
Plastic Trees: Interactive Self-Adapting Botanical Tree Models

Sören Pirk1 Ondrej Stava2 Julian Kratt1 Michel Abdul Massih Said2 Boris Neubert1

Radomír Měch3 Bedrich Benes2 Oliver Deussen1

1University of Konstanz, Germany, 2Purdue University, USA, 3Adobe Systems Inc., USA

(a) (b) (c) (d) (e)

Figure 1: A 3D model of a tree is imported (a). Our system automatically computes a dynamic model that is able to react interactively to
environmental changes such as trees growing together (b) or when obstacles are moved towards the tree and cast shadow on it (c)-(e).

Abstract

We present a dynamic tree modeling and representation technique
that allows complex tree models to interact with their environment.
Our method uses changes in the light distribution and proximity
to solid obstacles and other trees as approximations of biologically
motivated transformations on a skeletal representation of the tree’s
main branches and its procedurally generated foliage. Parts of the
tree are transformed only when required, thus our approach is much
faster than common algorithms such as Open L-Systems or space
colonization methods. Input is a skeleton-based tree geometry that
can be computed from common tree production systems or from
reconstructed laser scanning models. Our approach enables content
creators to directly interact with trees and to create visually con-
vincing ecosystems interactively. We present different interaction
types and evaluate our method by comparing our transformations
to biologically based growth simulation techniques.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction Techniques I.6.8 [Simulation
and Modeling]: Types of Simulation—Visual

Keywords: Generative Tree Modeling, Interactive Procedural
Modeling, Visual Models of Trees

1 Introduction

Botanical tree models are used in a many application areas, includ-
ing architecture, urban modeling, gaming, and movies. However,
modeling the variety of tree shapes is a challenging problem be-
cause trees react to the surrounding environment in complex ways.
Their shape is determined by their endogenous information (indi-
vidual plants’ genetics) and by exogenous influences (its environ-
ment). The same tree species that has a well-developed crown when
grown in an open space might have a longer trunk and only a small
tree crown when standing in a forest. The variety of plant shapes
can be captured by growth models, but the growth simulation is
time intensive and models require typically a large set of input pa-
rameters, which makes such approaches unsuitable for interactive
design. Many different procedural tree modeling techniques have
been published, but most of the resulting models are still static. If
trees have to be combined, or if the environment changes, models
have to be adapted manually or the procedural creation has to be
rerun.

We present a dynamic modeling and representation technique for
trees that aims at incorporating aspects of the trees genotype into
our models to allow them to react to the environment. In the
past this was only possible using growth models such as Open L-
systems [Měch and Prusinkiewicz 1996] or space colonization al-
gorithms [Palubicki et al. 2009] that regrow the entire model and
thus exhibit prohibitively long computing times. In contrast, we
use a technique that approximates biologically motivated transfor-
mations and also allows computing dynamic behavior efficiently,
users can interact even with dozens of complex models in a scene.
Our method works with various kinds of input models that are rep-
resented as polygonal surfaces, only we assume that the models
correspond to trees that were designed without the influence of
other trees or obstacles. We have successfully applied our approach
to models generated by Open L-systems [Měch and Prusinkiewicz
1996], to manually designed models from Xfrog [Lintermann and
Deussen 1999], and with laser-scanned and reconstructed models.

The given models are analyzed, a skeletal graph is constructed,
and a set of transformations is defined to modify the structure of
this graph when the environment changes. Similar to Livny et
al. [2011], we represent the foliage with a number of leaf clusters
that are distributed in the tree crown. Tiny twigs and leaves inside

http://nbn-resolving.de/urn:nbn:de:bsz:352-215002
http://dl.acm.org/citation.cfm?id=J778

these clusters are created procedurally using a GPU, allowing us
to produce the necessary geometry very efficiently. Inspired by real
trees, the change in light distribution is the most important factor for
influencing our models. The illumination of different parts of the
tree is determined and then used to modify their geometric structure
and the procedural content of the leaf clusters.

The proposed method can be used to interactively model ecosys-
tems consisting of up to some dozens of different trees. An example
is shown in Figure 1. It has been procedurally created and then im-
ported into our system. The automatic adaptation of our tree mod-
els to changing environmental factors releases the modeler from
dealing with tree parameters and allows them to construct complex
scenes very quickly. Because most of the geometry of our models
can be created on the fly using graphics hardware, the models can
also be used in real-time scenarios such as games or simulators.

2 Related Work

Early models of plants were based on procedural approaches that
replicated growth by repetitive application of a small set of rules
to an initial structure to yield very complex results. Originally,
the rules captured only the internal properties of the tree, such
as branching angles and internode lengths [Aono and Kunii 1984;
Honda 1971; Kawaguchi 1982; Oppenheimer 1986; Smith 1984].
Later, more geometrical aspects such as textures and detailed
branches were added [Bloomenthal 1985], and various biological
developmental models were introduced [de Reffye et al. 1988].
However, the shape of the trees in these approaches can be con-
trolled only indirectly by using the parameters of the procedural
models. Another class of methods includes user-assisted plant mod-
eling. One of the first of these approaches was the work of We-
ber and Penn [1995], who created convincing tree models using a
complex parametric model. [Boudon et al. 2003] introduce decom-
position graphs as multiscale representations of plant structures to
aid user control. Lintermann and Deussen [1999] developed the
Xfrog modeling technique, which combines rule-based and proce-
dural modeling and also allows for creating animated models. Here,
parametric keyframes of a model are determined–sets of parameters
for a specific time–and later interpolated to create growth anima-
tions of trees. However, it is not possible for models to dynamically
react to their environment.

Image-based techniques use sets of images to produce tree mod-
els. While Reche-Martinez et al. [2004] have to register their in-
put images carefully and reconstruct the 3D shape of the tree from
the photographs, the method of Neubert et al. [2007] works with
loosely arranged images. Here, the main branches are determined
by the user and the static model is constructed using a particle flow
system and some botanic heuristics. Ijiri et al. [2006] and Zakaria
and Shukri [2007] applied sketch-based methods to trees gener-
ated by procedural techniques, bridging the area of rule-based and
image-based techniques. Chen et al. [2008] used a set of biologi-
cally motivated branching rules to infer the 3D structure of the tree
model from a given 2D sketch (also [Okabe et al. 2006]). Deussen
and Lintermann [2005] give a general overview on the various tech-
niques.

It has been recognized that the environment plays an important role
in the development of a tree [Sachs and Novoplansky 1995]. Modi-
fication of the environment itself can be used as a way of controlling
the procedural model. Arvo and Kirk [1988], Greene [1989], and
later Benes and Millan [2002] simulated climbing plants that grow
on support structures and are influenced by the light density in sub-
volumes of the scene. Various methods for computing light within
trees have been proposed, such as the fast, but simplified, technique
proposed by Rudnick et al. [2007], where the light was estimated

from the crown shape, or a more advanced method based on radiant
energy transfer [Soler et al. 2003].

Hart et al. [2003] simulated the production of additional wood when
a tree receives mechanical stress to its parts. [Lam and King 2005]
go even further and propose a method that models tree growth based
on the interaction of the tree’s internal attributes also considering
water distribution and chemical flow. A GPU-oriented approach
for modeling trees under the influence of environment was intro-
duced in [Benes et al. 2009]; however, the expressive power of their
growth model was limited only to a few decideous tree species.

Probably the most developed formal systems for plant simulation
are Lindenmayer systems (L-systems). Originally developed as a
mathematical model for cell development [Lindenmayer 1968], L-
systems were extended by the ability to simulate branching struc-
tures in [Prusinkiewicz 1986], and were later extended in vari-
ous ways to enable animation of plant development [Prusinkiewicz
et al. 1993], interactive modeling [Power et al. 1999; Prusinkiewicz
et al. 2001], etc. One of the most important extensions, Open L-
systems [Měch and Prusinkiewicz 1996], account for environmen-
tal feedback between the plant and its environment making it possi-
ble to simulate the effects of competition for light. This competition
for resources was further developed using space colonization algo-
rithms [Runions et al. 2007] that controlled the growth mostly by
distributing resources in the environment. Recently, realistic rule-
based models of trees have been created by techniques in which the
competition for resources plays an important role [Palubicki et al.
2009; Hua and Kang 2011]. Still, most of these techniques rely
on growth models, which makes them impractical for interactive
design.

3 System Overview

The effect of the environment on the youngest parts of the tree is
usually not visible, as those parts have not had enough time to de-
velop. This motivated us to simulate the effect of the environment
mostly on the trunk and the main tree branches (the tree skeleton).
This approach is similar to the idea of Livny et al. [2011], who
separated the input tree model into a main branching skeleton that
is handled directly and a set of lobes that are filled with smaller
branches and twigs procedurally on the fly. In our approach, we
input a tree model that was created as if it was grown in an open
space and convert it into a graph-based representation and a set of
leaf clusters. In contrast to their work, we have a complete tree
model and can directly use small twigs as prototypes for the proce-
dural filling, and thus our approach is independent of a tree model
library with predefined content. This approximate representation is
the key for fast interaction with the environment and an efficient
rendering of tree models while maintaining their visual fidelity.

A tree shape is a result of the competition for resources, the most
important of which is light [Sachs and Novoplansky 1995]. If a tree
has been grown close to an obstacle, changes in the plant shape,
such as bending or shedding, can occur. These effects are simulated
by our dynamic models.

The two parts of our models react differently to environmental
changes. The main branching skeleton is bent and pruned ac-
cording to the light distribution. When the local light distribution
changes, the procedural content of the leaf clusters is modified.
Small branches and twigs bend towards the light and can be pruned
if the lobes interact with a solid obstacle. The shape of the lobes can
be deformed when the tree is bent, which also affects the procedural
content.

The remainder of the paper is organized as follows. In the next
section we describe the necessary prerequisites for our method

and the processing of the input models. Section 5 outlines our
transformation-based modeling and interaction as well as their ef-
ficient implementation. An evaluation of the method is given in
Section 6, where we show a number of results and compare them to
rule-based systems that allow for interaction with an environment.

4 Tree Analysis

The response of individual branches and the sensitivity of the given
input tree to changing environmental conditions is calculated from
the tree’s geometrical and topological information. Therefore, we
assume that it should have been grown in an isolated space with no
external obstacles. However, the shape of the input tree is affected
by self-shadowing even when external obstacles are not present.
To account for this effect, we first estimate the environmental con-
ditions that influenced the tree structure, and then we estimate its
intrinsic morphological properties. We use these properties to con-
struct a procedural model that defines the behavior of each branch.
This model is controllable by a set of environmental parameters and
thus is able to react dynamically to environmental changes.

To estimate morphological parameters of the tree branches, such as
their desired orientation or their response to insufficient amounts
of light, we first need to estimate the environmental conditions that
affected the structure of the input tree. As mentioned above, we
concentrate on the light distribution since this is the most impor-
tant factor for the tree growth. For our input models we assume
that the light distribution is affected only by the tree itself: leaves
and branches cast shadows that influence the growth of underlying
branches.

The shadows within a tree are changing during the tree growth be-
cause new branches and leaves are constantly created and old ones
die off. In order to estimate the growth parameters of the input tree,
we need to compute the temporal light conditions at different stages
of its growth. Such light conditions affect the local growth rates of
branches and thus can be revealed from them.

4.1 Computing the Branch Age

An estimate of the branch age can be determined if we know the
growth rates across the entire tree. The growth rate of an individual
branch is determined by how many internodes (segments without
buds) a given branch produces in one season. This growth rate can
vary across the tree, as it is influenced by the amount of resources
that a given branch receives during its growth. Therefore, to com-
pute an approximate of the branch age we need to estimate both the
internode length and the growth rate of individual branches of the
tree (cf. Figure 2a).

The length of an internode li is estimated from the distribution of
distances between nearest branching nodes. We use the mean in-
ternode length for our estimation which is then the most significant
peak point in the distribution that is found using mean-shift cluster-
ing. To estimate the growth rate νs of a given branch segment s, we
first compute a relative growth rate ν̂s as:

ν̂s =
ds,l

dr − ds,r
, (1)

where ds,l is the distance from a given segment to its furthest leaf
node, ds,r is the distance from the segment to the root of the tree,
and dr is the distance from the root of the tree to its furthest leaf
node. The computed value specifies how much slower a given
branch has to grow compared to the fastest growing branch in order
to ensure that all branches reach their leaf nodes at the same time.
The estimation of the relative growth rate loses its accuracy as we

move closer to the leaf nodes; therefore, we use the above estima-
tion only for segments whose distance to the leaf node is larger than
a threshold distance dt = 0.2dr . For the remaining branch seg-
ments, we copy the relative growth rate from their parent branches.

When the relative growth rate is estimated for all branches, we com-
pute the absolute growth rate νs = ν̂s/ν̂min, where ν̂min is the
minimum relative growth rate from all branch segments. The age
of each branch ts is then computed as

ts =
ls
li
νs + tsp , (2)

where ls is the length of the branch segment and tsp is the age of
its parent branch. The final estimated age of each branch segment
is then clamped to the nearest lower integer, which represents the
season in which a given branch segment was created.

(a) (b) (c)

Figure 2: Estimation of the light exposition during growth. a) De-
termination of branch age; b) input model with leaf clusters; c)
computed younger version with moved and partially removed leaf
cluster.

4.2 Temporal Light Conditions

Once the branch age is known, we can estimate the light conditions
for the different stages of the tree growth. It would be infeasible
to simulate the effect of each leaf individually; therefore, we ap-
proximate the leaf distribution by virtual leaf clusters. The initial
clusters are created from the lobes of the input tree. The clusters
cast shadows onto the rest of the tree using a simplified light model
that accounts for the typical incident light within a day as proposed
by Palubicki et al. [2009]. Although advanced illumination models
for plants exist [Soler et al. 2003], we use a simplified model suit-
able for fast calculation. To compute the light received at a given
point p, we integrate the incoming light from a hemisphere that
represents the sky:

i(p) = c

∫ 2π

0

∫ π

0

I(θ, φ)(1−O(p, θ, φ)) sin θ dθdφ, (3)

where I is the amount of light coming from a specific direction
(irradiance) and O is the visibility of the hemisphere from the
given point p that is determined by the combined translucency γ
of all obstacles that are in the given direction O(p, θ, φ) = 1 −∏

γ(p, θ, φ). Finally, c is a normalization constant that brings the
amount of incoming light into range [0, 1]. The same approach is
also used to compute the average light direction, where the inte-
grand in the above equation is multiplied by a unit vector defined
by (θ, φ).

In this work, we approximate the intensity of the light coming from
the sky by using I(θ, φ) = cos2(Δσ(θ, φ)), where Δσ is the an-
gular distance between a given direction (θ, φ) and the direction of
the brightest point on the sky.

The shadows are computed and integrated into the scene using
shadow volumes that are attached to each shadow caster. Shadow
volumes represent a volume where the influence of the shadow
caster is still significant, and they are used to quickly determine
which obstacles should be included in Eq. (3). Since we use only
simple geometric shapes for the obstacles, we are able to evalu-
ate the light model analytically; for more complex cases a numer-
ical solution might be employed such as one used in [Měch and
Prusinkiewicz 1996; Soler et al. 2003].

To determine the intensity of cast shadows, the translucency of the
leaf clusters γc is approximated from their radius rc as:

γc = γrc
c0 , (4)

where γc0 is the base unit translucency of a leaf cluster. We use
a rough species-independent approximation with γc0 = 0.5, while
knowing that different species differ in their translucency.

To compute the light conditions at earlier stages of the tree life, we
propagate the leaf clusters towards the root as illustrated in Fig-
ure 2b). At each iteration we decrease the active threshold age by
one, and we remove all nodes that are older than the threshold. The
leaf clusters that contained the removed nodes are then propagated
to the nodes that are now leaves. The center of each cluster cn is
determined by the centroid of the nodes assigned to it; the radius
of a new cluster rn is estimated from the properties of the set of
removed leaf clusters in child nodes Cp as:

rn = 3

√∑
i∈Cp

r3i
∏
i∈Cp

dn
di

, (5)

where ri is the radius of a single child cluster, di is the distance
from the root to the centroid of child leaf cluster i and dn from
the root to the new leaf cluster. The new leaf cluster has the com-
bined volume of all child leaf clusters scaled down by the relative
difference of their distances to the root of the tree.

4.3 Inverse Tropism

Once the environmental conditions at different stages of the tree’s
development are known, we can calculate the effects of the envi-
ronment on the shape of the input tree. The first effect we are
able to compute is the influence of tropisms on the tree growth.
A tropism is the tendency of the branches to grow towards or away
from some entity. In general the structure of the tree can be affected
by different tropisms where each tropism τ is defined by a vector
�t′τ = wτ�tτ , where �tτ is the unit direction of the tropism and wτ is
its strength.

In this work, we focus on phototropism and gravitropism. Pho-
totropism is the tendency of a given branch to grow towards the
light direction. We estimate the effects of phototropism for each
branch at the time the branch was growing using our temporal
light model described above. Gravitropism controls bending of the
branches either away from or towards gravity. While we compute
the strength of the tropisms directly from the input tree, we later
expose it as a parameter that the user can modify to control the
transformation behavior of the trees.

A tropism that acts on a branch segment (growing in normalized di-

rection �do) bends the branch into a new direction �h, which is com-
puted as:

�h = ws
�do + (1− ws)

∑
wτ�tτ∑
wτ

= ws
�do + (1− ws)�t, (6)

where �t is a linear combination of all tropisms, wτ are the weights
with

∑
wτ < 1 and ws is the weight of the original direction of

the branch segment with length ls. This weight can be determined
by:

ws = (1−
∑

wτ)
ls
li , (7)

where the exponent represents the accumulated effect of tropisms
over the length of the branch segment, normalized by the internode
length li.

Figure 3: Computing the inverse tropism. For a description of the
vectors please refer to the text.

In order to compute the effects of tropisms on the input tree when its
environment is changed, we first need to find the effects of tropisms
on the structure of the tree at the time when it was created. We refer
to this problem as computing the inverse tropism since our inputs
are branches that have been already bent, and we try to find out
what branches would look like if effects of tropisms were removed.

Computing the inverse tropism means solving Eq. (6) for �do with

known �h, defined by the orientation of the branches in the input

trees. The actual length of �h in Eq. (6) can vary because it is com-
puted from a linear combination of different vectors. Therefore, we
have to modify Eq. (6) by introducing a line parameter p:

ws
�do = p�h− (1− ws)�t. (8)

This equation has the following geometric interpretation (see Fig-

ure 3): we look for a direction of a vector ws
�d0 that when added to

(1 − ws)�t results in a vector that lies on a line defined by �h. The

line parameter p, for which the vector �do, has a unit size, can be
found if we intersect the line with a sphere that has radius equal to
ws. The parameter p is then the maximal solution to the following
quadratic equation:

w2
s = p2|�h|2 − 2p(�h · �tw) + |�tw|2, (9)

where �tw = (1− ws)�t.

If Eq. (9) does not have a solution, we use the first derivative of it to
compute a value of p that defines the point on the line that is closest
to the sphere. This value is then inserted into Eq. (8) to compute the

vector �do. Knowing this direction for every branch segment of the
input tree, we can use Eq. (6) to adjust the bending of the branches
when the environment changes.

4.4 Pruning Estimation

Natural pruning influences the tree structure of most species and
therefore it is crucial for us to determine when a given branch
should be pruned. We express this in terms of the resources (photo-
synthates) gathered by the tree from the light. Please note that we
cannot capture topiary.

Apical meristematic cells in a bud produce wood or plant organs ac-
cording to the amount of light they receive. If the bud is in a shadow

for a long period of time, it slows down its activity. A branch that
does not receive light for a longer period of time eventually dies off.

We use an approach similar to [Palubicki et al. 2009], where the
pruning of a branch is computed based on the sum of node distances
to all leaf nodes lt and the amount of resources gathered by their
child leaf clusters ζt. A branch is pruned when the ratio ζt/lt is
smaller than some threshold value called pruning factor ψ. For a
given branch segment s, the gathered amount of resources ζts is
computed from the light that is received on the leaf clusters Cs that
are located on the child nodes of a branch segment s:

ζts =
∑
c∈Cs

2πr2c ic, (10)

where rc is the radius of a given leaf cluster and ic is the normalized
amount of light that the cluster receives.

Since the input to our method is an already grown tree where the
branches have been pruned, we cannot compute the pruning factor
ψ directly. Instead, for a branch segment s we compute a local
pruning factor ψs(t) for every stage of the tree growth t. The local
pruning factor allows us to determine the minimum pruning factor
when a given branch was not shed during growth. Since we can
only compute a rough approximation, we use the fifth percentile of
the distribution of all ψs(t) as our reference pruning factor ψref .
This allows us to receive an estimation. The individual pruning
factor is now computed for every branch s by

ψsmin = cψ min(ψref ,min
∀t

(ψs(t))), (11)

where cψ is a user-controllable parameter that determines the
strength of the pruning. We use a default value cψ = 0.8.

5 Dynamic Interaction

After analyzing the input tree to estimate growth behavior and prun-
ing strength, we can efficiently model the interaction with its envi-
ronment. During the interaction we first calculate the amount of
changes in the environment; the tree response is then expressed by
transforming the main branches by updating the shape of the leaf
clusters and by modifying their procedural content.

5.1 Tree Graph Transformations

The transformations should represent changes in the tree growth.
We transform individual branch segments according to their esti-
mated age (Section 4.1) and as a reaction to the new light conditions
using our temporal light model.

The direction of the incident light is used to generate the bending
transformation from Eq. (6). The rotation of a branch segment is
propagated to its child branches. When a branch is transformed, it
is also necessary to update its associated leaf clusters that may cast
shadows onto younger branches.

The pruning transformations are computed after all branches of a
given age have been transformed. When all branches on level t
have been transformed, we compute the resource allocation ζts for
all branches with ages between 0 and t (see Eq. (10)). The re-
sources are then compared with the total length of all existing child
branches and the pruning factor ψs(t) is computed. All branches
(and their children) with resources smaller than ψsmin are pruned.

5.2 Modeling of Leaf-Clusters

In order to simulate a cluster’s response to light, we first calculate
the amount of light each cluster receives. This information is then

used to adjust the creation of branches within a cluster, their orien-
tation, and the number of leaves per branch. As described by Livny
et al. [2011], procedural creation is a repeating process of adding
branchlets (small branches obtained from the input model) to some
initial seed points of the leaf cluster on the main branching skeleton.
We parameterize this process by the desired cluster density.

The relationship between the incoming light i and the normalized
density ρl is denoted by

ρl =
ρl0

ρ(il0)
ρ(i). (12)

for leaf cluster l with an initial density ρl0 for the initial light
valueil0 .

When a leaf cluster collides with an obstacle it is intersected as
shown in Figure 4. We adjust the selection of branchlets according
to the new hull of the cluster on a frame-by-frame basis. Please note
that due to the approximate nature of cluster filling, small branches
sometimes grow out of the hull and thus might enter an obstacle.
We do not prune such branches so far since we found this effect
negligible, but in the future this might be added.

If the object is not solid (e.g., another tree model), the clusters are
not intersected but overlap and share the space. This way we are
able to achieve convincing branch canopies for close tree models
(cf. Figure 11).

Figure 4: Lobe intersection after a collision with solid obstacles.

When a branch is bent or pruned away, the associated leaf clusters
(filling geometry and also the envelope shape) are updated. The
position of all leaf clusters is updated by computing the average
offset of all their nodes from their initial position. This offset is
then added to the cluster centroid.

If parts of the tree graph that belong to a cluster are removed, the
respective seed points are removed, the procedural filling of the lobe
is updated, and its translucency γc is updated:

γ′
c = γ

nc
n0
c , (13)

where nc is the current number of existing nodes and n0 is the
initial number. If all nodes of a cluster are removed, the leaf cluster
itself is deleted.

5.3 Types of Interaction

The above-described transformations allow three types of interac-
tion representing the most common scenarios that can be encoun-
tered during modeling: tree–obstacle interaction, tree–tree interac-
tion, and global light interaction.

Tree–obstacle interaction occurs when a tree is moved close to an
obstacle or vice versa. The obstacle then becomes a part of the
environment that influences the tree by casting a shadow for the
entire life span of its growth.

Tree–tree interaction is triggered when two or more trees are moved
so close to each other that their mutual shadows influence their
growth. For a proper simulation of this kind of interaction, we pro-
cess the transformations of individual branches in all involved trees
in parallel. Branches are processed according to their age. If the
maximal age of a tree is higher than its competitors, we change the
processing time for the branches of the younger trees in order to
end up at the same completion time for all trees.

Global light interaction represents changes in the global light con-
ditions of a scene. Such changes might happen when we move the
scene from a southern hemisphere to a northern one or when the
orientation of the scene is altered. Such changes are represented
by altering the direction I(θ, φ) in Eq. (3). Whenever global light
conditions change, we need to recompute the transformations for
all trees.

In most scenarios the above interactions happen at the same time.
For example, when we move a wall into a forest then the wall trans-
forms nearby trees, which in turn might affect the shape of their
neighboring trees.

6 Evaluation

Since trees grown in static conditions exhibit a large amount of ran-
domness, we compare the underlying tree graphs of simulated ver-
sus transformed trees. We use the approach of Ferraro et al. [Fer-
raro and Godin 2000] that builds upon the constrained edit distance
between unordered labeled tree graphs [Zhang 1996]. Dissimilar-
ity between two tree graphs can be measured as an edit distance
between them–the weighted minimum amount of operations that
would convert one graph into the other. The possible edit opera-
tions are i) deletion of a node (the children of the node become the
children of the parent node and the node is deleted), ii) node inser-
tion (inverse of deletion), or iii) changing a node (which assigns a
new label to the node). The cost of each edit operation depends on
the particular application; in our approach the cost is proportional
to the branch thickness (which is related to its age).

It would be impractical to compare our models to real trees because
it is difficult to correctly estimate their environmental conditions.
Therefore, we use trees created by a growth model proposed by
Palubicki et al. [2009]. In order to compare the trees, we first cre-
ate solitary tree models using the growth model and use them as an
input for our system. We created three types of trees that differ in
their tropisms. Tree 1 presents 0.25 phototropism and 0.12 grav-
itropism, the tropisms for Tree 2 are 0.45 and 0.44, rsp. and Tree
3 presents 0.03 phototropism and 0.23 gravitropism. The first two
trees are the same age and present the same pruning factor. The last
tree is older having a smaller pruning factor. We created three tree
sets for each tree type:

• Set O: Trees created using the growth model with no obstacles
where only light and self-shadowing influences the growth.

• Set G: Trees with the same growth parameters as O grown
using the growth model close to a wall.

• Set T: Trees with the same growth parameters as O with the
shape calculated using our system under the same conditions
as G.

Four different groups of fifty values each were computed. The val-
ues represent distances between pairs of trees selected from the sets
described above so that no tree was used twice. The different groups
were T-T, T-O, T-G, and G-G. The letters represent the groups for
the pairs of trees that were compared.

In order to show that there is no significant difference between the

transformed trees from set T and the trees grown by the growth
model from set G, we performed a two-tailed t-test between the T-
G and G-G with an alpha of 0.05. To show that the transformed
trees from set T are significantly different to the trees from O, a t-
test is performed between groups T-O and T-T. Table 1 summarizes
the obtained results.

This suggests a significant difference between trees grown without
constraints versus trees next to a wall. On the other hand, there is
no significant difference between the adapted trees grown with the
growth model and the trees transformed with our approach under
the same conditions.

Groups T-G G-G T-O T-T

T
y
p
e

1 Mean 236.29 229.65 347.19 225.38

Standard Deviation 35.27 52.71 91.33 33.94

p-value p = 0.46 p < 0.001

T
y
p
e

2 Mean 431.73 396.81 471.63 413.64

Standard Deviation 112.79 71.32 70.65 90.76

p-value p = 0.06 p < 0.001

T
y
p
e

3 Mean 756.27 841.79 927.64 550.63

Standard Deviation 266.84 239.57 207.85 83.33

p-value p = 0.13 p < 0.001

Table 1: Results obtained for the different groups T-T, T-O, T-G and
G-G. The letters represent the groups for the pairs of trees that were
compared.

Figure 5: Visual comparison of three tree models.

Furthermore, Figure 5 shows a visual comparison of the changes
obtained by the growth model and our transformations. The mod-
els were grown in an open space and then imported to our system
(left). Next, they were grown in different light conditions using the
growth model (middle) and also transformed using our approach
(right column).

7 Implementation and Results

Our system is implemented in C++ using OpenGL and GLSL.
All examples in this paper were generated on a desktop computer
equipped with Intel i7 CPU @ 3.7GHz with 16GB of memory. Most
of the rendering was done directly on the GPU (Nvidia GeForce
GTX 580 with a 1.5GB of dedicated memory).

The visual appearance of our tree models is mostly determined by
the structure of their main branches and not by the exact structure
of leaf clusters. We therefore define a threshold for the thickness
of branches that determines whether a given branch should be ren-
dered or not. All branches with a thickness above the threshold are

(a) (b) (c) (d) (e)

Figure 6: The environmental effect of a shadow cast by a wall. The color represents the difference between the input tree (a) and the
transformed versions. The amount of bending expressed in red (b), pruned branches colored blue (c), both transforms (d), the final model (e).

Figure 7: Different tree models (LiDAR, Xfrog) exposed to changing conditions. As the obstacle moves close, the tree bends its shape, and
some branches are pruned.

stored in a tree graph, while the smaller branches are removed from
the tree and converted into the leaf-clusters. To interact with large
amounts of tree models in real time, we apply a set of level of detail
(LOD) techniques. Similar to Livny et al. [2011], the amount of
produced geometry depends on the cluster size, the light situation,
and the LOD stage. If the tree is far away from the camera, only a
small subset of leaves is produced and scaled according to stochas-
tic pruning, as introduced by Cook et al. [2007]. We render the
tree foliage with alpha to coverage; an efficient method for layers
of textures containing large numbers of transparent texels.

Since trees exhibit a large amount of self-similarity, we are able
to approximate the leaf clusters using small subsets of branchlets
(branch patches) that are instantiated. A set of branchlets from
the input model is used to populate the volumes. These patches
are stored in a texture buffer on the GPU, and the main branching
structure and the patch geometry of the leaf clusters are combined
to make a complete graph of the tree.

To be able to apply the transformation to the tree graph, we store
the main branching structure on the CPU memory that is mapped
to a frequently updated vertex buffer object on the GPU. The ge-
ometry of the skeleton is represented by generalized cylinders. To
allow rendering of many tree models, we adjust the graph and mesh
generation on a frame-by-frame basis.

Table 2 shows a comparison of construction times using Open L-
systems and our transformations. Twenty models per group of tree
ages 10, 20, and 30 were grown with an Open L-system, lead-
ing to an increasingly complex geometry. The growth times were
recorded and averaged. Another three groups of twenty trees were

Table 2: Complexity and simulation time for tree in different ages.

Tree age Average nodes Growth Transforms
10 years 530 216.3 ms 3.82 ms
20 years 2541 8855.6 ms 50.5 ms
30 years 9134 61,843.9 ms 222.8 ms

input in our system and the transformation times were recorded. It
is important to note that the simulation applies to the regrowth of
the entire tree from scratch, while the transformations are applied
only in the affected areas. Generally, our approach is two orders of
magnitude faster.

7.1 Results

The first example in Figure 6 demonstrates the environmental ef-
fect of the shadow cast on a tree by a wall. A tree model grown
in open conditions is compared with transformed models, and the
amount of displacement of each node is expressed as color. As ex-
pected, the biggest change is on the tip of the tree because the error
accumulates through the main skeleton.

Figure 7 shows three different species–(a) Willow, (b) Delonix, and
(c) Mahogany with their reaction to an obstacle. The original trees
were reconstructed from LiDAR scans using the approach of [Livny
et al. 2011]. The trees react to the proximity of the shadow by
bending away (light seeking) and by shedding branches that are
close to the wall. Figure 9 shows the results for two Xfrog models.

Figure 8: A small ecosystem demonstrating various input models
interacting. We have used models generated by Open L-systems,
Xfrog, and LiDAR reconstructed trees in this example.

Figure 9: Xfrog Tree models interacting to changing environmental
conditions.

So far we have demonstrated the typical European and North Amer-
ican trees. More special trees are palm trees or pines, as shown in
Figure 10. Their graph structure has no lateral branches, it is a line
for the main branches and another line through each of the leaves;
the lobes cannot be applied here. The models were generated us-
ing Xfrog, and their reaction to the environment is still expectable.
The palm tree bends in the direction opposite to the shadow in an
attempt to capture more light. Pine trees usually do not bend and
only react to the lack of light for lower branches. As expected, our
model prunes low branches while maintaining a complete branch-
ing structure at the top.

Some different input models (Open L-systems, Xfrog, LiDAR scan)
are shown in Figure 8, a frame from the accompanying video. The
trees are affected by mutual shadowing as well as by the walls en-
closing them from two sides. The branches in the ecosystem fill the
available space as they would in the case of a real ecosystem.

The example in Figure 11 shows two mahogany trees modeled in
Xfrog that are moved close to each other. The competition for re-
sources lets a single crown emerge in which each tree contributes
in part. Figure 13 shows a quad that is moved into a forest. Though
we are not able to show such big scenes with all interactions and
transformations interactively any more (this scene has 5 fps on our
machine), the tree shapes adapt convincingly and the user is still
able to interact with the scene.

8 Conclusion

We presented a dynamic model representation and interaction
method for complex tree models. All kinds of polygonal input mod-
els can be converted into our representation. We estimate the influ-
ences of tropisms and other environmental effects such as shadow-
ing of the input model. When the models are created they react to

obstacles and changes in the lighting. An efficient implementation
allows us to manipulate even complex scenes at interactive rates.

Our method, however, so far does not allow the production of new
branches for the main skeleton: we always deform and manipulate
the given basic structure. Furthermore, the input is limited to soli-
tary tree models since so far we cannot hypothesize branches of
the main skeleton that eventually died off. An example (Figure 14
left) shows a LiDAR scanned and reconstructed tree that has al-
ready been severely modified either by some early age trauma or by
growing close to an obstacle. This tree shows an unnatural bending
towards the obstacle that is partially alleviated by the transforma-
tions, but still prevails as the main growth direction. The resulting
tree (Figure 14 right) does not seem very natural.

Figure 14: A tree reconstructed from LiDAR data that is already
bent. Such models often cannot be altered properly.

We are also limited in the effects we are able to integrate. So far we
included environmental factors such as light and tropisms, but no
wind effects or nutrition changes in the soil. Furthermore, the sys-
tem could be evaluated better by comparing it to real-world trees.

Another limitation is that our system needs some user-defined pa-
rameters, such as the amount of newly added tropism for the tree
models. So far we also do not have a general-purpose GPU-based
modeling process for the procedural content. We use a pre-defined
species library for the parameters that allows us to produce a num-
ber of foliage types, but not all.

Acknowledgements

We thank the anonymous reviewers. This work was supported by
the DFG Research Training Group GK-1042 "Explorative Analy-
sis and Visualization of Large Information Spaces", University of
Konstanz, by NSF IIS-0964302 Integrating Behavioral, Geometri-
cal and Graphical Modeling to Simulate and Visualize Urban Areas
and Adobe Inc. grant Constrained Procedural Modeling.

References

AONO, M., AND KUNII, T. 1984. Botanical tree image generation.
IEEE Computer Graphics and Applications 4(5), 10–34.

ARVO, J., AND KIRK, D. 1988. Modeling plants with
environment-sensitive automata. In Proceedings of Ausgraph
’88, 27–33.

BENES, B., AND MILLÁN, E. 2002. Virtual climbing plants com-
peting for space. In IEEE Proceedings of the Computer Ani-
mation 2002, IEEE Computer Society, N. Magnenat-Thalmann,
Ed., 33–42.

BENES, B., ANDRYSCO, N., AND ŠŤAVA, O. 2009. Interactive
modeling of virtual ecosystems. In Eurographics Workshop on
Natural Phenomena, Eurographics Association, 9–16.

BLOOMENTHAL, J. 1985. Modeling the mighty maple. SIG-
GRAPH Computer Graphics 19, 3, 305–311.

Figure 10: Special tree models interacting with obstacles.

Figure 11: Two procedurally generated trees that have been grown very close to each other form a crown that resembles a single tree.

Figure 12: Two Xfrog trees (left to right): static; combination of bending and pruning; strong pruning; exaggerated bending.

Figure 13: Influence of an obstacle moved into a dense ecosystem.

BOUDON, F., PRUSINKIEWICZ, P., FEDERL, P., GODIN, C., AND

KARWOWSKI, R. 2003. Interactive design of bonsai tree mod-
els. Computer Graphics Forum. Proceedings of Eurographics
22, 3, 591–599.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG,
S. B. 2008. Sketch-based tree modeling using markov random
field. ACM Trans. Graph. 27, 5, 109–117.

COOK, R. L., HALSTEAD, J., PLANCK, M., AND RYU, D. 2007.
Stochastic simplification of aggregate detail. ACM Trans. Graph.
26, 3, 79.

DE REFFYE, P., EDELIN, C., FRANÇON, J., JAEGER, M., AND

PUECH, C. 1988. Plant models faithful to botanical structure
and development. In Proceedings of SIGGRAPH ’88, 151–158.

DEUSSEN, O., AND LINTERMANN, B. 2005. Digital Design of
Nature: Computer Generated Plants and Organics. Springer-
Verlag New York, Inc.

FERRARO, P., AND GODIN, C. 2000. A distance measure between
plant architectures. Annals of Forest Science 57, 5/6, 445–461.

GREENE, N. 1989. Voxel space automata: modeling with stochas-
tic growth processes in voxel space. SIGGRAPH Computer
Graphics 23, 3, 175–184.

HART, J. C., BAKER, B., AND MICHAELRAJ, J. 2003. Structural
simulation of tree growth and response. The Visual Computer
19, 2-3, 151–163.

HONDA, H. 1971. Description of the form of trees by the param-
eters of the tree-like body: effects of the branching angle and
the branch length on the shape of the tree-like body. Journal of
Theoretical Biology 31, 331–338.

HUA, J., AND KANG, M. 2011. Functional tree models reacting to
the environment. In ACM SIGGRAPH 2011 Posters, ACM, New
York, NY, USA, SIGGRAPH ’11, 60:1–60:1.

IJIRI, T., OWADA, S., AND IGARASHI, T. 2006. The sketch L-
System: Global control of tree modeling using free-form strokes.
Smart Graphics, 138–146.

KAWAGUCHI, Y. 1982. A morphological study of the form of
nature. In SIGGRAPH ’82: Proceedings of the 9th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 223–232.

LAM, Z., AND KING, S. A. 2005. Simulating tree growth based
on internal and environmental factors. In Proceedings of the 3rd
international conference on Computer graphics and interactive
techniques in Australasia and South East Asia, ACM, New York,
NY, USA, GRAPHITE ’05, 99–107.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teraction in development. Journal of Theoretical Biology Parts I
and II, 18, 280–315.

LINTERMANN, B., AND DEUSSEN, O. 1999. Interactive modeling
of plants. IEEE Comput. Graph. 19, 1, 56–65.

LIVNY, Y., PIRK, S., CHENG, Z., YAN, F., DEUSSEN, O.,
COHEN-OR, D., AND CHEN, B. 2011. Texture-lobes for tree
modelling. ACM Trans. Graph. 30 (August), 53:1–53:10.

MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’96, 397–410.

NEUBERT, B., FRANKEN, T., AND DEUSSEN, O. 2007. Ap-
proximate image-based tree-modeling using particle flows. ACM
Trans. Graph. 26, 3, Article 71, 8 pages.

OKABE, M., OWADA, S., AND IGARASHI, T. 2006. Interactive
design of botanical trees using freehand sketches and example-
based editing. Comput. Graph. Forum 24, 3, 487–496.

OPPENHEIMER, P. E. 1986. Real time design and animation of
fractal plants and trees. SIGGRAPH Comput. Graph. 20, 4, 55–
64.

PALUBICKI, W., HOREL, K., LONGAY, S., RUNIONS, A., LANE,
B., MĚCH, R., AND PRUSINKIEWICZ, P. 2009. Self-organizing
tree models for image synthesis. In Proceedings of SIGGRAPH
’09, 1–10.

POWER, J. L., BRUSH, A. J. B., PRUSINKIEWICZ, P., AND

SALESIN, D. H. 1999. Interactive arrangement of botanical
l-system models. In Proceedings of the 1999 symposium on In-
teractive 3D graphics, ACM Press, 175–182.

PRUSINKIEWICZ, P., HAMMEL, M. S., AND MJOLSNESS, E.
1993. Animation of plant development. In SIGGRAPH ’93:
Proceedings of the 20th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
351–360.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND

LANE, B. 2001. The use of positional information in the mod-
eling of plants. In SIGGRAPH ’01, 289–300.

PRUSINKIEWICZ, P. 1986. Graphical applications of l-systems.
In Proceedings on Graphics Interface ’86/Vision Interface ’86,
247–253.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. ACM Trans. Graph. 23, 3, 720–727.

RUDNICK, S., LINSEN, L., AND MCPHERSON, E. G. 2007. In-
verse modeling and animation of growing single-stemmed trees
at interactive rates. In in The 15th International Conference in
Central Europe on Computer Graphics, Visualization and Com-
puter Vision 2007, 2007, 217–224.

RUNIONS, A., LANE, B., AND PRUSINKIEWICZ, P. 2007. Mod-
eling trees with a space colonization algorithm. In Proceedings
of Eurographics Workshop on Natural Phenomena 2007, 63–70.

SACHS, T., AND NOVOPLANSKY, A. 1995. Tree from: Architec-
tural models do not suffice. Israel Journal of Plant Sciences 43,
203–212.

SMITH, A. R. 1984. Plants, fractals, and formal languages. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 1–10.

SOLER, C., SILLION, F. X., BLAISE, F., AND DEREFFYE, P.
2003. An efficient instantiation algorithm for simulating radi-
ant energy transfer in plant models. ACM Trans. Graph. 22, 2,
204–233.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realis-
tic trees. In Proceedings of SIGGRAPH ’95, 119–128.

ZAKARIA M., N., AND SHUKRI, S. 2007. A sketch-and-spray
interface for modeling trees. 23–35.

ZHANG, K. 1996. A constrained edit distance between unordered
labeled trees. Algorithmica 15, 3, 205–222.

