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Abstract: A new plastic hinge integration method overcomes the problems with nonobjective response caused by strain-softening
behavior in force-based beam–column finite elements. The integration method uses the common concept of a plastic hinge length in a
numerically consistent manner. The method, derived from the Gauss–Radau quadrature rule, integrates deformations over specified plastic
hinge lengths at the ends of the beam–column element, and it has the desirable property that it reduces to the exact solution for linear
problems. Numerical examples show the effect of plastic hinge integration on the response of force-based beam–column elements for both
strain-hardening and strain-softening section behavior in the plastic hinge regions. The incorporation of a plastic hinge length in the
element integration method ensures objective element and section response, which is important for strain-softening behavior in reinforced
concrete structures. Plastic rotations are defined in a consistent manner and clearly related to deformations in the plastic hinges.
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Introduction

The advent of performance-based earthquake engineering has
placed an emphasis on simulating the nonlinear response of a
structural system to seismic excitations �Filippou and Fenves
2004�. Severe earthquake ground motions are expected to deform
a structure into the inelastic range of behavior through multiple
excursions. The design of a structural system subjected to earth-
quake ground motion recognizes that plastic hinges will form in
frame members. Accurate and computationally efficient numerical
models that represent the cyclic loading of plastic hinges in
beam–column elements, including the effect of degradation, are
thus required to simulate the seismic response and evaluate the
performance of structural systems.

Finite element models for the nonlinear material response of
beam–column members have fallen into two categories: concen-
trated plasticity and distributed plasticity. In concentrated plastic-
ity, the nonlinear behavior of a beam–column member is lumped
into rotational springs at the ends of a linear-elastic element.
The two-component model �Clough et al. 1965� and the one-
component model �Giberson 1967� are the most common
approaches for concentrated plasticity beam–column elements.
The concentrated plasticity concept was generalized to incorpo-
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rate axial-moment interaction at the element ends �Hilmy and
Abel 1985; Powell and Chen 1986�. The drawback to concen-
trated plasticity models, however, is they separate axial-moment
interaction from the element behavior. Consequently, a beam–
column element requires a calibration based on the expected axial
load and moment gradient along the member.

Distributed plasticity beam–column elements are based on the
displacement- or force-based formulation, both of which allow
plastic hinges to form at any location and account for axial-
moment interaction by integrating the force-deformation response
at sections along the element length. The behavior at a section is
described by a fiber model or a stress resultant plasticity model
�El-Tawil and Deierlein 1998�. The number of sections and
their location is determined by the numerical quadrature rule,
such as those based on Gauss quadrature, used to integrate the
element force-deformation relationship. Displacement-based
beam–column elements follow the standard finite element ap-
proach, in which the element displacement field is expressed as a
function of the nodal displacements �Hughes 1987; Zienkiewicz
and Taylor 2000�. The displacement field is approximate, thus
several displacement-based elements are required along the length
of a frame member to represent the deformations in a plastic
hinge region. In contrast, force-based beam–column elements in-
terpolate the section forces in terms of the basic forces, satisfying
equilibrium even in the range of nonlinear material response
�Spacone et al. 1996�. The advantages of force-based beam–
column elements over displacement-based elements have been
discussed by Neuenhofer and Filippou �1997�. The primary
advantage is the ability to use one force-based element to simu-
late the material nonlinear response of a frame member, compared
with several displacement-based elements, thereby keeping
the number of degrees of freedom in the structural model to a
minimum.

The strain-softening behavior of concrete can cause localiza-
tion in beam–column elements, particularly in the simulation of
reinforced concrete columns that carry high gravity loads. Local-

ized response in reinforced concrete members modeled by
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continuum finite elements was investigated by de Borst et al.
�1994� and Bazant and Planas �1998�. Consistent with their find-
ings in the continuum context, the displacement-based approach
causes localization of response over a single displacement-based
beam–column element. The length of the element undergoing
softening response controls the structural response, thus leading
to nonobjectivity because the structural response depends on the
choice of the characteristic length in the finite element discretiza-
tion. In contrast, with force-based beam–column elements defor-
mations localize at a single integration point rather than across an
entire element, making the characteristic length equal to the inte-
gration weight associated with the section undergoing strain soft-
ening. This leads to a loss of objectivity because the response
changes as a function of the number of element integration points
rather than as a function of the element length. To address local-
ization in force-based elements, Coleman and Spacone �2001�
developed a constant fracture energy regularization technique to
maintain objective response for strain-softening behavior as the
number of integration points changes. This regularization method,
however, requires a modification of the stress–strain properties in
the element based on the number of integration points.

To address this problem, this paper presents a new element
integration method that confines nonlinear constitutive behavior
to plastic hinge regions of a specified length while maintaining
numerical accuracy and objectivity. The force-based formulation
is ideal for this approach because the deformations in the plastic
hinge regions are computed such that the corresponding section
forces are in equilibrium with the element end forces. The paper
begins with the force-based beam–column element using the stan-
dard Gauss–Lobatto integration rule for distributed plasticity.
Then, the concept of plastic hinge integration is presented. Three
plastic hinge integration methods are investigated to arrive at a
new, optimal approach based on Gauss–Radau quadrature. This
paper concludes with numerical examples that demonstrate the
differences between the plastic hinge integration methods and
show how the inclusion of a plastic hinge length in the element
integration rule enables objective response for the beam–column
sections, element, and ultimately the structure.

Force-Based Element Formulation

Force-based beam-column elements �Spacone et al. 1996� are for-
mulated in a basic system without rigid-body displacement
modes. The element deformations, in the vector v, are assumed
small compared to the element length. There are three element
deformations for two-dimensional elements, as shown in Fig. 1

Fig. 1. Simply supported basic system for two-dimensional
beam–column elements and cross section of element
for a simply supported basic system, and six for three-
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dimensional elements. The vector of forces in the basic system,
q=q�v�, is a function of the element deformations. The section
behavior is expressed in terms of the section deformations, e, and
the corresponding section forces, s=s�e�. The element kinematic
relationship is assumed linear in this paper, but it can be extended
to large displacements.

Equilibrium between the basic and section forces is expressed
in strong form as

s = bq �1�

where the matrix b contains interpolation functions relating sec-
tion forces to basic forces from equilibrium of the basic system.
The axial force and bending moment at location x along the ele-
ment for a two-dimensional simply supported basic system is
given by the following equilibrium interpolation matrix:

b = �1 0 0

0 x/L − 1 x/L
� �2�

Eqs. �1� and �2� can be extended to include member loads and
section shear. From the principle of virtual forces, the compatibil-
ity relationship between the section and element deformations is

v =�
0

L

bTe dx �3�

The linearization of Eq. �3� with respect to the basic forces gives
the element flexibility matrix

f =
�v

�q
=�

0

L

bTfsb dx �4�

The section stiffness matrix is ks=�s /�e, and its inverse gives the
section flexibility matrix, fs=ks

−1. The element stiffness matrix, k,
in the basic system is the inverse of the element flexibility matrix,
k= f−1, as given in Eq. �4�. Details of the implementation of the
force-based beam–column element for use in a general finite ele-
ment analysis framework using the direct stiffness method are
given by Neuenhofer and Filippou �1997�.

The compatibility relationship in Eq. �3� is evaluated by nu-
merical quadrature

v = �
i=1

Np

�bTe�x=�i
��i �5�

where � and ��locations and associated weights, respectively, of
the Np integration points over the element length �0,L�. In a simi-
lar manner, the element flexibility matrix in Eq. �4� is evaluated
numerically

f = �
i=1

Np

�bTfsb�x=�i
��i �6�

Gauss–Lobatto quadrature is used in force-based elements be-
cause it places integration points at the element ends, where the
bending moments are largest in the absence of member loads. A
graphical representation of the four-point �Np=4� Gauss–Lobatto
quadrature rule applied to Eq. �5� is shown in Fig. 2, where the
integrand, bTe, is evaluated at the ith location �i and treated as
constant over the length �i. The highest order polynomial inte-
grated exactly by the Gauss–Lobatto quadrature rule is 2Np-3,
which is two orders lower than Gauss–Legendre quadrature
�Hildebrand 1974�. For a linear-elastic, prismatic beam–column
element without member loads, quadratic polynomials appear in

the integrand of Eq. �3� due to the product of the linear curvature
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distribution in the vector e with the linear interpolation functions
for the bending moment in the matrix b. Therefore, at least three
Gauss–Lobatto integration points are required to represent exactly
a linear curvature distribution along the element. To represent
accurately the nonlinear material response of a force-based beam–
column element, four to six Gauss–Lobatto integration points are
typically used �Neuenhofer and Filippou 1997�.

Loss of Objectivity in Force-Based Beam–Column
Elements

The primary advantage of the Gauss–Lobatto integration rule is it
permits the spread of plasticity along the element length. For
hardening section behavior, the computed element response will
converge to a unique solution as the number of integration points
increases. On the other hand, for softening section behavior where
deformations localize at a single integration point, a unique solu-
tion does not exist and the computed response depends on the
characteristic length implied by the integration weights of the
Gauss–Lobatto quadrature rule. This leads to a loss of objectivity,
where the element response will change as a function of Np.

To address the loss of objectivity in force-based beam–column
elements, Coleman and Spacone �2001� developed a regulariza-
tion technique that modifies the material stress–strain behavior to
maintain a constant energy release after strain-softening initiates.
Coleman and Spacone applied this method to the Kent–Park con-
crete model �Kent and Park 1971� shown in Fig. 3, where the
shaded area is equal to the energy released after the onset of strain
softening

Fig. 2. Application of four-point Gauss–Lobatto quadrature rule to
evaluate force-based element compatibility relationship

Fig. 3. Kent–Park concrete stress–strain model with fracture energy
in compression as shaded area
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Gf
c

lp
= 0.6fc���20 − �c +

0.8fc�

Ec
	 �7�

The parameters for the Kent–Park concrete model are
fc��concrete compressive strength; �c�peak compressive strain;
Ec�elastic modulus; and �20�strain corresponding to 20% of the
compressive strength. The parameter Gf

c�concrete fracture
energy in compression, and lp�plastic hinge length, which acts as
the characteristic length for the purpose of providing objective
response.

As discussed in the previous section, the plastic hinge length
in the model is directly related to the element integration rule for
force-based elements. For the lp implied by the number of Gauss–
Lobatto integration points, �20 must be modified according to
Eq. �7� in order to maintain a constant energy release

�20 =
Gf

c

0.6fc�lp

−
0.8fc�

Ec
+ �c �8�

Although this approach maintains objective response at the global
level, it affects the local section response through an unnatural
coupling of the concrete material properties to the element inte-
gration rule. A second regularization is required to correct for the
loss of objectivity in the section response that results from this
approach �Coleman and Spacone 2001�.

For the plastic hinge integration methods presented in this
paper, lp is specified as part of the element integration rule and it
becomes a free parameter. Therefore, it is possible to determine a
plastic hinge length that will maintain a constant energy release
without modification to the concrete stress-strain relationship, al-
leviating the need for a subsequent regularization of the section
response. For example, using the approach of Coleman and
Spacone, the plastic hinge length can be determined from the
concrete properties using Eq. �7�

lp =
Gf

c

0.6fc���20 − �c + 0.8fc�/Ec�
�9�

The introduction of a plastic hinge length, such as that computed
by Eq. �9�, to the element integration rule maintains the logical
separation of the material properties from the element integration
rule.

Alternatively, the plastic hinge length can be specified using
an empirically validated relationship, such as the Paulay and
Priestley �1992� equation for reinforced concrete members

lp = 0.08L + 0.022fydb �kN, mm� �10�

where L�length of the member; and fy and db�yield strength and
diameter, respectively, of the longitudinal reinforcing bars. The
advantage of this approach is that the plastic hinge length in-
cludes the effect of strain softening and localization as determined
by experiments.

Plastic Hinge Integration Methods

The specification of a plastic hinge length in the element integra-
tion rule, whether computed by Eqs. �9�, �10�, or other means, is
investigated in this section to achieve objectivity for softening
response. The plastic hinge integration methods presented herein
are based on the assumption that nonlinear constitutive behavior
is confined to regions of length lpI and lpJ at the element ends. As
such, the elements are useful for columns or beams that carry

small member loads. To represent plastic hinges in force-based
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beam–column elements, the compatibility relationship in Eq. �3�
is separated into three integrals, one for each hinge region and
one for the interior region of the element

v =�
0

lpI

bTe dx +�
lpI

L−lpJ

bTe dx +�
L−lpJ

L

bTe dx �11�

The section deformations are integrated numerically over the
plastic hinge regions, whereas the contribution of the element
interior is assumed to be linear elastic and evaluated by the flex-
ibility of the interior region

v = �
i=1

Np

�bTe�x=�i
��i + fint

e q �12�

where � and ��locations and associated weights, respectively, of
the Np integration points in the plastic hinge regions. The flexibil-
ity matrix of the element interior region, fint

e , is evaluated by the
closed-form integral

fint
e =�

lpI

L−lpJ

bTfs
eb dx �13�

The matrix fs
e contains the elastic flexibility coefficients at a cross

section of the interior

fs
e = 


1

EA
0

0
1

EI
� �14�

with the elastic modulus E, the cross-sectional area A, and the
second moment of the cross-sectional area I. Eq. �14� assumes
the coordinate axis is located at the centroid of the section. The
linearization of Eq. �12� with respect to the basic forces gives
the element flexibility as the sum of numerical integration over
the plastic hinge regions and the flexibility of the element interior

f = �
i=1

Np

�bTfsb�x=�i
��i + fint

e �15�

As a limiting case, the numerical integration for distributed plas-
ticity in Eqs. �5� and �6� is recovered from Eqs. �12� and �15�
when the sum of the plastic hinge lengths is equal to the element
length, lpI+ lpJ=L. In this case, the matrix fint

e is zero.
To represent strain softening in the plastic hinge regions of the

element, it is desirable to use a plastic hinge integration rule for
Eqs. �12� and �15� that satisfies the following criteria:
1. Sample section forces at the element ends where the bending

moments are largest in the absence of member loads;
2. Integrate quadratic polynomials exactly to provide the exact

solution for linear curvature distributions; and
3. Integrate deformations over the specified lengths lpI and lpJ

using a single section in each plastic hinge region.
The Gauss–Lobatto integration rule for distributed plasticity sat-
isfies criteria �1� and �2�, but it does not satisfy �3� because the
plastic hinge lengths are implied by the number of integration
points, Np. Note that if an integration rule satisfies the three cri-
teria, strain hardening can be represented, but it does not spread
past the specified plastic hinge lengths. In the following subsec-
tions, three plastic hinge integration methods are investigated to
arrive at a fourth method that meets the three criteria for strain-

softening response.
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Midpoint Integration

The most accurate one-point integration method is the midpoint
rule, for which the integration points are located at the center of
each plastic hinge region, �= �lpI /2 ,L− lpJ /2, and the weights are
equal to the plastic hinge lengths, �= �lpI , lpJ. The midpoint rule
is illustrated in Fig. 4�a�. A major drawback to the midpoint rule
is the integration points are not located at the element ends where
the maximum bending moments occur in the absence of member
loads. As a result, the element will exhibit a larger flexural capac-
ity than expected, which in fact will be a function of the plastic
hinge lengths. Furthermore, the midpoint rule gives the exact in-
tegration of only linear functions, thus there is an error in the
integration of quadratic polynomials. In summary, the midpoint
plastic hinge integration method satisfies criterion �3�, but not �1�
or �2�.

Endpoint Integration

The integration points can be located at the element ends,
�= �0,L, while the integration weights remain equal to the plastic
hinge lengths, �= �lpI , lpJ, as shown in Fig. 4�b�. However, an
order of accuracy is lost with this endpoint integration approach,
because it is only capable of the exact integration of constant
functions, which produces a significant error in the representation
of linear curvature distributions. Therefore, the endpoint plastic
hinge integration method meets criteria �1� and �3�, but it fails �2�.

Two-Point Gauss–Radau Integration

From the previous two methods, it is not possible to perform
one-point integration for each plastic hinge region and satisfy the
three criteria. As a result, it is necessary to investigate two-point
integration methods. Two-point Gauss–Legendre integration over
each plastic hinge region gives the desired level of element inte-
gration accuracy; however, there are no integration points at the
element ends. Two-point Gauss–Lobatto integration over the
hinge regions places integration points at the element ends, but is
not exact for the case of a linear curvature distribution.

An alternative two-point integration rule is based on Gauss–
Radau quadrature �Hildebrand 1974�. It is similar to Gauss–
Lobatto, but it has an integration point at only one end of an
interval rather than at both ends. This gives Gauss–Radau quadra-

Fig. 4. Midpoint and endpoint plastic hinge integration methods
ture an accuracy of 2Np−2, one order higher than that for Gauss–
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Lobatto. As a result, two Gauss–Radau integration points in each
plastic hinge region gives the exact integration for an element
with a linear curvature distribution.

On the interval �0,1�, the two-point Gauss–Radau integration
rule has integration points at �0,2 /3� with corresponding integra-
tion weights �1/4 ,3 /4. The mapping of this integration rule to
the plastic hinge regions at the element ends gives four integra-
tion points, �= �0,2lpI /3 ,L−2lpJ /3 ,L, along with their respective
weights, �= �lpI /4 ,3lpI /4 ,3lpJ /4 , lpJ /4, as shown in Fig. 5�a�.

There are two properties to note regarding the two-point
Gauss–Radau integration rule. First, when the sum of the plastic
hinge lengths is equal to the element length �lpI+ lpJ=L� this in-
tegration rule becomes a four-point distributed plasticity method
with integration points at the element ends. Second, Simpson’s
3 /8 integration rule �Stoer and Bulirsch 1993� is recovered when
lpI= lpJ=L /2, increasing the accuracy by one order to the exact
integration of cubic polynomials.

This integration method satisfies criteria �1� and �2�. Criterion
�3�, however, is not satisfied, because strain softening will result
in localization within the plastic hinge region. The characteristic
length over which the localized deformations are integrated will
be equal to the integration weight, lp /4, assigned to the integra-
tion point at the element end rather than the plastic hinge length,
lp. This reduction in the characteristic length will cause the
element to unload at a faster rate than expected to maintain
equilibrium.

Modification of Two-Point Gauss–Radau Integration

To ensure localized deformations are integrated over the specified
plastic hinge lengths, it is desirable to make the integration
weights at the element ends equal to lpI and lpJ rather than lpI /4
and lpJ /4. To this end, the two-point Gauss–Radau integration
rule is applied over lengths of 4lpI and 4lpJ at the element ends, as
shown in Fig. 5�b�, thus giving the integration point locations and
weights

� = �0,8lpI/3,L − 8lpJ/3,L

� = �lpI,3lpI,3lpJ,lpJ �16�

To confine nonlinear constitutive behavior to only the integration
points at the element ends, the section response at the two interior
integration points is assumed linear elastic, with the same prop-

Fig. 5. Two-point Gauss–Radau and modified Gauss–Radau plastic
hinge integration methods
erties as those defined in Eq. �14� for the element interior. As a
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result, the lower and upper limits of integration in Eq. �13� be-
come 4lpI and L−4lpJ, respectively, and the elastic flexibility of
the element interior is then the sum of three parts

fint
e = �bTfs

eb�x=8/3lpI
�3lpI +�

4lpI

L−4lpJ

bTfs
eb dx + �bTfs

eb�x=L−8/3lpJ
�3lpJ

�17�

With this modification of Gauss–Radau, plasticity is confined to a
single integration point at each end of the element. The represen-
tation of linear curvature distributions is exact, including the case
where 4lpI+4lpJ�L, because a definite integral is additive over its
limits of integration. Furthermore, the characteristic length will be
equal to the specified plastic hinge length when deformations lo-
calize due to strain-softening behavior in the hinge regions. Thus,
all three criteria, �1�, �2�, and �3�, are met by the present modifi-
cation of the two-point Gauss–Radau plastic hinge integration
method for force-based beam–column elements.

Computation of Plastic Rotations

The plastic rotations of a beam–column are an important demand
parameter in assessing the response and damage of a structure to
earthquakes or other loads causing the formation of plastic
hinges. Emerging performance-based earthquake engineering
specifications limit plastic rotation depending on the type of
member and desired performance state �FEMA 2000�. Therefore,
it is essential that plastic rotations of a beam–column element be
computed in a consistent manner. The force-based formulation is
ideal for the computation of plastic rotations because the compat-
ibility relationship in Eq. �12� is a summation of contributions
from the plastic hinges and the elastic deformations of the ele-
ment interior. This is in contrast with the displacement-based for-
mulation, where the plastic rotations are dictated by the boundary
values of the assumed transverse displacement field. Furthermore,
since several displacement-based elements are required for a
single member, it is very difficult to compute the plastic rotation,
which is a response quantity for the member.

To compute the plastic rotations, the element deformation vec-
tor is decomposed into elastic and plastic components, v=ve+vp.
The plastic component is thus the difference between the total
deformation of the member and the elastic component,

vp = v − feq �18�

in which the elastic component, ve= feq, is defined as the unload-
ing of the element with the initial stiffness matrix, ke= �fe�−1. This
definition of plastic rotation, illustrated in Fig. 6, is consistent
with the splitting of elastic and plastic strain in continuum me-
chanics �Simo and Hughes 1998�. The matrix fe is computed as
the sum of the elastic contributions from the element interior and
the hinge regions, fe= fint

e + fhinge
e . After substitution of Eq. �12� into

Eq. �18�, the plastic component of deformation �rotations and
axial deformation� for a force-based beam–column element is

vp = �
i=1

Np

�bTe�x=�i
��i − �fe − fint

e �q �19�

Eq. �19� applies to the plastic hinge integration methods presented
in this paper, as well as to distributed plasticity integration by the
Gauss–Lobatto rule, in which case the matrix fint

e is zero. Alterna-
tive definitions of the plastic deformations are possible, such as

the case where the element unloads from its current state, incor-
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porating degradation of the initial stiffness matrix. However, the
implementation of alternative definitions of the unloading stiff-
ness is more difficult.

For the modified Gauss–Radau plastic hinge integration
method defined in the previous section, Eq. �19� sheds light on the
relationship between plastic rotations and the plastic hinge
lengths lpI and lpJ. The extraction of the elastic flexibility in the
hinge regions, fhinge

e , from Eq. �19� leads to the following expres-
sion for plastic deformations of the element:

vp = �
i=1

Np

�bTep�x=�i
��i − �fe − fint

e − fhinge
e �q �20�

in which ep�vector of plastic section deformations obtained from
decomposition of the section deformations into elastic and plastic
components, e=ee+ep. The sum of the elastic flexibility matrices
that multiply q in Eq. �20� is equal to zero, giving a simple rela-
tionship for the plastic element deformations in terms of the plas-
tic section deformations

vp = �
i=1

Np

�bTep�x=�i
��i �21�

In the modified Gauss–Radau plastic hinge integration method,
plasticity is confined to the sections at the ends of the element
�x=0,L�, while there are no plastic deformations for the elastic
interior sections �x=8/3lpI ,L−8/3lpJ�. As a result, the plastic de-
formations for the element reduce to

vp = �bTep�x=0�lpI + �bTep�x=L�lpJ �22�

At the ends of the element, the flexural terms of the force inter-
polation matrix defined in Eq. �2� are either 0 or ±1. Therefore,
the plastic rotations are the product of the plastic curvature, �p,
and the associated plastic hinge length at each end of the element

��I
p

�J
p � = �− �p�x=0lpI

�p�x=LlpJ
� �23�

Eq. �23� demonstrates that the plastic curvatures can be obtained
through a scaling of the plastic rotations computed with the modi-
fied Gauss–Radau plastic hinge integration method. This simple
relationship between plastic rotation for the element and the plas-

Fig. 6. Plastic deformations in beam–column element defined by
unloading element with elastic stiffness matrix
tic curvature is a major advantage of the new integration method.
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Numerical Examples

The plastic hinge integration methods and plastic rotation compu-
tation for the force-based beam–column element formulation have
been implemented in the OpenSees software framework system
�McKenna et al. 2000�. The numerical properties of the four plas-
tic hinge integration methods for both hardening and softening
flexural behavior in the hinge regions are investigated in the first
example. The second example examines objectivity in the strain-
softening response of a reinforced concrete bridge pier.

Comparison of Plastic Hinge Integration Methods

The moment-rotation response of the simply supported beam
under antisymmetric bending shown in Fig. 7 demonstrates the
differences in the four plastic hinge integration methods presented
in this paper. A bilinear moment-curvature relationship describes
the flexural behavior in the plastic hinge regions, where the elastic
stiffness is EI, the yield moment is My, and strain hardening or
softening is represented by the modulus �EI. The plastic hinge
lengths lpI and lpJ are each set to 0.15L because a long plastic
hinge length will highlight the differences between the integration
methods.

The computed moment-rotation response of the beam using a
single force-based element with the four plastic hinge integration
methods is shown in Fig. 8�a� and compared with the closed-form
solution for hardening flexural behavior with �=0.03 in the hinge
regions. The yield moment computed with the midpoint integra-
tion method is greater than My because the bending moment is
sampled at the center of the plastic hinge regions. As the rotation
increases, the midpoint integration approaches the closed-form
solution, showing the accuracy of the midpoint rule. The yield
moment for the endpoint integration method is correct, but the
elastic response is too flexible because of the large integration
error. For the two-point Gauss–Radau integration method, the
yield moment and elastic solution are exact. Of the four methods,
it matches the closed-form solution the best because the harden-
ing spreads across two integration points in the plastic hinge re-
gions. For the modified Gauss–Radau method, the elastic solution
and yield moment are exact. As seen in Fig. 8�a�, however, the
postyield response does not match the closed-form solution for
hardening behavior because plasticity is confined to a single in-
tegration point at each end of the element.

The single integration point in each plastic hinge region with
the modified Gauss–Radau method is beneficial for the case
where deformations localize due to softening flexural behavior.
The moment-rotation response for the beam with softening be-
havior ��=−0.03� is shown in Fig. 8�b�. When yielding occurs at
the element ends, the flexural deformations localize at a single

Fig. 7. Simply supported beam under state of antisymmetric bending
with bilinear moment-curvature behavior in plastic hinge regions
integration point, and the interior of the beam must unload to
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satisfy equilibrium. There is no unique solution for softening sec-
tion behavior because the postyield response depends on the char-
acteristic length over which the localized deformations are inte-
grated. The postyield response is the same for the endpoint and
the modified Gauss–Radau methods because in both cases the
localized deformations occur at the element ends and are inte-
grated over the characteristic length lp. For the original two-point
Gauss–Radau method the localized flexural deformations are in-
tegrated over a length of lp /4, which is the integration weight at
the element ends. This reduction in the characteristic length
causes the beam to unload at a rate four times greater than that for
the endpoint and modified Gauss–Radau integration methods.

Reinforced Concrete Bridge Pier

A reinforced concrete bridge pier, specimen 7 in the tests of
Tanaka and Park �1990�, is used in this example. The geometry
and reinforcement details of the cantilever are shown in Fig. 9.
The computed monotonic load-displacement response using one
force-based element with Gauss–Lobatto integration and the new
modified Gauss–Radau plastic hinge integration is compared with
the envelope of the cyclic response from the experiment.

Fig. 8. Beam moment-rotation response resulting from plastic hinge
integration for: �a� hardening flexural behavior and �b� softening
flexural behavior

Fig. 9. Reinforced concrete bridge pier configuration and
reinforcement details
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The compressive strength of the concrete is fc�=32 MPa. Due
to the confining effects of the transverse reinforcement �Mander
et al. 1988�, the concrete properties in the core region are
fcc� =39 MPa and �cc=0.0052. In addition, �20=0.0248 and
Gf

c=180 N/mm. The axial load applied to the pier is held con-
stant at 30% of the gross section capacity. A bilinear stress–strain
relationship is assumed for the reinforcing steel with elastic
modulus, E=200,000 MPa, yield stress, fy =510 MPa, and a 1%
strain-hardening ratio. A fiber discretization of the pier cross sec-
tion accounts for the concrete and steel stress–strain relationships
and axial-moment interaction.

The computed response is shown in Fig. 10 for four, five, and
six Gauss–Lobatto integration points with the nominal concrete
properties. As seen in the figure, this is a poor approach to repre-
sent the envelope of the experimental response due to the rapid
loss in postyield strength. In addition, the computed response is
not objective because the rate of unloading varies greatly as the
number of integration points increases.

Fig. 10. Computed load-displacement response for reinforced
concrete bridge pier with Gauss–Lobatto integration and nominal
concrete properties

Fig. 11. Computed response for reinforced concrete bridge pier
with Gauss–Lobatto integration: �a� objective results for global
load-displacement response with modified concrete properties;
�b� nonobjective results for moment-curvature response at base of
bridge pier
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To establish objectivity in the computed response, the concrete
stress–strain parameter, �20, is modified according to Eq. �8� to
maintain a constant energy release as the number of Gauss–
Lobatto integration points changes �Coleman and Spacone 2001�.
For Np=4, 5, and 6, the values of �20 are 0.0573, 0.0946, and
0.1410, respectively. As seen in Fig. 11�a�, the computed response
matches the cyclic envelope of the experiment very well. The
drawback to this approach, however, is the loss of objectivity in
the moment-curvature response at the base of the bridge pier, as
confirmed in Fig. 11�b�. This loss of objectivity results from the
modification of the concrete material properties to increase the
curvature capacity of the section for the purpose of regularizing
the element response. Coleman and Spacone proposed an addi-
tional correction procedure to reestablish objectivity of the sec-
tion response under this approach.

To address this inconsistency of Gauss–Lobatto integration,
the modified Gauss–Radau integration method is used with a pre-
scribed plastic hinge length for the bridge pier and the nominal
concrete properties. Two approaches to determine lp are demon-
strated. First, lp is computed as 0.216L �=356 mm� from the em-
pirical expression of Paulay and Priestley in Eq. �10�. In the sec-
ond case, lp is estimated by Eq. �9� to be 0.226L�=373 mm� for
the condition of constant energy release in the confined concrete.
The pier response for the modified Gauss–Radau integration
method with these plastic hinge lengths is shown in Fig. 12�a�,
where the computed response accurately represents the cyclic en-
velope of the experiment.

The moment-curvature response at the base of the pier is
shown in Fig. 12�b�, where objectivity is maintained for the modi-
fied Gauss–Radau plastic hinge integration, in contrast to the non-
objective section response for the regularized Gauss–Lobatto in-
tegration. Thus, by incorporating a plastic hinge length, the new
integration method ensures objective element response without

Fig. 12. �a� Global load-displacement response and �b� local
moment-curvature response for reinforced concrete bridge pier with:
�i� modified Gauss–Radau plastic hinge integration with lp computed
by Eq. �10�; �ii� modified Gauss–Radau plastic hinge integration with
lp computed by Eq. �9�; and �iii� four-point Gauss–Lobatto
integration with modified concrete properties
compromising the section response. The plastic rotation of the
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bridge pier, computed by Eq. �18�, is shown in Fig. 13. When the
lateral load capacity of the bridge pier decreases by 20% due to
strain softening in the concrete, the plastic rotation is �p=0.04.

Conclusions

A new plastic hinge integration method based on modified Gauss–
Radau quadrature has been developed to overcome the difficulties
that arise with Gauss–Lobatto integration for strain-softening
behavior in force-based beam–column finite elements. The
integration method confines material nonlinearity to the element
ends over specified plastic hinge lengths, maintains the correct
numerical solution for linear curvature distributions, and ensures
objective response at the section, element, and structural levels.
Plastic rotations are directly related to plastic curvature through
the specified plastic hinge lengths. The examples show the modi-
fied Gauss–Radau plastic hinge integration method to be a
straightforward means of incorporating a physically meaningful
plastic hinge length in simulating the strain-softening response of
frame structures using force-based beam–column elements. Al-
though results are shown for a pushover analysis, the new plastic
hinge integration method can be used for arbitrary loading of an
element, including cyclic loads. With the force-based beam–
column formulation, it is not possible for a single element inte-
gration method to represent both the spread of plasticity under
hardening and have objective member and section response under
softening. The force-based beam–column element with the new
plastic hinge integration method is thus recommended for the
nonlinear analysis of frame structures when softening and degra-
dation of the members is expected.
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Notation

The following symbols are used in this paper:
b � section force interpolation matrix;

Fig. 13. Plastic rotation at base of reinforced concrete bridge pier
with: �i� modified Gauss–Radau plastic hinge integration with lp

computed by Eq. �10�; �ii� modified Gauss–Radau plastic hinge
integration with lp computed by Eq. �9�; and �iii� four-point Gauss–
Lobatto integration with modified concrete properties
e � section deformation vector;
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f � element flexibility matrix;
fe � elastic element flexibility matrix;

fint
e � elastic flexibility matrix of element interior;
fs � section flexibility matrix;
fs

e � elastic section flexibility matrix of element interior;
k � element stiffness matrix in basic system;

ke � elastic element stiffness matrix in basic system;
ks � section stiffness matrix;
lp � plastic hinge length;

Np � number of element integration points;
q � element basic force vector;
s � section force vector;
v � element deformation vector;
� � integration point location; and
� � integration point weight.
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