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non-steady layer would equal the steady layer in times given approximately by

I ~ for velocity,

Qx
t = jj for temperature.

Thus to a reasonable approximation it can be said that by the time a point on a suddenly

accelerated plate moves 5 times its distance from the leading edge, its boundary layers

will have become steady state ones.

PLASTIC WAVE PROPAGATION IN A BAR OF MATERIAL

EXHIBITING A STRAIN RATE EFFECT1

By L. E. MALVERN (Carnegie Institute of Technology)

1. Introduction. The propagation of a transient wave of plastic deformation due to

longitudinal impact on a bar has been treated by Donnell,2 and White and Griffis,3 by

a non-linear superposition method. The partial differential equations governing the

wave propagation were derived independently by Taylor4 and von Karman5 under the

assumption of a relation between stress and strain independent of strain rate. Constant

velocity tension impact tests at the California Institute of Technology6,7 gave fair

agreement with the theory. Some systematic discrepancies were, however, observed.

In the tension impact tests the maximum residual strain was smaller than predicted

by the theory, and the observed force-time variation at the fixed end during impact

showed that the stress there was greater than the theory predicted. It has been sug-

gested6 that these discrepancies were due to the use in the theory of an invariant relation

between stress and strain independent of strain rate. At the high strain rates involved

in deformation under impact a considerable deviation from the static stress-strain

relation may be expected. The present work extends the theory to apply to materials in

which the stress is a function of the instantaneous plastic strain and strain rate.
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2. Proposed flow law for tension and compression. It is assumed that in longi-

tudinal impact on a cylindrical, or prismatic bar a relation of the form

<r = *(«", e"') (1)

exists between the values of the nominal tensile stress a (longitudinal force per unit of

initial cross-sectional area), plastic strain e" (permanent change in length per unit

initial length), and the plastic strain rate t". Since 4> is in general an increasing function

of t" this determines t" as a function of a and This relation may be expressed as

Eoe" = g(<r, «),

where the factor E0 is Youngs modulus and e is the total strain. Elastic deformation is

assumed to be independent of strain rate. Thus, if «' denotes the elastic strain,

E0e' = cr". (2)

The relation between total strain, strain rate, and stress is then

E0( = <7* + g{a, «). (3)

The static stress-strain relation a — f(e) is interpreted as a succession of equilibrium

states so that plastic flow occurs only when the plasticity condition

* > /(«) (4)

is satisfied. Otherwise the elastic law (2) applies instead of the plastic flow law (3).

The elastic law also applies until the initial yield strain e„ is reached on the first loading.

The plasticity condition (4) as stated applies to tensile impact (<r and e positive) but

the same form of law may be used in compressive impact if compressive stress and strain

are reckoned positive.

There is some evidence that the right-hand member of (1) should have the form of

J(e) plus a term depending logarithmically on the plastic strain rate.8 If this is the case

g(a, e) will depend exponentially on a — /(«), the excess of the instantaneous stress

over the static stress at the same strain. Sokolovsky9 has treated wave propagation

in a material without work-hardening using a law of the form (3) in which g(a — <r„)

was a function only of the excess of the stress over the initial yield stress .

3. Equations governing the wave propagation. The propagation of the wave of

plastic deformation is governed by the following system of three partial differential

equations, in which x denotes the initial distance of a cross section from the impact

end, v the particle velocity (assumed constant over each cross section, and p the initial

density.

da dv n

dx ~ P dt - °-

de dv_

dt dx
= o, (5)

_ de d<x , .
EaJt~

8See, for example, H. Deutler, Experimentelle Untersuchung ueber die Abhaengigkeit der Zugspannun-

gen von der Verformungsgeschwindigkeit, Phys. Z. 33, 247-259 (1932).
9V. V. Sokolovsky, The propagation of elastic-viscous-plastic waves in bars, Prikl. Mat. i Mek. 12,

261-280 (1948).
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The first equation is the longitudinal equation of motion. The second equation is a

consequence of the fact that v = du/dt and e = du/dx, where u(x, t) is the displacement

at time t of the cross section which was initially at distance x from the impact end of

the bar, and the third equation is the law (3).

The system (5) is a hyperbolic system of quasi-linear partial differential equations

which may be integrated numerically by the method of characteristics under appropriate

boundary conditions. The characteristics in the x,£-plane are the three families of straight

lines defined by the characteristic differential equations

dx = 0, dx — c0 dt = 0, dx + c0 dt - 0, (6)

where

Co = (£?o/p)1/2

is the constant speed of propagation of longitudinal elastic waves in the bar.

The following three equations hold respectively along the three characteristics

defined by (6).

E0 dt — da = g{a, e) dt

da — pc0 dv = — g(a, e) dt (7)

da + pc0 dv = — g(a, e) dt

The equations (6) may be integrated immediately to give the fixed straight character-

istics of the plastic region of the £,<-plane, but the equations (7) will in general require

0

Fig. 1 Characteristics in the x,J-plane.

step-by-step numerical integration. For this purpose the differentials of (7) are replaced

by finite differences, and the value of g{a, e) in each equation is taken as an average of

the values along the appropriate segment of the characteristic.

4. Boundary conditions for continued impact on a semi-infinite bar. Consider a

continued tensile impact on a semi-infinite bar which is initially at rest. The extension

of the theory to finite bars and finite durations of impact is not difficult, although the
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numerical integration becomes more involved. The z-axis is chosen so that at the instant

of impact, the impact end is at the origin and the bar lies along the positive x ax^. Suppose

that at time t = 0, the end of the rod is instantaneously set in motion with velocity

v0 such that [ v01 > c0e„ after which the end velocity is maintained constant at the value

v0 . For a tensile impact the velocity is negative.

Immediately upon impact a shock wave of elastic deformation begins to travel

along the bar at the speed c0 . This leading wave front is represented in Fig. 1 by the

line x = c0t. The shock wave conditions which hold across an elastic shock wave traveling

in the positive direction are

Act = — pc0Av,

Av = —C0 Ae, (8)

A <7 = pc20Ae = E0Ae,

where A a, Ae, and Av are the jumps in stress, strain, and velocity, respectively, as the

shock wave passes. The first condition results from equating impulse to change of

momentum for the traversing of an element of the bar by the shock wave. The second

condition is a consequence of the continuity of displacement across the shock and the

third condition follows from the first two.

Since a = e = v = 0 in the undisturbed region ahead of the shock wave, the jump

conditions (8) yield

<r = pelt = — pc0v on x = c0t (9)

just after the shock wave passes. The line x — c0t is also a characteristic of (5) along

which the second equation of (7) holds. This equation may be integrated after elimi-

nating e and v by use of (9) to yield

/'V a n

dT 1 t, (10)
q{t, t/pc0) 2

where <r0 = — pc0v0 is the stress at x = 0, t = 0. Equations (8) and (10) thus determine

a, e, and v along x = c0t . With this information and the boundary condition v = v0

on x = 0, the numerical integration of the equations (7) may be performed to determine

<r, e and v throughout the plastic region. The values so obtained should be checked

with the plasticity condition (4) at each point to make sure that the point is in the

plastic region.

5. Impact of finite duration: unloading. If the impact is of duration t0 , after which

the boundary condition is a — 0 on x = 0, the solution may be constructed as in the

preceding section up to the characteristic of the family dx — c0 dt = 0 passing through

the point (0, t0), i.e. up to the line MN of Fig. 2. In the unloading region Eq. (2) replaces

Eq. (3) so that g(a, e) = 0 for unloading. Equations (6, 7) then yield

<r — E0e = const. on x = const.,

ct — pc0v — const. on x — c0t = const., (11)

u + pc0v = const. on x + c0t = const.
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The various constants are determined by matching solutions at the elastic-plastic un-

loading boundary in the x,i-plane.

N

0

Fig. 2 Unloading shock wave MN after impact of duration to on a semi-infinite bar.

A sudden reduction of the impact end stress to zero causes the initial unloading wave

to be a shock wave. Since the shock wave is elastic the jump conditions (8) apply and

the wave travels at the speed c0 , i.e. along MN, Fig. 2. The shock intensity decreases

as the wave progresses and may decrease to zero. If the shock wave travels as far as

Q, Fig. 2, the solution is determined in the triangle MQR by Eqs. (11), the boundary

condition a = 0 on x = 0, and the jump conditions (8) together with the known values

of tr, e, and v along MN before the shock wave passes.

If the shock wave is absorbed, say at Q, the elastic-plastic boundary becomes a

boundary of continuous transition from the plastic to the elastic state, and does not in

general continue along the line MN. Along a continuous unloading boundary the static

relation a = /(e) holds. This condition and the characteristic conditions in the elastic

and plastic regions suffice to determine the position of the unloading boundary, although

a trial and error procedure is usually needed to find the boundary points. A continuous

transition from plastic to elastic behavior may begin even before the impact ends. The

unloading shock wave then travels through an elastic region until it overtakes the

continuous unloading boundary.

6. Solutions of the equations. Numerical integration of the system (5) has been

carried out for an idealized form of the law (3) in which g(a, e) = k[<r — /(e)] where fc

is a multiplicative constant, with the function /(e) chosen in a simple form which ap-

proximates the static stress-strain curve of a hardened aluminum. Even with the idealized

law used the solutions indicate that a law of the type (3) can account for the discrepancies

observed in the stress-time variation at the fixed end of impact specimens. This type

of law does not, however, account for the discrepancy observed in the maximum residual

strain.
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It was possible to obtain an explicit solution for the equations in the case of a non

work-hardening material of a type previously treated numerically by Sokolovsky.9 With

g(a, e) = k(<j — <t„), where <ry is the yield stress, and with the introduction of the di-

mensionless variables

T — kt X = xk/c0

S = a/ay E — e/e„ V — v/c0t„ ,

dS dV
dX ~ dT'

the system (5) becomes

dE dV
dT ~~ dX'

dE dS c,

dT dT^

Elimination of E and V yields

d2S d2S dS_

dX2 dT2 dT ~

The boundary conditions for S in the plastic region of the X^-plane (above X — T) are

dS v= 0 on X = 0

S = 1 + C exp ( —T/2) on X = T,

where

c = I V0 | — 1 = | Vo/Coe, I — 1.

Introduction of the canonical variables, a = i(T + X) and /3 = \{T — X) and a new

function P defined by

S = 1 + CP exp [—1(« + 0)]

yields the telegraph equation for P,

d2p ip = 0

da d/3 4

with boundary conditions

dP
— = 0 on a = 6
on

P = 1 on 0 = 0

By a Laplace transform technique, or by the Riemann method of integration it may be

determined that

P{a, 0) = /0[(a/3)1/2]
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is the solution required, where Z0 is the Bessel function of order zero with pure imaginary

argument. Thus, returning to the variables, X and T, the dimensionless stress solution is

S(X, T) = 1 + CI0[$(T2 - X2)1/2] exp (—T/2).

The strain and velocity solutions are then obtained from the characteristic conditions

by numerical quadratures.

BOOK REVIEWS

Nonlinear vibrations in mechanical and electrical systems. By J. J. Stoker, Interscience

Publishers, Inc., New York, 1950. xv + 273. $5.00.

Chapter I contains a concise review of linear vibrations in one degree of freedom. This is followed, in

Chapter II, by a discussion of free vibrations of undamped systems with nonlinear restoring forces. One

finds here, in addition to the material given in the books by Timoshenko (Vibrations Problems in Engin-

eering. D. Van Nostrand Co., N. Y., 1937) and Den Hartog (Mechanical Vibrations. McGraw-Hill Book

Co., N.Y., 1940) the notion of the energy curves in the phase plane. The theory of this chapter is illus-

trated by interesting examples.

Chapter III is divided into three sections; the first explains Lienhard's graphical construction of

trajectories in the phase plane, the second gives the theory of singular points of first order differential

equations, and the third shows applications of that theory to nonlinear mechanical and electromechanical

systems. A good deal of attention is devoted to a novel treatment of the elastic stability of columns from

a dynamical viewpoint, making use of the notion of singular points.

Chapter IV deals essentially with Duffing's equation and its integration by both an iteration and a

perturbation method. In this chapter reliance is placed on physical intuition, the more delicate questions

of the existence of the perturbation series, and the stability of solutions being left for later treatment. A

special case of subharmonic resonance in Duffing's equation with and without damping is discussed, and

Rauscher's iteration method is briefly described. Following Rauscher's method, combination tones are

introduced, i.e., response frequencies which are linear combinations of the frequencies wi and co2 of a forcing

function Hi cos oiit + H2 cos «2<. The chapter ends with some introductory remarks regarding the stability

of harmonic solutions and with a helpful table summarizing the essential differences in the response of

Duffing's equation and of the related linear equation.

Chapter V treats, in two sections, Van der Pol's equation without and with forcing function. In the

first part the autonomous equation is discussed and a very appealing treatment of relaxation oscillations,

and also a higher approximation are included. The second part deals with Van der Pol's method applied

to the non-autonomous system and with the stability investigations by Andronow and Witt. It gives

altogether a very complete treatment for the two cases of a forcing frequency near the natural frequency

of the system, and not near that frequency.

Chapter VI, the last chapter of the book, treats linear equations with periodic coefficients because of

their applicability to investigations of the stability of solutions to nonlinear problems. The Floquet theory

is well reproduced as is an interesting and simple discussion of the stability of the Mathieu equation

w" + (S + e cos z)w = 0 in the neighborhood of « = 0. Finally, the stability of harmonic solutions of

Duffing's equation without damping is investigated by the theory of this chapter.

This final chapter is followed by six appendices giving, in that order, (1) the mathematical justifica-

tion of the perturbation method, (2) the existence of combination oscillations, (3) the existence of limit

cycles in self-excited systems, (4) a proof of a previously introduced and attractive argument regarding

the form of the limit cycle of dv/d£ = e2[F(v) — Q/v for a special form of F(v), and as e —♦ c° (called the

limit of limit cycles), (5) Poincar6's criterion for orbital stability, and (6) a very palatable proof of unique-

ness of a limit cycle in the free oscillations of a self-sustained system. The last chapter and the appendices

are distinctly not elementary in character.


