design, it will be assumed that a continuous

linear range of sections is available.

MOMENT

M

CURVATURE

Fig. 1

The general state of a frame of n redundancies can be expressed as the sum of one

arbitrary fixed equilibrium state and n linearly independent residual states. By a state

is meant some distribution of bending moment, so that a state in equilibrium with the

applied loads is any bending moment distribution such that equilibrium is attained.

A residual state satisfies equilibrium when the applied loads on the frame are zero-

Thus, confining attention to any one cross-section in a frame, the bending moment

there may be expressed as

M* + CiM[ + cM'i + • • • + cnM'n , (2)

where M* is the equilibrium bending moment at the section, and M[ ■ • • M'n are the

linearly independent residual moments. Suppose the full plastic moment at the section

(as yet undetermined) is M. Then since the total bending moment cannot exceed the

value M,

- M < M* + cyM[ + c2M2' + • • • + cnM'n < M (3)

and continued inequalities similar to (3) may be written for every critical section of

the frame. Only concentrated loads are considered in this paper, so that shear forces

are discontinuous at the joints and under the loads, and are constant elsewhere. This
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means that the bending moments in the frame are linear, and critical sections can occur

only at the joints and under the loads. Writing down the inequalities (3) for these

sections, the problem may be solved by Dines' method, and the ideas are best presented

by means of examples. On account of the limitations of space, these examples will deal

with the design of beams; the design of plane frames introduces no new ideas but in

general entails rather more arithmetical labour. (In the full report, of which the present

paper is a shortened version, a rectangular portal frame is treated).

2. Example 1 (fixed loads). Consider the two-span continuous beam on three supports

carrying the central fixed loads P, and P2 (Pi > Pi) as shown in Fig. 2. Since the sys-

iP*

~zr

_ j_ J_ i_ 
r sT 2T

Fig. 2

tem has one redundancy, the plastic behaviour can be represented as the sum of an

arbitrary fixed equilibrium state and one residual state. These may be taken as the

two bending moment distributions in Fig. 3, where the factor c corresponds to the

arbitrary multiplying factors on the residual moments in expression (2). Denoting the

full plastic moments of the two spans by Mi and M2 (the values being as yet undeter-

mined), the condition that the total bending moments at the critical points should be

less than or equal to the full plastic moments at those points gives the following in-

equalities:

(1) under the load Pj , — M, < Pi + c < Mx ,

(2) at the central support, — Mi < 2c < M, ,

(4)
- M2 < 2c < M2 ,

(3) under the load P2 , — M2 < p2 + c < M2 ,

where Pi for example is given by p, = PJ/4, the "free" bending moment shown in Fig.

3(a). The two inequalities for the central support are obtained by considering respec-
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tively points slightly to the left and to the right of the support, since it is not known a

;priori whether M, M2 ■

For the purposes of calculation, each continued inequality in (4) may be expressed

as two simple inequalities, and the set (4) rewritten:

c + Pi + Mt > 0, — c — Pi + Mr > 0,

I Mi . . Mi _+ -y > 0, - c + — > 0,

(5)

, M2 n , M 2 . p.+ ~2" > 0, - c +-^">0,

c + p2 + M2 > 0, — c — p2 + M2 > 0.

For the present purposes, the actual value of c in the set (5) is of no interest, so long as

it is known that a value of c exists such that each inequality can be satisfied. Dines

has shown that necessary and sufficient conditions for the existence of such a value of

c are obtained if every inequality in the set (5) with a coefficient of +1 for c is added to

every inequality with a coefficient of — 1 for c. If these additions are performed, c will

be eliminated, and the resulting set of inequalities (4X4= 16 in this example) pro-

vide the necessary and sufficient conditions for the existence of c.

In the actual operation, it is found that some inequalities are redundant; for ex-

ample, adding the first and second of set (5) gives M\ > 0, while the second and third

give Mi > fpi , so that Mi > 0 is redundant. The five remaining inequalities out of

the possible sixteen are

-Pi + \Mi > 0,

— P\ + Mi + pf2 > 0,

~ V\ + Vi 4" Mi + M2 > 0, (6)

— Pi + hMi + M2 > 0,

— p2 + \M2 > 0.

The material consumption parameter x will now be introduced into set (6). Since the

two beams have equal spans, x may be taken as (see (1))

x = Mx + M2 . (7)

Mi may be replaced in set (6) by (x — M2), giving, upon slight rearrangement,

— M2 + x — fpi > 0,

— M2 + 2x — 2pi > 0,

(8)
M2 + x — 2p2> 0,

M2 — |p2 > 0,
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together with

x > (pi - p2). (9)

Now for the problem of determining the minimum value of x, the value of M2 is not

required, and Dines' method may be employed again on set (8) to eliminate M2 , giving

x > ipi + p2 ,

x > \pi + \p2 ,

(10)
x > Ipi + |p2 ,

X > Pi + \P2 •

Inequality (9) and, the second of (10) are obviously redundant, and for pl > p2 (as

assumed), set (10) reduces to

x > Pi + h>2 j (11)

the other two inequalities also being redundant. This single inequality (11) is a necessary

and completely sufficient condition that values of Mi, M2, and c can be found to satisfy

the original set (4). Since it is required that x should be as small as possible, the equality

sign will be taken in (11), so that

x = Pi + h>2 (12)

that is, the existence condition is just satisfied. It is to be expected that unique values

of Mi , M2 , and c will be derived, and this is in fact the case. Inequality (11) was ob-

tained by the addition of the second and fourth of set (8); the second of (8) states that

M2 < |p2 , for the minimum value of x given by Eq. (12), while the fourth gives M2 >

f p2 . Hence

M2 = §p2 , M] = Pi \p2 (13)

and, by going back to the original set (5),

2c = —fp2 = —M2 . (14)

The bending moment distribution resulting from the analysis is shown in Fig. 4, which

shows that plastic hinges are formed at all three of the critical points. Physically, this

number of hinges is sufficient for the structure to become a mechanism and hence to

collapse.
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3. Example 2 (variable loads, collapse design). Consider the same beam shown in

Fig. 2 but with the loads varying between the limits

- Qi < Pi <Qi, - Q, < P, < , Qi>Q,. (15)

The same set of inequalities (5) may be written down containing the parameters pi

and p2 . The sixteen inequalities resulting from the elimination of c must be examined

in the light of the fact that pi and p2 vary, and the worst values of Pi and p2 (i.e., ±qx ,

±q2) inserted in each inequality. After removal of redundant inequalities, the set

becomes

~ Q\ + \Mi > 0,

— q, + Mi + \M2 > 0,

— 9i — ?2 + Mi + M2 >0, (16)

— ?2 + %Mi + M2 > 0,

— q2 + > 0.

Operating on this set as before to find the minimum value of x, it is found that the

third of (16) is the controlling inequality, giving

® = Qi + I2 ■ (17)

This is one of the few examples where unique values of Mi and M2 are not generated

by working back through the successive sets of inequalities; instead, ranges are found

as follows:

Mi + M2 = x = qi + q2 ,

(?i + iq2) > Mi > §9, ,

(18)

2q2 > M2 > \q2 ,

(iqi + ?2) > M2 .

As a specific example, suppose qi = q2 — q. Then

Mi + M2 = 2q, | q > Mi > | q, | q > M2 > | q, (19)

and any values of M, and M2 satisfying (19) will give a constant material consumption.

[It is perhaps of interest to note that if x = 2(M"l), where n < 1, the minimum material

consumption is given by Mi = 2M2 = |-g (or vice versa), the worst case occurring for

Mi — M2 — q. An asymmetrical solution is obtained for what appears to be a com-

pletely symmetrical problem. In practice, for n = 0.6, which is a reasonable value for

the exponent, the worst error due to the linearized material consumption amounts to

less than 2% in this example].

4. Example 3 (variable loads, shakedown design). If, after a certain arbitrary time,

a structure subjected to varying loads resists all further changes of load in a purely
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elastic manner, then the structure is said to shake down under the given loading system.

It may be shown2 that a necessary and sufficient condition for shakedown to occur is

that a sum of residual states can be found such that when it is added to the elastic

response of the structure, the moment at any cross-section is less in magnitude than the

full plastic moment at that section, that is (cf. Eq. (3)),

- M < M. + cxM[ + c2M2 + • • • cnM'n < M, (20)

where Me is the elastic solution for the problem under the given loads. Now, as the loads

on the frame vary, Me will vary between limits, say Mf" and Mfia, so that (20) may

be replaced by the two inequalities

MTX + cM'x + c2M'2 + • • • + c„M'„ < M,

(21)
— M < Mfn + c,M[ + c2M'2 + ■ ■ • + cnM'n .

The elastic solution of a given structure presents no formal problem, although for

highly redundant frames the numerical labour may be heavy. The bending moment at

any cross-section may be expressed in terms of the given loads and the flexural rigidity

(B) of the various portions of the frame, so that the elastic parameters (flexural rigidities)

used in the solution are not the same as the plastic parameters (full plastic moments).

However, once a certain class of cross-section has been decided upon, an empirical

relationship may be plotted connecting the two, so that if a full plastic moment is given,

it is simple to read off the corresponding flexural rigidity of the section, and vice versa.

In order to work the following example analytically (and it should be stressed that

any given relationship will not lead to more complicated results), it will be assumed

that

B = kMi/3, (22)

where k is a numerical constant. The factor of 4/3 expresses the fact that approximately

geometrically similar sections are involved.

Consider the same beam as in the previous examples (see Fig. 2) with the loads

Pi and P2 varying arbitrarily between the limits

0 <P1<P, 0 < P2 < IP. (23)

If the flexural rigidities of the two spans are Bx and B2 , the elastic bending moments

at the critical points are:

(1) under Pt , M.x = |[Pl(5i?2 ^)P>(3g')],

(2) at the central support, Me2 = _j, (24)

(3) underP2 , M.3 = ^ +'*«% +■W]

2Neal, B. G., The behaviour of continuom beams and plane frames under repeated loading, Technical

Report All-32 to the Office of Naval Research under contract N7onr-358.
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Hence as F\ and P2 vary between their limits,

jjmu _ p\5B2 + 8J?i~| Mmin p\ 6B1

8L By +B2 J' " 8U51 + B2J'

M?r = 0, MT = ~|[3^ + (25)

Wm,I _ p[ lOBj + 16^2~] , min _ _p[~ 3B2

8L By + B2 J' M'3 sL^+bJ'

These values of moments are non-linear in the values of B even for this simple example,

and in any case the relationship between B and M (the full plastic moment) is not

expressible analytically in general, so that an iterative numerical method will be de-

veloped. The general method of solution may be tabulated as follows.

1. Assign flexural rigidities to the various members of the frame, specifying these

rigidities in terms of one unknown.

2. The elastic solution may be obtained, and the limits of the bending moments at

critical sections calculated as the loads on the frame vary.

3. Forgetting that flexural rigidities have already been specified, use these elastic

limit moments as a state of the frame to which must be added some sum of residual

states such that the bending moment at any section is less in magnitude than the

full plastic moment.

4. Set up the usual inequalities, and solve the problem by Dines' method, which

will give the actual full plastic moments necessary for minimum material con-

sumption.

5. From these full plastic moments, calculate (either by means of an empirical curve

or by some relationship such as Eq. (22)) the flexural rigidities of the various

members. If these rigidities are far removed from those originally assumed,

obtain an elastic solution with the new values, and rework the problem.

Continuing with the two-span beam example, if it is assumed that

B2 = 2 Bl (26)

(since the right hand span has to support twice as much load as the left hand), then,

working to the rules given above, it is found that

x = gp = 2.33p, M1 = |p = 0.67p, M2 = | p = 1.67p. (27)

Hence for the next trial, from Eq. (22), take

I ' (0" " " 3'4' <28>
This ratio of flexural rigidities gives

x = 2.68 p, Mi = 0.78 p, M2 = 1.90p, (29)

and the next trial, although B.JBy , is reduced to 3.25, gives these same values of M,

and M2 .
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5. Conclusion. The methods presented above have been applied to more complicated

frames and readily give the required solutions for collapse design under constant or

varying loads. For shakedown design, the iterative numerical method converges fairly

rapidly. It may be found easier for highly redundant frames to obtain a new elastic

solution at each stage using the numerical values obtained from the previous analysis,

since an analysis with numerically unspecified flexural rigidities is extremely tedious.

For all three types of design, the introduction at an early stage of the numerical values

of the loads simplifies the work greatly, since it will be found that a large proportion

of the inequalities generated become redundant and can be ignored.

Only examples of concentrated loads on straight members of uniform cross-section

between joints have been examined, making it possible to pick by inspection the critical

cross-sections. However, the basic ideas are not altered by the introduction of other

variables; the analysis will be more complicated, but aids to calculation may be in-

troduced which leave the basic problem unchanged.

THE METHOD OF CHARACTERISTICS APPLIED TO PROBLEMS OF

STEADY MOTION IN PLANE PLASTIC STRESS*

By P. G. HODGE, JR. (University of California at Los Angeles)

A method is outlined for obtaining the stress, strain, and thickness distribution in a

thin sheet which is strained plastically in its plane. For the particular case of steady

motion, a method is given for obtaining directly the final solution to certain types of

boundary value problems. A step by step procedure is indicated for the general case of

non-steady motion.

1. Introduction. This paper is concerned with the stress and strain distribution in

a thin sheet which is strained plastically in its plane, under conditions of plane stress.

It will be shown that three types of problems may be distinguished. In certain special

cases the stress distribution may be found independently of the velocity or thickness

by solving three equations in as many unknowns. For general steady motion problems

it will be necessary to solve six equations simultaneously for three stress components,

two velocity components, and the thickness. These equations will be stated in Sec. 2,

and reduced to a system of five first order, quasi-linear differential equations under the

assumption of initial isotropy. For suitable boundary conditions, it will be possible to

find the final stress, strain, and thickness distribution of the material directly, using

the method of characteristics. The details of this method of solution will be described

in Sees. 3 and 4. Finally, in Sec. 5, a step-by-step procedure for solving problems of

non-steady motion will be briefly indicated.

2. Basic equations. Let the sheet be referred to a set of Cartesian axes such that

the x,y plane coincides with the middle surface, and let z = ±\h(x,y) be the equations

of the bounding surfaces. Under the assumptions of generalized plane stress, the only

non-vanishing averaged stress components are ax , ay , and rx„ . These components

must satisfy the equations of equilibrium

*Reeeived March 29, 1950.


