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Abstract

The objective of this review is to examine how the concept of plasticity is used in geophysical fluid dynamics. Rapid mass movements such

as snow avalanches or debris flows involve slurries of solid particles (ice, boulder, clay, etc.) within an interstitial fluid (air, water). The bulk

behavior of these materials has often been modeled as plastic materials, i.e., a plastic material yields and starts to flow once its stress state has

significantly departed from equilibrium. Two plastic theories are of common use in fluid dynamics: Coulomb plasticity and viscoplasticity. These

theories have little in common, since ideal Coulomb materials are two-phase materials for which pore pressure and friction play the key role in the

bulk dynamics, whereas viscoplastic materials (e.g., Bingham fluids) typically behave as single-phase fluids on the macroscopic scale and exhibit

a viscous behavior after yielding. Determining the rheological behavior of geophysical materials remains difficult because they encompass coarse,

irregular particles over a very wide range of size. Consequently, the true nature of plastic behavior for geophysical flows is still vigorously debated.

In this review, we first set out the continuum-mechanics principles used for describing plastic behavior. The notion of yield surface rather than

yield stress is emphasized in order to better understand how tensorial constitutive equations can be derived from experimental data. The notion

of single-phase or two-phase behaviors on the macroscopic scale is then examined using a microstructural analysis on idealized suspensions of

spheres within a Newtonian fluid; for these suspensions, the single-phase approximation is valid only at very high or low Stokes numbers. Within

this framework, the bulk stress tensor can also be constructed, which makes it possible to give a physical interpretation to yield stress. Most of

the time, depending on the bulk properties (especially, particle size) and flow features, bulk behavior is either Coulomb-like or viscoplastic in

simple-shear experiments. The consequences of the rheological properties on the flow features are also examined. Some remarkable properties of

the governing equations describing thin layers flowing down inclined surfaces are discussed. Finally, the question of parameter fitting is tackled:

since rheological properties cannot be measured directly in most cases, they must be evaluated from field data. As an example, we show that the

Coulomb model successfully captures the main traits of avalanche motion, but statistical analysis demonstrates that the probability distribution of

the friction coefficient is not universal.

© 2006 Elsevier B.V. All rights reserved.
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Nomenclature

a particle radius

C torque

d tensor of strain rate

D2 second invariant of the strain-rate tensor

f friction coefficient

f yield function

g gravity acceleration

h flow depth

h0 position of the yield surface

H characteristic function

I1 first invariant of the stress tensor

I2 second invariant of the stress tensor

J2 second invariant of the strain-rate tensor

k unit normal

M reduced torque

mp particle mass

n density number

p pressure

P∗ pressure scale

Re Reynolds number

Rep particle Reynolds number

R1 radius of the inner cylinder

s extra-stress tensor (or deviatoric stress tensor)

s distance between the surface of two particles

St Stokes number

S dimensionless shear stress

t time

T temperature

u velocity

u′ velocity fluctuation

uf fluid velocity

up particle velocity

U∗ velocity scale

V volume of control

Greek letters

δ phase (Lode’s) angle

ǫ depth-to-height ratio

η bulk viscosity

γ̇ shear rate

Γ dimensionless rotational velocity

κ coefficient of permeability

μ dynamic viscosity

Ω rotational velocity of the inner cylinder (Couette)

φ solid concentration

φc critical solid concentration (percolating network)

φf solid concentration in fine (colloidal) particles

φm maximum solid concentration

φt total solid concentration (for bimodal mixtures)

Ψ particle energy potential

ρ density

ρf fluid density

ρp particle density

ρ̄ bulk density

ρ̄′ buoyant bulk density

σ extra-stress tensor

σ
(f) solid contribution to the fluid stress tensor

σ
(p) solid contribution to the bulk stress tensor

σf extra-stress tensor for a fluid phase

σp extra-stress tensor for a solid particle

σ normal stress

σ′ effective normal stress

τ shear stress

τb bottom shear stress

τc yield stress

ϕ bulk friction angle

ζ similarity variable

1. Introduction

A number of geophysical flows involve rapid gravity-driven

mass movements of solid particles within a fluid. Typical ex-

amples include snow avalanches (Fig. 1) [5], debris flows (Fig.

2) [129], lava flows (Fig. 3) [103], and submarine avalanches

[88,105]. These flows usually take the appearance of viscous

fluids flowing down a slope and this observation has prompted

the use of fluid-mechanics tools for describing their motion.

However, the impediments to a full fluid-mechanics approach

are many: a wide range of particle size (often in the 10−6 to

1 m range), composition that may change with time and/or po-

sition, ill-known boundary conditions (e.g., erodible basal sur-
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Fig. 1. Huge avalanche deposit in the Tarentaise valley (France). The chalets at

the top left corner gives a scale. The deposit thickness was approximately 10 m

in the runout zone. The deposit width was approximately 300 m. This avalanche

occurred in March 1995 after heavy snowfalls (Courtesy of M. Margot, Peloton

de Gendarmerie de Bourg-Saint-Maurice).

face) and initial conditions, time-dependent flows with abrupt

changes (e.g., surge front, instabilities along the free surface),

etc. Even with the construction of specifically devoted large

rheometers [62,67,158,190], testing the rheometrical properties

of samples collected in the field remains difficult. To give ex-

amples of materials involved in rapid mass movements, Fig. 4

reports different types of snow observed in avalanche deposits.

Because of particle size and thermodynamic alteration (snow

is highly sensitive to changes in air temperature), using clas-

sic rheometers with these materials does not make sense. All

these difficulties pose great challenges in any fluid-mechanics

approach for modeling rapid mass movements and have given

impetus to extensive research combining laboratory and field ex-

periments, theory, field observation, and numerical simulations

[120,126].

The idea of plastic behavior appeared very early in the en-

gineering literature to characterize the rheological behavior of

materials involved in rapid mass movements [132,174]. At the

very beginning, this idea was used to explain why bulk mate-

rials behave like solids when they are at rest and why, under

Fig. 2. Deposit of a debris flow on an alluvial fan in the Pelvoux valley (France).

The house in the background gives an indication of scale. The deposit thickness

was approximately 30 cm. Photograph taken by the author in Pelvoux (France)

in July 1998.

Fig. 3. Lava deposit Montaña Blanca, Teide Peak, Tenerife. The deposit width

and length were approximately 50 and 100 m, respectively. Courtesy of Dr. E.

Bardou, University of Lausanne.

some circumstances, they yield and start to flow like fluids. In

the meantime, over the last century, plastic behavior was exten-

sively studied for a wide range of materials including metals,

alloys, concrete, soils, ice, rocks, fiber composites, and many

other brittle materials [48,110,169,201,234].

In soil mechanics, soils and geomaterials are most often satis-

factorily modeled within the framework of elastoplasticity with

a strain softening/hardening yield surface and the non-associate

flow rule. Research on plastic behavior takes its roots in the

pioneering work of Coulomb [63], who described the stability

of piles and embankments, and in the seminal paper of Mohr

[173], which contained the fundamentals of stress analysis.

Since then, both experimental and theoretical results have helped

clarify the notion of plasticity by distinguishing elastic limit,

irreversible deformation (i.e., plastic deformation), dilatancy,

yielding (critical state), shear localization, and post-failure be-

havior [76,86,204,208,217,234]. Specific analytical tools based

on incremental mechanics and micromechanics analysis have

been used to explain the relationships between bulk and particle

behaviors [60,176,234].

In the rheology of concentrated suspensions, the notion of

plasticity is far less consensual. Historically, this notion is in-

timately associated with the name of Bingham, who not only

coined the word “rheology”, but also proposed the first empiri-

cal law including a yield stress in 1922: the Bingham law [43].

Contrary to solid mechanicians, for whom plasticity means loss

of reversibility in material deformations, fluid rheologists have

related plasticity to solid/fluid transition: the yield stress of a

solid would be the stress at which the solid first starts to deform

continuously, i.e. to flow. In this perspective, the yield stress

marks the limit between solid-like (assumed to be elastic) and

fluid-like (viscous) behaviors. The review by Bird et al. [44]

has documented a large number of everyday-life materials that

belong to the family of viscoplastic fluids: food products (e.g.,

ice cream, mayonnaise), blood, industrial slurries, household

consumer products (e.g., lotions, spreads), etc. At the very be-

ginning, defining the yield stress as the threshold for incipient

motion was widely accepted. A consistent tensorial formulation

of the phenomenological Bingham law was proposed by Prager

[115,196] and Oldroyd [183] in a way that was very close to the
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Fig. 4. Different types of snow observed in avalanche deposits. (a) Block of wet snow (size: 1 m). (b) Slurry of dry snow including weak snowballs formed during the

course of the avalanche (the heap height was approximately 2 m). (c) Ice balls involved in a huge avalanche coming from the North face of the Mont Blanc (France);

the typical diameter was 10 cm. (d) Sintered snow forming broken slabs (typical length: 40 cm, typical thickness 10 cm).

treatment done for other continua at the same time (before the

1950s). After the 1950s, the concept of plasticity evolved differ-

ently in solid and fluid mechanics. While new concepts such as

nonassociate flow rule or hardening emerged in solid mechanics

over the period from 1950 to 1970, nothing seemed to modify

the belief of fluid rheologists in the yield-stress concept until

1985, when Barnes and Walters stated in a provocative paper

[31] that the yield stress does not exist. This paper was the start-

ing point of a long and intense debate within the fluid rheology

community on the meaning of yield stress, with two tentative

conclusions:

• For low shear rates, evidence has been accumulating, show-

ing that yielding and thixotropy are tightly interconnected

[28,71,72,74]. Indeed, yielding is associated with several

complex processes such as changes in the particle ar-

rangement and/or the dynamics of particle contact, which

are history-dependent processes. Several phenomenological

models have been proposed to describe yielding in a vis-

coplastic fluid; most constitutive models include a kinetic

equation governing the variations in a structural parameter

(i.e., describing particle arrangement within the suspension)

[41,192].
• With increasing shear rates, the processes involved in the ma-

terial yielding are of decreasing importance. It is then possible

to define an apparent yield stress as the intersect of the flow

curve and the axis γ̇ = 0. Although this extrapolated yield

stress differs from the values measured in quasi-static condi-

tions [58,59], it can be easily and robustly evaluated, which

impelled some authors to state that yield stress was an engi-

neering reality [18,49,106]. Several empirical laws including

the Bingham, Casson, and Herschel–Bulkley are commonly

used to describe the flow curve [44].

It is worth noting that in fluid rheology, the question of plas-

ticity boils down to the definition of yield stress and most vis-

coplastic laws are given in a scalar form and are valid for simple-

shear flows. Since Prager’s and Oldroy’s derivation, little work

has been done on the tensorial formulation of constitutive equa-

tions for viscoplastic materials and the notion of yield surface

(i.e., the three-dimensional generalization of the yield stress in

a stress space) [96]. To a large extent, this can be explained

by how difficult it is with fluids to properly run experiments in

flow geometries other than simple-shear flows. The other reason

is that it was not until the 1980s that it was possible to carry

out experiments at very low shear rates and thus to explore the

solid/fluid transition [29].

In geophysical fluid mechanics, there have been many at-

tempts to describe the rheological behavior of natural materi-

als [22,125]. However, since rheometrical experiments are no

way easy, scientists have to use proxy procedures to charac-

terize the rheological behavior of natural materials. Interpret-

ing the traces of past events (e.g., shape of deposits), running

small-scale experiments with materials mimicking the behavior

of natural materials, and making analogies with idealized ma-

terials are common approaches to this issue. Because of a lack

of experimental validation, there are many points of contention

within the different communities working on geophysical flows.
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A typical example is provided by the debate around the most ap-

propriate constitutive equation for describing sediment mixtures

mobilized by debris flows [127]: a certain part of the debris-

flow community uses soil-mechanics concepts (Coulomb be-

havior) [128,129], while another part prefers viscoplastic models

[65]. A third category merges the different concepts from soil

and fluid mechanics to provide general constitutive equations

[32,55–57,179,180,227].

The objective of this review is to examine how the concept of

plasticity is used in geophysical fluid mechanics. In the appli-

cations, we will focus on rapid gravity-driven mass movements

such as avalanches and debris flows. We will first present the

theoretical concepts underpinning plasticity theory in Section 2.

In Section 2.1, we will explain, at a basic level, how a plastic flow

rule is built using the principles of continuum mechanics. Em-

phasis will be placed on the differences between Coulomb plas-

ticity and viscoplasticity concerning not only the yield surface,

but also the one-phase/two-phase character of flows associated

with a plastic behavior. After this description of plasticity on the

bulk scale, we will examine the physical origins of plasticity by

examining what happens on the particle scale. In Section 2.2,

we will start by deriving the equations of motion for an ideal-

ized suspension made up of spherical equal-size particles in a

Newtonian fluid. We will explain how the bulk stress tensor can

be defined from the particle behavior. In Section 2.3, we will

provide a physical interpretation of yield stress for colloidal and

noncolloidal systems, while in Section 2.4 we will derive the

constitutive equations depending on the flow regime. In Section

2.5, we will outline the problems related to particle suspensions

when the particle-size range is very wide, which is the usual case

for geophysical flows.

In Section 3, we will overview experiments focusing on the

rheological determination of natural materials. A critical point

compared to model suspensions is that the diversity of particle

sizes and types gives rise to odd behaviors. We will especially

address the key issue of viscoplastic transition: when we in-

crease the fine-fraction content in a coarse-grained suspension,

we observe a radical change in behavior, marked by a transition

from a Coulomb frictional regime to a viscoplastic regime. Both

rheometrical and flume experiments provide evidence for this

transition. We will also show that for poorly sorted materials,

the rheological properties are strongly time-dependent and, de-

pending on the typical flow timescale, the bulk can exhibit either

Coulomb-like or viscoplastic properties.

In Section 4, we will examine how rheological information

can be used to derive the equations of motion for free-surface,

gravity-driven flows. As the governing equations express the

balance between inertia, pressure gradient, and friction, differ-

ent regimes may be achieved depending on the relative strength

of each process relative to the others. Attention is paid to slow

flows, for which the pressure gradient is balanced by viscous

dissipation. In this case, analytical asymptotic solutions can be

derived. We will also spend some time on fast flows, for which

there is no dominant term in the governing equations. In that

case, the Saint-Venant approach (i.e., depth-averaging the equa-

tions of motion) can be used to simplify the equations of motion.

Analytical solutions will be derived for some flow geometries

(i.e., the so-called dam-break problem and kinematic-wave ap-

proximation).

Finally, in Section 5, we will focus our attention on field

evidence. Interpreting the deposits of geophysical flows may

sometimes be instructive. A very common procedure is to as-

sume the form of the constitutive equation and then to adjust the

rheological parameters by matching certain flow features (e.g.,

the run-out distance) and field measurements. On rare occasions,

using velocity measurements makes it possible to derive rheo-

logical information. Statistical analysis can be used to check the

robustness of parameter fitting.

The reader can also refer to other review papers dealing with

constitutive equations and geophysical flows. In the context of

geophysical flows, Savage studied granular flows [211]. Hutter et

al. realized that most constitutive equations used for debris flows

were given in a scalar form (simple-shear flow). These authors

provided a unified framework based on continuum mechanics in

order to classify and generalize the existing phenomenological

laws [125]. More recently, Dartevelle reviewed the processes

and related constitutive equations for granular geophysical flows

[75].

2. Theoretical concepts

2.1. Continuum description

Plasticity and visco-plasticity are closely related to the pio-

neering work done by Coulomb [63] and Bingham [43], respec-

tively. In the earliest descriptions of simple-shear flow experi-

ments involving bulk materials, several concepts were drawn,

which are summarized here.

• Shear-rate dependence: in the Coulomb description, the shear

stress τ is independent of the shear rate γ̇ , whereas a Bingham

fluid exhibits a linear dependence on the shear rate γ̇ (see Fig.

5).
• Normal-stress dependence: the shear stress τ is a linear func-

tion of the normal stress σ for a Coulomb material, whereas

the shear stress τ is independent of the normal stress for a

Bingham fluid.
• Two-phase flow effects: a Bingham fluid typically behaves

like a one-phase homogeneous material, i.e., a single consti-

tutive equation is sufficient to describe the bulk properties. In

contrast, a water-saturated Coulomb material is a two-phase

Fig. 5. Flow curve: material response for a Coulomb material (solid line) and

Bingham fluid (dashed line) when the material undergoes a simple shear flow.
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material, with a separate response from the interstitial fluid

and the solid phase. This observation leads to splitting the

normal stress as an effective stress σ′ and pore pressure p, a

decomposition known as Terzaghi’s decomposition principle

[182,234]:

σ = p + σ′. (1)

• Yielding: when the shear stress is below a threshold τc,

Coulomb and Bingham materials behave like rigid or elas-

tic bodies. For shear stresses in excess of τc, the material

yields and starts flowing

γ̇ > 0 ⇒ τ = τc + μγ̇n,

γ̇ = 0 ⇒ τ ≤ τc,
(2)

with μ = 0 and τc = σ′ tan ϕ for a Coulomb material with

tan ϕ the bulk friction angle, whereasn = 1 and τc = constant

for a Bingham fluid. For viscoplastic materials, there are al-

ternative phenomenological expressions such as the Casson

model or the Herschel–Bulkley model [44].

Bingham and Coulomb materials are idealized representa-

tions of true materials. They have little in common except for the

existence of a yield stress that separates a rigid/elastic domain

and a fluid domain. These one-dimensional models are quite

easy to understand and require little mathematics to be properly

formulated. In contrast, their three-dimensional representation

in the form of a tensorial expression needs much more work. In-

deed, there are a number of rules that must be checked for a tenso-

rial constitutive equation to be considered as admissible from the

continuum-mechanics point of view [123,184,230]. The most

important principle is material indifference: a physical law does

not depend on a particular frame of reference. This leads to using

quantities that remain invariant under any frame change. For in-

stance, when referring to a particular stress state at a given point

M within the bulk, we can use the principal stresses (i.e., the

eigenvalues σi of the stress tensor at M) or the stress-tensor in-

variants. Principal stresses and stress-tensor invariants are both

objective quantities, but stress-tensor invariants are more appro-

priate to interpreting the stress state. There are three stress-tensor

invariants that can be defined in various ways since any combi-

nation of invariants is in turn an invariant quantity. To interpret

them physically, we define them as follows [78,234]:

• The first invariant I1 = tr σ = σ1 + σ2 + σ3 represents the

mean stress multiplied by 3 (|OP| = I1/
√

3 in Fig. 6). Point P

is the orthogonal projection of the stress-state point M onto the

trisectrix. For a simple fluid, the first invariant coincides with

the fluid pressure (this statement does not hold for Coulomb

materials).
• The second invariant I2 = (1/2)(tr(σ2) − (trσ)2/3) = (1/2)

tr(s2) can be interpreted as the deviation of a stress state

from the mean stress state (|PM|2 = 2I2 in Fig. 6) and is

accordingly referred to as the deviator. We have introduced

s = σ − I11/3, which is called the extra-stress tensor or

stress deviator.

Fig. 6. Principal-stress space and interpretation of the representation in terms

of invariants. (a) Representation in a three-dimensional space. The trisectrix

represents equilibrium states. It has n = (1, 1, 1)/
√

3 as the unit vector in the

stress space. The distance OP is then given by computing OM · n = I1/
√

3.

The deviatoric stress is the departure from equilibrium state. It is represented

by the vector PM = OM − OP = OM − I1n/
√

3, giving |PM| =
√

2I2. (b)

Representation in a two-dimensional space. (c) Deviatoric plane. This plane is

orthogonal to the trisectrix and crosses it at P. The dashed lines represent the

orthogonal projection of the principal axes onto the deviatoric plane. The phase

angle δ is reported.

• The third invariant I3 = (1/3)tr s3 represents the angle in the

deviatoric plane (i.e., the plane orthogonal to the trisectrix at

M) of the vector PM with respect to the projection of a fixed

direction onto the deviatoric plane. This invariant is some-

times called the phase or Lode’s angle cos2 3δ = 27I2
3/(4I3

2 ).

Let us assume that we apply an isotropic stress state to the

material. In the stress space, the stress point is a point M along

the trisectrix σ1 = σ2 = σ3. In this case, the material never

fails. If we now carry out simple shear experiments (see Fig. 5),

the stress tensor has the following components and invariants

σ =

⎡

⎢

⎣

σ τ 0

τ σ 0

0 0 σ

⎤

⎥

⎦
, I1 = 3σ, I2 = τ, and I3 = 0,

in a Cartesian frame (x, y). This means that we force the material

to depart orthogonally from the line σ1 = σ2 = σ3, when apply-

ing a deviatoric stress τ to the material. According to the exper-

imental observations, if the shear stress exceeds a critical value,

the material yields. The yielding condition must then be ex-

pressed, at least, as a function of the second stress-tensor invari-

ant I2. In the stress space (σ1, σ2, σ3), there is a surface delimit-

ing two possible mechanical states of a material element, as de-

picted in Fig. 7. The surface is referred to as the yield surface and

is usually represented by an equation in the form f (I1, I2, I3) =
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Fig. 7. Yield surface delimiting two domains: f < 0 solid (rigid or elastic) do-

main, f > 0 fluid domain. The equation f = 0 represents the yield surface.

0, where f is called the plastic rule. When f < 0, behavior is gen-

erally assumed to be elastic or rigid. When f = 0, the material

yields. When f > 0, the material behaves like a fluid.

In plasticity, the simplest yield criterion is the von Mises

criterion, stating that yield occurs whenever the deviator exceeds

a critical value (whose root gives the yield stress):

f (I2) =
√

I2 − τc.

As depicted in Fig. 8, the yield surface is a cylinder of radius

τc centered around the axis σ1 = σ2 = σ3. The simplest plastic

rule consistent with the one-dimensional Coulomb law is the

Drucker–Prager rule, for which the yield surface is a cone around

the trisectrix σ1 = σ2 = σ3, with its apex at the origin O

f (I1, I2) =
√

I2 − kI1,

with k = (1/3) sin ϕ > 0 a constant. In the Drucker–Prager rule,

the yield surface is axisymmetric. There are more complicated

rules, in which the third invariant plays a role, such as the Mohr–

Coulomb plastic rule, the representation of which in the stress

space is an irregular hexagonal pyramid [234]:

f (I1, I2, I3) =
√

I2

[

sin
(

δ +
π

3

)

k
√

3 cos
(

δ +
π

3

)]

− kI1,

where we have expressed the third invariant in terms of Lode’s

angle δ.

We have so far answered to the question: for which stress

conditions does the material yield? We now have to respond to

the question: what does it happen after yielding? We assume

that, after yielding, the following principles hold.

Fig. 8. Representation of the yield surface in the principal stress space. (a) Von

Mises yield surface and (b) Drucker–Prager yield surface.

(i) Coaxiality principle: the principal directions of the extra-

stress and strain-rate tensors coincide since the material

moves in reaction to the solicitation.

(ii) Associate normal flow rule: the strain-rate tensor is directly

proportional to the surplus of stress, that is, the distance

between the point representing the stress state and the yield

surface, i.e.
√

I2 − τc.

Translated into mathematical terms, principles (i) and (ii) lead to:

d = λ(
√

I2 − τc)∇f , with λ a proportionality coefficient (La-

grangian multiplier), when f > 0. We obtain

d =
λ

2

(√
I2 − τc

) s
√

I2
when f > 0,

= 0 when f ≤ 0.

(3)

Note that in plastic potential theory, we could also imagine

other flow rules, e.g., once the material has yielded (f = 0),

the deformation derives from a potential F that differs from f;

in that case, the flow rule is said to be non-associate and d =
λ∇F . Here, we have used the simplest arguments to reply to

the question above, as Prager [115,196] and Oldroyd [183] did

for Bingham fluids. It should, however, be remembered that the

behavior of true materials is usually much more complicated

[153].

We can invert Eq. (3) by computing d · d and then taking the

trace. We obtain tr(d2) = λ2(
√

I2 − τc)2/2. Defining the second

invariant of the strain-rate tensor as J2 = (1/2)tr(d2), we then

derive

s =
1

λ

√
J2 + τc√

J2
d when f > 0.

For this equation to be consistent with the phenomenological

relation (2), we must set λ−1 = μ. We finally obtain the consti-

tutive equation in a tensorial form for a Bingham fluid

s =
(

2μ +
τc√
J2

)

d when f > 0,

s = 0 when f ≤ 0.

(4)

The same exercise can be repeated for the Drucker–Prager

yield surface. We obtain

d =
λ

2

(

s
√

I2
f − 2fk1

)

when f > 0,

with f =
√

I2 − kI1. We can notice that the first invariant of

the strain-rate tensor is nonzero since J1 = −trd = 3fλk > 0,

which implies that the bulk volume increases indefinitely with

time (dilatancy of the material), which is not realistic. The sec-

ond invariant of the strain-rate tensor is J2 = (1/2)tr(d′2) =
(λ/2)2f 2, where we split the strain-rate tensor into a deviatoric

(traceless) contribution d′ and an isotropic term d′′. We can then

relate the deviatoric contributions of the stress tensor and the

deviatoric part of the strain-rate tensor

s =
(

kI1 +
J1

3λk

)

d′
√

J2
when f > 0. (5)

We verify that, when an isochoric simple shear is applied to the

material (i.e., J2 = γ̇ and J1 = 0, see Fig. 5), the shear stress
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is linearly dependent on the normal stress and independent of

the shear rate: τ = 3kσ, consistently with the phenomenologi-

cal Coulomb law. It is worth noting that this derivation of the

bulk stress tensor in Eq. (5) is purely formal since the bulk stress

tensor conflicts with experimental observations, except for the

prediction of a Coulomb behavior for simple-shear flow condi-

tions. Indeed, an obvious shortcoming has been seen just above

with dilatancy, which imposes modifying the yield function f to

take material compressibility into account [75,89,160,234].

The last point in this presentation of continuum-mechanics

tools concerns fluid–solid coupling. For viscoplastic materials,

the coupling is complete since the suspension behaves as a whole

on the bulk scale. On the contrary, fluid-saturated coarse-grained

Coulomb materials behave as two-phase materials on the bulk

scale, i.e., the solid and interstitial-fluid phases may move sep-

arately at different velocities. The Terzaghi principle states that

the bulk stress tensor can be divided into a fluid contribution

(pore pressure) and a solid contribution (reflecting the force dis-

tribution within the granular skeleton) (see Eq. (1)). Most often,

the viscous effects of the interstitial fluid can be neglected so

that the fluid action reduces to a pressure term. This pressure

can be hydrostratic if the relative velocity v between the two

phases is zero or nearly zero. When v is slightly nonzero, there

is a pressure gradient within the bulk due to the fluid sewage,

which can be described using the linear Darcy law

∇p = −
μ

κ
v,

where κ is the permeability coefficient, which is a function of

both the particle radius a and the solid concentration φ. The

Kozeny–Carman relation can be used to evaluate this coefficient:

κ = a2(1 − φ)/(45φ2), with φ the solid concentration (φ is the

volume occupied by particles to total volume). This relation

shows that the pore pressure is sensitive to the particle size and

changes in the solid concentration. Note also that shearing a

coarse-grained material usually leads to a bulk volume increase

(dilatancy), which induces a decrease in the solid concentration,

thus an increase in the permeability coefficient κ. For materials

vigorously sheared, a more complex diffusion equation must be

used [128,129,213]. This equation relates the pressure gradient

and the total derivative of the solid concentration

μ

κφ

dφ

dt
= −

(

φ∇ −
ρf

ρ̄
∇φ

)

· ∇p, (6)

with ρ̄ = φρp + (1 − φ)ρf the bulk density. As pointed out by

Iverson [128,129], this equation is crucial since it shows how

high fluid pressure can be generated in a dilating/contracting

granular material and how this alteration in the pore pressure

influences the frictional behavior (see Eq. (1)).

2.2. Averaged balance equations

We are now seeking why some granular materials behave like

a one-phase material on the bulk scale and why there are different

types of yield surface. For this purpose, we consider suspensions

of equal-size, spherical particles and outline the basic elements

in microstructural theories of particle suspensions needed for

deriving the governing equations and the bulk stress tensor.

Fig. 9. Idealized suspension of spherical particles in a Newtonian fluid.

In any microstructural approach to particle suspensions, the

starting point is to examine the behavior of individual compo-

nents on a particle scale, then to infer the bulk rheological be-

havior by using an appropriate average process. In order to avoid

overly general explanations, we assume that (see Fig. 9)

(1) the interstitial fluid is Newtonian, with viscosity μ and den-

sity ρf;

(2) the particles are rigid, spherical, and of equal size (radius a,

density ρp).

The suspension is assumed to be statistically homogeneous.

The number of particles per unit volume (density number) is

n and is related to the solid concentration φ since we have

n = φ/(4πa3/3).

Interstitial fluid motion is described by the Navier–Stokes

equations

∂uf

∂t
+ (uf · ∇)uf = −

1

ρf
∇p +

1

ρf
∇ · σf, (7)

∇ · uf = 0, (8)

where uf is the fluid velocity, p the generalized pressure (includ-

ing the fluid pressure and gravity potential), and σf is the stress

tensor (here σf = 2μd where d denotes the strain-rate tensor).

The equation of motion for the particle can be written in the

following Lagrangian form

dup

dt
= g +

1

mp
F(up, uf), (9)

where F(up, uf) is the force field resulting from the interaction

between the fluid and the particle, mp the particle mass, and up

the velocity of the mass center. The boundary conditions at the

solid/fluid interface reflect non-penetration and fluid adherence:

uf · k = 0, where k denotes the outwardly-oriented unit normal.

Note that

• the force field F(up, uf) is not yet defined;
• when expressing the dependence of F on the flow variables,

we assume that it depends on the instantaneous particle ve-



12 C. Ancey / J. Non-Newtonian Fluid Mech. 142 (2007) 4–35

locity and the (Eulerian) velocity field (given by the Navier–

Stokes equations).

To obtain a more physical picture of the fluid/particle interplay,

we introduce dimensionless numbers and transform the equa-

tions above into dimensionless expressions. Let us introduce a

velocity scale U∗ for the fluid. The timescale for the fluid mo-

tion near the particle is then: tf = a/U∗. The characteristic time

for the particle is defined as a relaxation time, that is, the time

needed for its velocity to vary substantially as a result of the

fluid action. If F is the order of magnitude of the fluid–particle

interaction, examining Eq. (9) leads to selecting: tp = mpU∗/F .

The equations of motion can now be written in dimensionless

form as follows (dimensionless variables have a tilde)

Rep

(

∂ũf

∂t̃
+ (ũf · ∇)ũf

)

= −
P∗ρfa

μU
∇p̃ + �ũf, (10)

where P∗ is the pressure scale [here P∗ = μU∗/(ρfa)] and

Rep = ρfU∗a/μ,

is the particle Reynolds number. For the particle, one obtains

St
dũp

dt̃
=

mp

F
g + F̃(ũp, ũf), (11)

where

St =
tp

tf
=

mpU
2
∗

Fa
,

is called the Stokes number. Two asymptotic regimes can be

achieved depending on the value of the Stokes number:

• St ≫ 1. The fluid has no time to adjust its velocity to the vari-

ations in the particle velocity and, conversely, the particle is

not affected by the rapid variations in the fluid velocity (but

naturally it continues to be affected by the slow variations).

In practice, this means that the fluid and the particle evolve in

a quasi-autonomous way and, therefore, their motion can be

considered separately. On a macroscopic scale, such suspen-

sions retain a genuinely two-phase character and the equa-

tions of motion take the form of two interrelated equations

(one for each phase).
• St → 0. The particle has time to adjust its velocity to any

change in the fluid velocity field. One sometimes says that

the particle is the slave of the fluid phase. On a macroscopic

scale, this means that the suspension behaves as a one-phase

medium.

From this discussion, one must keep in mind that, if any particle

suspension is a two-phase material on a particle scale, the sus-

pension can behave as a one-phase fluid on a macroscopic scale.

In addition, the only asymptotic regimes for which it is possible

to deduce the fluid–particle interaction in a completely theoreti-

cal way are the regimes St → 0 and Rep → 0 and St → ∞ and

Rep → ∞ [35,143,226].

After outlining the coupling between the solid and fluid

phases, we derive the governing equations (mass and momentum

balance equation) by averaging the local equations of motion.

We will emphasize the flow conditions for which it is possible

to provide a rheological description within the framework of

one-phase fluids. Another important point is the derivation of

the bulk stress tensor.

2.2.1. Bulk mass balance equation

The approach involves taking the volume average of the local

equations of motion (volume averaging). The operator “volume

average” is constructed by taking a control volume V assumed

to be sufficiently wide to contain a large number of articles, but

in the meantime sufficiently small with the respect to a typical

lengthscale of the bulk for it to be considered a continuum.

For the solid and fluid phases, the local mass balance equation

is in the form

∂ρi

∂t
+ ∇ · (ρiu) = 0,

with i = p (particle) or i = f (fluid) and where u denotes the local

velocity coinciding with fluid velocity within the continuous

phase and the solid velocity within a particle. We define the

bulk (volume-averaged) density as ρ̄ = φρp + (1 − φ)ρf with φ

the solid concentration. We also define a characteristic function

[154]

• H(x) = 1 if x is inside a particle,
• H(x) = 0 if x lies within the fluid.

The characteristic function is locally discontinuous (at the

fluid/solid interface) and must be considered as a generalized

function. Using distribution theory, we can show that

∂Hi

∂t
+ u · ∇(Hi) = 0, (12)

with i = f or p and where the following short-hand notations

Hp = H and Hf = 1 − H have been used. This equation is

sometimes referred to as the topological equation [85]. Note

that we have
∫

V
H dV = φV.

We call Vp the sub-volume of V containing the particles and

Ap the surface bounding Vp. Multiplying the mass equation for

solid particles by the characteristic function H and the mass

equation for the continuous phase by 1 − H and integrating over

the control volume V, we obtain
∫

V

(

H
∂ρp

∂t
+ (1 − H)

∂ρf

∂t
+ H∇ · (ρpu) + (1 − H)∇ · (ρfu)

)

dV = 0,

which can be transformed into
∫

V

(

∂ρ̄

∂t
+ ∇ · (ρ̄u) − ρp

∂H

∂t
− ρf

∂(1 − H)

∂t
− ρp∇ · (Hu)

−ρf∇ · ((1 − H)u)

)

dV = 0.

Then, applying the Gauss and Leibnitz rules to interchange the

time/space derivatives with the volume averaging operator, we

deduce the bulk mass equation

∂ρ̄

∂t
+ ∇ · (ρ̄u) = 0.
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As expected, this result shows that the bulk mass balance equa-

tion satisfies the same classic law as the solid and fluid phases

do.

2.2.2. Bulk momentum balance equation

Multiplying Eq. (7) with 1 − H , then integrating it over the

control volume V, making use of the topological Eq. (12), the

relation ∇H = k over Ap with k the unit outward normal to

Ap (and ∇H = 0 otherwise), and the Reynolds decomposition

uf = ūf + u′
f, we eventually obtain

ρf

(

∂ūf

∂t
+ ∇ · ūfūf

)

= −∇p̄ +
1

V

∫

Ap

(σf − p1) · k dA

+ ∇ ·
1

V

∫

Vf

(σf − ρfu
′
fu

′
f) dV. (13)

In this equation, the mean fluid velocity is

ūf(x, t) =
1

V

∫

V

(1 − H(x, t))uf(x, t) dV =
1 − φ

Vf

∫

V

uf(x, t) dV,

where we used
∫

V
(1 − H) dV = (1 − φ)V. Here, the mean fluid

velocity is 1 − φ the mean bulk velocity.

For the solid phase, we have to transform the Lagrangian

equation of motion (9) into an Eulerian equivalent. The rigid-

sphere assumption implies that the solid kinematic field is:

up(x, t) = up(y, t) + ωp × (x − y), with y the position of the

center of mass and ωp the rotation velocity. Since the gradient

of a rotational field is zero, the local equation is for a solid parti-

cle: ρp∂up/∂t = ρpg + ∇ · σp, with the following difficulty: the

particle being rigid, the stress field is undetermined. This is in

fact a minor issue since we will integrate the stress field over

the particle volume and the Green–Ostrogradski allows us to

connect this field to the forces acting on the particle surface.

Proceeding as earlier by multiplying the equation above by H,

then integrating it on V, we find

ρp

(

∂ūp

∂t
+ ∇ · ūpūp

)

= φρpg + ∇ · (σ̄p − ρpu′
pu′

p)

− ∇ ·
1

V

∫

Ap

σp · k dA, (14)

where again we used the Reynolds decomposition up = ūp +
u′

p. Since at the particle surface we have σp · k = (σf − p1) · k,

the last term on the right-hand side in Eq. (14), representing the

stresses exerted on the particle surface, is equivalent to the term

in Eq. (13). These terms reflect momentum transfer between the

two phases through their interface.

The local bulk velocity is defined as follows: u(x, t) =
Hup(x, t) + (1 − H)uf(x, t). The bulk volume-averaged veloc-

ity is then: ū(x, t) = ūp(x, t) + ūf(x, t). We can also define a

bulk velocity based on mass averaging (rather than volume):

ρ̄ūm = ρpūp + ρfūf, with ρ̄ = φρp + (1 − φ)ρf. The two veloc-

ities coincide when the solid and fluid densities are equal. A

helpful approximation can be used when one of the densities

is very low compared to the other and the velocities of each

phase are of the same magnitude. Using the same dimensional

argument as earlier, we can show that we meet this case for a

suspension of particles within a gas with St ≫ 1 and ρp ≫ ρf;

the same situation is met with emulsions (ρp ≪ ρf and St → 0).

Note that the mass conservation is satisfied ∇ · ū = ∇ · ūm = 0

(φ is assumed to be constant).

Summing (13) and (14) leads to the bulk momentum equation

ρ̄

(

∂ūm

∂t
+ ∇ · ūmū

)

= −∇p̄⋆ + ∇ ·
1

V

∫

V

(σ − ρu′u′) dV,

(15)

with p̄⋆ = Φ̄ + p̄f (where ∇Φ̄ = −ρ̄g). This equation is not

very helpful as long as we are not able to transform it into the

classic form of a momentum balance equation for a continuum;

here this means that we must have ūm ≈ ū so that the terms

on the left-hand side of Eq. (15) can be identified as a material

derivative. If this condition is satisfied, then we can identify the

term on the right-hand side under the divergence operator as a

stress tensor. We refer to it as the bulk extra-stress tensor

σ̄ =
1

V

∫

V

(σ − ρu′u′) dV, (16)

which is the definition used by [34] for the bulk stress tensor.

Further computation reveals that this stress tensor can be divided

into a fluid contribution [14,34]

σ̄
(f) = 2μd̄ −

1

V

∫

Vf

ρfu
′u′ dV, (17)

and a solid contribution [14]

σ̄
(p) =

1

V

∫

Ap

σ · xk dA −
1

V

∫

Vp

ρpu′u′ dV + G(ωp), (18)

where G(ωp) represents an antisymmetric function ωp, which is

not detailed here because in most cases of practical interest, G

vanishes [14,34,198].

2.3. Constitutive equations: physical origin of the yield

stress

In the derivation of the bulk momentum equation, we have

found that the solid contribution in Eq. (18) can be defined as

σ̄
(p) ≈

1

V

∫

Ap

σ · xk dA =
a

V

∫

Ap

fk dA, (19)

where f = σ · k is the stress at the particle surface, when the

influence of particle velocity fluctuations can be neglected. This

definition is quite general and can be found in soil mechanics

[60,109,176], homogeneization theory [51,52], and rheology of

particle suspensions [14,34]. For concentrated particle suspen-

sions, the stress state at the particle surface is directly related

to interparticle interactions. Flow initiation or yielding is then

directly a consequence of changes in these interactions. In rheol-

ogy, three classes of particle interaction are usually considered:

colloidal interaction, lubricated contact, and direct (frictional

and/or collisional) contact [1,66]. Here, we address the specific

issue of the yield stress computation for suspensions made up

of particles with nearly the same size.

For colloidal interactions, a vast literature has been published

about the influence of colloidal interactions on the bulk constitu-

tive equation [205,206]. For dilute and moderately concentrated
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suspensions and low Péclet numbers, Pe = Φ/kT , with Φ the

particle energy potential (depending on electrostatic forces and

function of arrangement, ionic strength, Debye length, solid frac-

tion, etc.), k Boltzmann’s constant, and T absolute temperature,

solid particles are permanently fluctuating and never reach an

equilibrium position because of Brownian effects. In this case,

the bulk behavior is close to that of a dilute suspension of non-

colloidal particles; there is no yield stress [37,46,233]. At high

Péclet numbers, the particles find an equilibrium position (at

least after a possibly long rest period) and cannot easily move

away from each other. In that case, the suspension exhibits a

yield stress since flow can be obtained only if a finite energy is

provided to the system to extract each particle from its instanta-

neous local potential [135].

For a number of colloidal suspensions including natural ma-

terials, the situation is somewhat different because particles are

not electrically stabilized and form aggregates (or flocs), which

makes their rheological characterization more difficult [240].

Potanin et al. [193,194] developed a phenomenological fractal

model to determine bulk behavior of weakly aggregated disper-

sions. They assumed that particles form aggregates which in turn

are connected into a network. Thus they interpreted bulk yield

stress as a consequence of chain breakup due to thermal fluctua-

tions and rupture under compressive force. Another conceptual

model inspired by glassy dynamics has been proposed by Sol-

lich et al. [91,224,225]. They showed that the bulk mechanical

properties can be related to the internal structure (described in

terms of the particle energy distribution). To date such mod-

els are able to mimic bulk behavior over a wide range of flow

conditions, but cannot specify the effects of particle size, size

distribution, or solid concentration on the yield stress of a par-

ticulate fluid. Kapur et al. [138], and then Scales et al. [215]

proposed a mean-field theory for particles governed by the van

der Waals attractive forces. The input values of the model were

the Hamaker constant A, the coordination number CN , the mean

particle diameter 2a, and an interparticle separation parame-

ter s0, which must be fitted from experimental data. The yield

stress is computed as the summation of all pairwise interparticle

forces (per unit area). More recently, on the same basis, Zhou

et al. improved this model by taking into account a broader size

distribution of particles, but limited their attention to systems at

the isoelectric point [247]. They found that the maximum yield

stress can be written as

τk(φ) = K

(

φ

1 − φ

)c 1

(2a)2
(20)

where K = 3.1Ab/(24πs0), and b and c are two parameters to

be fitted from experimental data. They proposed the following

explanation for the variation in yield stress with increasing solid

concentration. A weakly flocculated dispersion may be seen as

a series of weakly interconnected aggregates (flocs) made up of

strongly interacting particles. At low solid concentrations, yield-

ing results from the breakdown of the weak links between flocs.

At high solid concentrations, yielding is a consequence of the

rupture of interparticle bonds and resistance to the deformation

of networks. This means that a critical solid concentration φc

separating the two domains should exist.

• When φ < φc, structural effects due to weak links between

flocs prevail over those due to geometric resistance and the

yield stress varies with a solid concentration such as τk ≈
Kφc/d2. This effect is included in Eq. (20) since it can be

derived from Eq. (20) by taking a series expansion to the

chief order at φ = 0.
• When φ > φc, the geometric resistance becomes more pro-

nounced, resulting in a much higher dependence on the solid

concentration τk ≈ Kφc′
/d2, with c′ > c. Zhou et al. consid-

ered that from a microstructural point of view, the geometric

resistance enhancement is reflected by the increase in parti-

cle contacts. Assuming that the coordination number is given

by Rumpf’s expression (CN = 3.1/(1 − φ)), they arrived at

the conclusion that the yield stress may be scaled as a power

function of φ/(1 − φ). The series expansion at φ = 0 implies

that the exponent must be c. Moreover, their experiments with

alumina suspensions showed that the critical solid concentra-

tion ranged from 0.26 to 0.44 and depended on the particle

diameter.

In noncolloidal systems, particles experience direct (i.e., sus-

tained frictional) or lubricated contacts. When particles experi-

ence sustained frictional contacts, particle friction gives rise to

the Coulomb yielding process on the bulk scale, characterized

by a linear relationship between the normal and shear stresses:

τ = tan ϕ σ. It has long been stated that the bulk Coulomb law

on the bulk scale was a direct consequence of the Coulomb fric-

tional behavior on the particle scale. In fact, the link between the

two scales is not particularly direct. Using Eq. (19) and the nu-

merical results obtained by Radjai et al. [200] on the probability

distribution of contact forces, Ancey et al. showed that the bulk

friction angle was weakly dependent on the particle friction co-

efficient [14]. Other effects such as the particle arrangement and

the probability distribution of contact forces have greater influ-

ence on bulk friction. The result is in line with micromechanical

analysis done in soil mechanics [52,53,97].

For cases when particle contact is lubricated by the intersti-

tial fluid, a number of theoretical models based on Eq. (19) have

been proposed to compute the bulk stress tensor [3,40,92,95].

These models predict a viscous behavior, with no yield stress,

but a diverging bulk viscosity when the solid concentration tends

toward the maximum solid concentration. Indeed, the squeezing

force between two neighboring particles is F = −3μπa2v/(8s),

with v the relative particle velocity and s the mean distance be-

tween the particle surfaces [92]; when the solid concentration

is increased, the particles are more densely packed, which leads

to decreasing s. However, the prediction of the nonexistence

of a yield stress contrasts with experimental observation. Clear

evidence of yielding behavior has been reported by Husband

et al. [122] (with polyisobutylene/calcium carbonate suspen-

sions). They observed that for solid concentrations in excess of

a critical value (φ ≈ 0.47), suspensions exhibited a yield stress.

Moreover, this yield stress increased dramatically when the solid

concentration came closer to the maximum concentration. In

this case, the authors attributed yielding behavior to either par-

ticle jams or weak polymer–particle interactions, but they did

not provide quantitative justification in their explanations. Such
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behavior was also observed by Wildemuth and Williams [238]

with coal–glycerin slurries, Kytömaa and Prasad [144,197] with

2 mm glass beads in a water–glycerol solution, Coussot [65]

with 100 �m polystyrene beads in water–glycerol solutions, and

Johma et al. [134] with 2 �m polystyrene beads in water. In the

latter case, the authors related the yield appearance to structural

changes in the particle arrangement (glass transition) at a critical

solid concentration (φ = 0.58). Using polymethylmethacrylate

spheres in a Newtonian fluid, Heymann et al. found that their sus-

pensions exhibited an apparent yield stress [108]. Surprisingly

enough, the dependencies of this yield stress and the relative vis-

cosity on the solid concentration revealed a similar trend. They

also observed that there was an elastic-viscous transition sepa-

rating the solid-like and fluid-like domains, implying that there

is not a single yield stress. Wildemuth and Williams [238] have

suggested that the existence of a yield stress in noninteracting

particle suspensions is a consequence of a dependence of the

maximum solid concentration on the shear stress. Using heuris-

tic arguments, they have shown that a yield stress should arise

over a given range of solid concentrations [φ0, φ∞]:

(21)

where A, φ0, and φ∞ are three parameters. φ∞ is the high-shear

limit of the solid concentration and φ0 corresponds to a kind of

percolation threshold. The model has been successfully tested

by Wildemuth and Williams on coal slurries. Experiments con-

ducted on suspensions with solid concentrations φ ≤ 0.51 have

revealed a complex behavior (thixotropy due to order/disorder

transition), but no yield stress [235]. These experiments sub-

stantiate the idea that there is a critical solid concentration (or

narrow range of solid concentrations) φc, for which a percolating

network of particles develops throughout the bulk.

2.4. Constitutive equations: behavior at higher shear rates

In principle, using the theoretical framework depicted in

Section 2.2 makes it possible to compute the bulk stress ten-

sor for particle suspensions. Rigorous analytical results have

been obtained only for certain flow conditions (e.g., when Rep

and St are much smaller than unity) and dilute suspensions

[36,38,111,146,162,206,245]. In contrast, for moderate and con-

centrated suspensions or for general flow conditions (i.e., the

Stokes, Péclet, and Reynolds numbers taking any finite value),

there is no full analytical derivation of the bulk stress tensor, but

only approximate models based on heuristical simplifications or

numerical simulations [14,244,246]. To progress in determining

the rheological properties of particle suspensions, the basic idea

is to look for prevailing terms in Eqs. (13) and (14) depending on

the flow conditions. This may be done typically using dimen-

sional analysis. For an interaction to be predominant, it must

have (i) sufficient strength relative to others and (ii) time for its

effects to influence the system. In practice, most of the dimen-

Fig. 10. Simplified diagram of flow regimes. The transitions between regimes are described using dimensionless numbers. The Péclet Pe = 6πμa3γ̇/(kT ) (T is

the temperature and k is the Boltzmann constant) for the transition between Brownian (thermal agitation of particles) and viscous regimes; the repulsion number

Nr = Ψ/(kT ) (with Ψ the van der Waals interaction potential) for the transition between the colloidal and Brownian regimes; Γ = 6πμa3γ̇/Ψ is a number reflecting

the ratio between viscous and colloidal interactions; the particle or flow Reynolds number is used for the transition toward turbulence; the Leighton number

Le = μγ̇a2/(sσn) (with s the mean distance between the surfaces of two close particles) for the transition between the viscous and frictional regimes; the Bagnold

number Ba = ρpγ̇s/μ is used for the transition between the viscous and collisional regimes. φm denotes the maximum random solid concentration (φm ≈ 0.635 for

spherical particles of equal size) and φc is the minimum concentration for a network of particles in close contact to form (φc ≈ 0.5 for spherical particles of equal

size).



16 C. Ancey / J. Non-Newtonian Fluid Mech. 142 (2007) 4–35

sionless numbers can be interpreted in this way. For instance,

the Stokes number can be seen as the ratio of particle/fluid relax-

ation times or the ratio of inertia/viscous effects. Using a limited

number of dimensionless numbers makes it possible to outline

the flow regimes in a single diagram (γ̇, φ) where γ̇ is the shear

rate (see. Fig. 10), as suggested by Coussot and Ancey [66].

For the hydrodynamic regime (B in Fig. 10), theoretical mod-

els predict a pseudo-Newtonian behavior, with a bulk viscosity η

rising with increasing solid concentration φ and diverging when

the solid concentration comes closer to the maximum solid con-

centration φm. In these models, the dependence of η on φ is

similar to that given by Krieger and Dougherty’s expression

η = μ

(

1 −
φ

φm

)−[η]φm

(22)

where [η] = lim
φ→0

(η − μ)/(μφ) = 2.5 is called the intrinsic vis-

cosity. This type of relation matches the Einstein expression

at low solid fractions. The divergence of the bulk viscosity

when φ → φm is not realistic from a physical point of view.

In fact, beyond a critical value of φ, colloidal interactions or

direct/lubricated contacts may become predominant. Concen-

trated suspensions (φ > 0.3) usually exhibit normal-stress ef-

fects, partly because of particle migration in simple shear exper-

iments [243] or asymmetric microstructure [187].

The transition between the hydrodynamic regime (B in Fig.

10) and the colloidal regime (C in Fig. 10) are of great interest

for the applications since they correspond to viscoplastic behav-

ior. To date, there is, however, no theoretical derivation, even

approximate, of the bulk stress tensor. Phenomenological laws

are therefore used to describe rheological behavior. One of the

most popular is the Herschel–Bulkley model, which generalizes

the Bingham law

τ = τc + Kγ̇n,

with K and n two constitutive parameters. In practice, this phe-

nomenological expression successfully describes the rheologi-

cal behavior of many materials over a sufficiently wide range of

shear rates [44,65], except at very low shear rates [71,94]. For

numerical purposes, a viscoplastic model may be regularized

using a biviscous model [83,239], Papanastasiou’s exponential

model [186], or extended forms [248]. Indeed, the existence of

a yield stress entails numerical difficulties in tracking the shape

and position of the yield surface(s) within the flow.

At high solid concentrations (regimes E–G in Fig. 10), there is

a significant change in bulk behavior due to the development of a

particle network within the bulk. A number of striking phenom-

ena (dilatancy, jamming, shear localization, etc.) are induced

by this network. Usually three subdomains can be considered:

direct friction (regime E), lubricated contact (regime F), and

collisional contact (regime G).

Regime E corresponds to the post-failure domain in soil me-

chanics, i.e., when after yielding, a soil creeps. As explained in

Section 2.3, Coulomb friction at the particle level imparts its

key properties to the bulk, which explains (i) the linear relation-

ship between the shear stress τ and the effective normal stress

σ′ = σ − p (with p the interstitial pore pressure)

τ = σ′ tan ϕ,

and (ii) the non-dependence of the shear stress on the shear rate

γ̇ .

Regime F (lubricated contact, also called the macro-viscous

regime by Bagnold [19]) may be seen as a mere extension of the

hydrodynamic regime (B) since the bulk rheological behavior is

still governed by the interstitial fluid. There is, however, a signifi-

cant departure from Newtonian behavior when φ → φm. Indeed,

the shear-induced relative motion of particle layers develops nor-

mal forces: a particle in motion can no longer travel far away

from neighboring particles, but must slide between the particles

of the surrounding layers (above and below it). The particle con-

figuration is no longer isotropic and constant; crowding effects

induce some organization or disorder depending on the shear rate

[99]. For uniform hard-sphere suspensions, shear-thickening be-

havior appears for φ ≥ φc because of order/disorder transitions

or cluster formation [27,47,112,113,235].

Regime G (collisional contacts, also called the particle-inertia

regime by Bagnold [19]) has long been characterized using ki-

netic theory or Bagnold-like heuristical arguments. [98,202].

For the same reason as for regime F, there are significant dif-

ferences between dilute and dense collisional regimes when the

solid concentration exceeds a critical value φc. For φ > φc, the

development of a particle network together with the increasing

contribution of frictional dissipation modify the structure of the

bulk stress tensor. This regime is sometimes called frictional-

collisional to emphasize the importance of friction. The first

proposition of bulk stress tensor seems to be attributable to Sav-

age [210], who split the shear stress into frictional and collisional

contributions

τ = σ tan ϕ + μ(T )γ̇,

with T the granular temperature. Elaborating on this model, An-

cey and Evesque suggested that there is a coupling between

frictional and collisional processes [10]. Using heuristic argu-

ments on energy balance, they arrived at the conclusion that

the collisional viscosity should depend on the Coulomb number

Co = ρpa
2γ̇2/σ to allow for this coupling in a simple way

τ = σ tan ϕ + μ(Co)γ̇ .

Pouliquen et al. proposed a slightly different version of this

model, where both the bulk frictional and collisional contri-

butions collapse into a single term, which is a function of the

Coulomb number [93,136,195]

τ = σ tan ϕ(Co).

Contrasting with other propositions, Josserand et al. stated that

the key variable in shear stress was the solid concentration φ

rather than the Coulomb number [137]

τ = K(φ)σ + μ(φ)γ̇2,

with K a friction coefficient. Every model is successful in pre-

dicting experimental observations for some flow conditions, but

to date, none is able to describe the frictional-collisional regime

for a wide range of flow conditions and material properties.
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2.5. The case of polydisperse suspensions

Natural suspensions are made up of a great diversity of grains

and fluids. This observation motivates fundamental questions:

how to distinguish between the solid and fluid phases? What

is the effect of colloidal particles in a suspension composed of

coarse and fine particles? We shall see that, when the particle

size distribution is bimodal (i.e. we can distinguish between

fine and coarse particles), the fine fraction and the interstitial

fluid form a viscoplastic fluid embedding the coarse particles,

as suggested by Sengun and Probstein [218]. This approximation

usually breaks for poorly sorted slurries. In that case, following

Iverson [128,129], we will see that Coulomb plasticity can help

understand the complex, time-dependent rheological behavior

of slurries.

Sengun and Probstein proposed different arguments to ex-

plain the viscoplastic behavior observed in their investigations

on the viscosity of coal slurries (with particle size typically rang-

ing from 0.4 to 300 �m) [218,219]. Their explanation consists

of two approximations. First, as this is the interstitial phase, the

dispersion resulting from the mixing of fine colloidal particles

and water imparts most of its rheological properties to the entire

suspension. Secondly, the coarse fraction is assumed to act inde-

pendently of the fine fraction and to enhance bulk viscosity. They

introduced a net viscosity ηnr of a bimodal slurry as the product

of the fine relative viscosity ηfr and the coarse relative viscosity

ηcr. The fine relative viscosity is defined as the ratio of the appar-

ent viscosity ηf of the fine-particle suspension to the viscosity of

the interstitial fluid μ: ηfr = ηf/μ. The coarse relative viscosity

is defined as the ratio of the apparent viscosity ηc of the coarse-

particle slurry to the viscosity of the fine-particle suspension:

ηcr = ηc/ηf. The two relative viscosities depend on the solid

concentrations and a series of generalized Péclet numbers. For

the coarse-particle suspensions, all the generalized Péclet num-

bers are much greater than unity. Using a dimensional analysis,

Sengun and Probstein deduced that the coarse relative viscos-

ity cannot depend on the shear rate. In contrast, bulk behavior

in fine-particle suspensions is governed by colloidal particles

and thus at least one of the generalized Péclet numbers is of the

order of unity, implying that the fine relative viscosity is shear-

dependent. Sengun and Probstein’s experiments on the viscosity

of coal slurries confirmed the reliability of this concept [218].

Plotting log ηnr and log ηfr against log γ̇ , they found that over

a wide range of concentrations, the curves were parallel and

their distance was equal to log ηcr (see Fig. 11). However, for

solid concentrations in the coarse fraction exceeding 0.35, they

observed a significant departure from parallelism which they as-

cribed to nonuniformity in the shear rate distribution within the

bulk due to squeezing effects between coarse particles.

Ancey and Jorrot examined the effect of adding coarse parti-

cles in a colloidal dispersion [11]. At first glance, since the vol-

ume occupied by the colloidal particles is decreased, the bulk

yield stress should decrease and, to first order, we can use Eq.

(20) to infer

τc =
K

(2a)2

(

φf

1 − φf

)c

(1 − φ), (23)

Fig. 11. Variation in the bulk viscosity of coal slurry as a function of the shear

rate. The bulk viscosity curve is parallel to the curve obtained with the fine

fraction. After [218].

where φ is the coarse-particle concentration and φf the con-

centration in fine (colloidal) particles. To test this expectation,

Ancey and Jorrot measured the bulk yield stress of kaolin suspen-

sions to which they added a given amount of coarse particles. Fig.

12 shows typical results obtained with a bimodal distribution of

glass beads (1 and 3 mm in diameter). The dimensionless number

ξ is the relative fraction of small beads (ξ = 0 means that there

were no small beads while ξ = 1 means that all coarse particles

added to the kaolin suspension were small beads). The total solid

concentration φt is computed as follows: φt = φk(1 − φc) + φc.

The first result is that the trend given by Eq. (20) is correct to

first order: adding a small amount of coarse particles leads to a

decrease in the bulk yield stress (here for total solid concentra-

tions as high as 0.55). Interestingly enough, in contrast with the

authors’ expectation, the bulk yield stress starts diverging when

the total solid concentration comes closer to the maximum solid

concentration. A striking feature of this abrupt rise is that the

increase rate is very close to the value measured for a pure kaolin

dispersion. This could mean that coarse particles surrounded by

Fig. 12. Variation in the bulk yield stress. The variation in the yield stress for a

kaolin suspension is reported as a function of the solid concentration (φt coin-

cides with the fine fraction). The thin solid line represents the expectation of a

decreasing bulk yield stress with increasing coarse concentration (see Eq. (23)).

The symbols represent the experimental data obtained by varying the ratio ξ of

large and small beads. After [11].
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colloidal particles may very well behave in turn as colloidal par-

ticles (this statement is naturally wrong). Further comments on

Fig. 12 are the following:

• At low and moderate concentrations of coarse particles, the

bulk yield stress was independent of the particle size (when

equal size distributions were tested), but it increased signifi-

cantly with increasing relative fractions of large particles.
• On the contrary, at high concentrations, the finer the distribu-

tion, the larger the yield stress.

The main and unexpected result of this experimental study is that

bulk yield stress may be significantly affected by the concentra-

tion of coarse particles, but its features (such as the growth rate

with a solid concentration) are still governed by the fine colloidal

fraction.

Given substantial experimental difficulties (particle size, sed-

imentation, etc.), few experimental investigations have been

conducted on poorly-sorted slurries. In soil mechanics, testing

bulk materials in quasi-static drained or non-drained flow con-

figurations has shown that shear strength is governed by com-

paction state and pore fluid pressure [78,234]. Since geotech-

nical tests can hardly be run under large deformations, Iverson

and his colleagues carried out experiments in a 95 m long flume,

specifically built in Oregon (USGS flume) [131]. In Iverson’s

opinion, the flow of poorly sorted mixtures is fundamentally an

unsteady phenomenon, which cannot be easily investigated un-

der steady flow conditions. Indeed, the shear strength adheres

to the Coulomb law: τ = σ′ tan ϕ, with σ′ = σ − p the effective

stress. During the motion, the material contracts, which gives

rise to high pore pressure and thus a decrease in shear stress.

Pore pressure can remain elevated when pore pressure diffu-

sion is slow (i.e., for low bulk permeability), as shown by Eq.

(6). Consequently, shear strength is not a rheological property

[127].

Is it possible to provide clear evidence for the prevalence of

Coulomb frictional behavior and dependence of shear strength

on pore pressure in rapidly sheared, poorly sorted slurries? Be-

cause of the unsteady nature of shear strength together with the

number of control variables that are also time-dependent (pore

pressure, solid concentration, normal stress), providing an indis-

putable reply to this question remains difficult. There are, how-

ever, a number of laboratory and field observations that support

this theory. For instance, carrying out experiments with poorly

sorted materials in the USGS flume, Major observed that in-

creasing the fine fraction resulted in thinning the deposit layer,

which meant that the bulk strength decreased [156] (see also

[127]). This observation conflicts with laboratory experiments

showing an increase in yield stress when the fine fraction is in-

creased (see the asymptotic trend in Fig. 12 when φt → φm), but

can be explained by recognizing that increasing the fine content

leads to a decrease in the bulk permeability and consequently

reduces pore pressure diffusion; the bulk stays longer in a liqui-

fied state, with high pore-pressure levels and low shear strength.

In the next section, we will present laboratory experiments that

also provide support for this explanation.

3. Rheometrical experiments

Over the last 20 years, a large number of experiments have

been carried out to test the rheological properties of natural ma-

terials. The crux of the difficulty lies in the design of specific

rheometers compatible with the relatively large size of parti-

cles involved in geophysical flows. Coaxial-cylinder (Couette)

rheometers and inclined flumes are the most popular geome-

tries. Another source of trouble stems from disturbing effects

such as particle migration and segregation, flow heterogeneities,

fracturation, layering, etc. These effects are often very pro-

nounced with natural materials, which may explain the poor re-

producibility of rheometrical investigations [62,126,158]. Poor

reproducibility, complexity in the material response, and data

scattering have at times been interpreted as the failure of the one-

phase approximation for describing rheological properties [126].

In fact, these experimental problems demonstrate above all that

the bulk behavior of natural material is characterized by wide

fluctuations, which can be as wide as the mean values. As for

turbulence and Brownian motion, we should describe not only

the mean behavior, but also the fluctuating behavior to properly

characterize the rheological properties. For concentrated col-

loidal or granular materials [54,107,152,175,181,222,231], ex-

periments on well-controlled materials have provided evidence

that to some extent, these fluctuations originate from jamming in

the particle network (creation of force vaults sustaining normal

stress and resisting against shear stress, both of which suddenly

relax). Other processes such as ordering, aging, and chemical al-

teration occur in natural slurries, which may explain their time-

dependent properties [39,163]. Finally, there are disturbing ef-

fects (e.g., slipping along the smooth surfaces of a rheometer),

which may bias measurement.

Table 1 reports a number of experimental investigations run

on natural samples collected in the field or materials mimicking

natural materials. The list is far from exhaustive. For Coulomb

plastic materials, apart from experimental tests conducted by

Savage, Hutter, and Iverson et al., which are cited in Table

1, most authors have tried to document that shear stress de-

pends on the solid concentration or the shear rate, as expected

from kinetic theory or Bagnold-like phenomenological laws

[15,17,87,177,178,195,228,232]. These authors are not cited in

Table 1.

Here, we will not examine at length the various experiments

supporting either the viscoplastic or the Coulomb plastic model,

but we will try to understand in which conditions a material can

behave like a viscoplastic fluid. This analysis is mostly based

on the rheometrical investigation carried out by Ancey with a

Couette cell [6]. We will then examine the consequences of the

rheological properties on the flow features. This analysis will

rely on the flume experiments conducted by Parsons et al. [188]

and Iverson et al. [127–129,131,156].

3.1. Couette-cell experiments on granular mixtures

In order to study the influence of lubricated contact on bulk

dynamics and provide evidence of the key role played by the

particle network in the rheological properties of highly con-
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Table 1

Experimental investigations conducted on natural materials or nearly natural materials

Avalanche Debris flow

Authors Experiments Authors Experiments

Viscoplastic material

Dent and Lang [82] Lab experiments in a small flume

on dry snow

O’Brien and Julien [180] Viscometric tests on natural mudflow deposits

Kern et al. [141] Experiments in a large flume on

dry snow

Coussot [65], Coussot and Piau [67],

Coussot et al. [73]

Couette rheometer on fine mud samples

Coussot et al. [70] Wide-gap Couette rheometer with debris-flow

samples

Bardou et al. [26] Couette rheometer and special rheometers

used for concrete on debris-flow samples

Remaı̂tre et al. [203] Couette rheometer on fine mud samples

Major and Pierson [158] Couette rheometer with fine-grained materi-

als collected on debris-flow deposits

Martino [164] Couette rheometer with natural samples

Schatzmann et al. [216] Special BMS rheometer with natural samples

Parsons et al. [188] Flume with artificial mixtures made up of clay,

silt, and sand

Coulomb mixture

Savage and Hutter [212],

Hutter et al. [124]

Unsteady sand avalanches on

smooth chutes

Denlinger and Iverson [80], Iverson

[129], Major [156]

Unsteady avalanches mobilizing natural mix-

tures down a long steep flume

Hungr and Morgenstern [118] Unsteady gravel avalanches on

smooth chutes

Major [155,157], Major et al. [159] Geotechnical tests on natural samples

centrated suspensions, Ancey studied a number of suspensions

made up of glass beads and various interstitial fluids: air (μ =
1.8 × 10−5 Pa s), water (μ = 10−3 Pa s), a water–glycerol solu-

tion (μ = 0.96 Pa s, ρf = 1260 kg/m3), and a water–kaolin dis-

persion [6]. The particle diameter was 0.3, 0.8, 1, 2, or 3 mm. For

the rheometrical tests, Ancey used a Haake Rotovisco rheometer

with a four-blade vane centered around a vertical shaft. This tech-

nique from soil mechanics is now increasingly used in rheometry

of suspensions [30]. The radius of the vane was R1 = 30 mm.

The solid concentration in coarse particles φ was very close to

the maximum concentration φm (here we have φ = 0.58–0.61

while φm = 0.635).

Fig. 13 shows the variation in the dimensionless shear stress

S = τ/(ρ̄gh) (where τ denotes the shear stress and h is the

thickness of material sheared by the vane) as a function of a

dimensionless number Γ = μΩ/(ρ̄′gh) (where Ω is the rota-

tional speed of the vane, ρ̄′ = ρ̄ − ρf is the buoyant density,

μ the viscosity of the interstitial fluid). Γ is a dimensionless

shear rate. Ancey replaced the true shear rate by the rotational

speed because determining the actual shear rate for a large-gap

rheometer and a material with varying rheological properties is

very delicate (see below). Let us note that this number is very

close to the Leighton number introduced in the caption of Fig.

10 or the friction number introduced by Iverson [129]. Although

the experimental curve reported in Fig. 13 does not provide the

proper flow curve, it can provide an approximate idea of this

flow curve. Two trends can be observed

• At low rotational velocities (Γ ≪ 1), shear was localized

within a narrow cylindrical band around the vane, with a typ-

ical thickness of approximately 10 bead diameters indepen-

dently of Γ . Ancey found that S was independent of Γ which

implies, when one returns to dimensional variables, that: (i)

τ ∝ σzz (where σzz denotes the vertical normal stress) and

(ii) τ does not depend on the shear rate, but is linear with

the vertical normal stress. Both features are typical of the

Table 2

Features of materials used and flow conditions for experimental run reported in Figs. 13–15

Class Material φf φt φ N τc h Fluid

Granular suspensions Material E0 0 61.3 61.3 – 0 43 Water

Material E1 0 61 61 – 0 44 Air

Material E2 0 61 61 – 0 14 Water

Material E3 0 60 60 – 0 9 Glycerol

Material E4 0 60 60 – 0 21 Glycerol

Material E5 0 60 60 – 0 32 Glycerol

Material E6 2 60.9 61.6 12.4 0.2 34 Water

Material A 3.2 60.6 61.8 9.1 0.2 33 Water

Class 2 Material B 9.8 58.9 62.9 1.7 1.2 35 Water

Class 3 Material C 15.4 47.9 55.9 0.3 4.5 60 Water

Solid concentrations are in %, flow depth h in mm, yield stress τc in Pa.
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Fig. 13. Variation in the dimensionless shear stress as a function of the dimen-

sionless number Γ . The line slope is unity and indicates a linear variation of S

with Γ . The features of each material are specified in Table 2. After [6,9].

frictional regime. The relation τ ∝ σzz implies that the total

torque should be a quadratic function of the flow depth for a

Coulomb material, as is shown in Fig. 14.
• At high rotational velocities, all the material was sheared in

the gap. S ∝ Γ , that is, in terms of dimensional variables,

τ ∝ γ̇ . The bulk behavior is similar to that of a Newtonian

fluid for these flow conditions.

A striking result of this experiment is that it is possible to observe

very different bulk rheological behavior by merely increasing the

shear rate and keeping the solid concentration fairly constant.

A difficult point in the rheometrical analysis is the derivation of

the flow curve. Indeed, in a Couette cell, the shear rate is found

by solving the following equation

Ω =
∫ R2

R1

γ̇(r)

r
dr, (24)

Fig. 14. Variation in the reduced torque M = C/(πρ̄′ghR2
1) as a function of the

scaled flow depth h/R1, with R1 the inner cylinder radius. After [6,9].

Fig. 15. Flow curve for 1 mm beads within a water–glycerol solution (φ =
0.605, μ0 = 1.05 Pa s). The solid line represents the WVD solution, while the

dashed line represents the Tikhonov solution. After [7].

where R2 denotes the outer-cylinder radius. For thin-gap

rheometers, Eq. (24) can be easily approximated to first order:

Ω ≈ (R2 − R1)γ . For wide-gap rheometers, specific techniques

must be used, such as the Tikhonov regularization method [241].

They may, however, induce errors in smoothing out the flow

curve when this curve undergoes abrupt changes (e.g., transi-

tion from frictional to viscous regimes). To solve Eq. (24), Ancey

developed an alternative method called wavelet-vaguelette de-

composition (WVD), which is based on wavelets and projection

methods [7] (Table 2).

The outcomes of the WVD and Tikhonov methods are re-

ported in Fig. 15. In this figure, the shear rate was computed by

solving Eq. (24); note that the resulting shear rate is equivalent to

a shear rate that would have been measured at the inner-cylinder

boundary. Taking a closer look at the WVD solution, we ob-

serve that, for low shear stresses (τ < 50 Pa), the flow curve is

approximately horizontal for shear rates in the range 0.1–4 s−1.

At γ̇ = 4 s−1, a slight increase in the shear stress leads to a sub-

stantial decrease in the shear rate, which drops to 1 s−1; this

value is much higher than the value of γ̇m, but this is normal

since γ̇m has been estimated by assuming a sudden expansion of

the sheared zone. For higher shear stress (τ > 80 Pa), the shear

stress varies almost linearly with increasing shear rates. This re-

sult is consistent with our interpretation above. In contrast, the

Tikhonov solution smooths the flow curve bulges, thus compar-

ing well with the WVD solution only at very low and high shear

rates (γ̇ < 1 s−1 or > 6 s−1).

Ancey also studied poorly sorted suspensions by adding fine

(kaolin) particles to a coarse-grained suspension [6]. The ques-

tion was: how was bulk behavior affected by adding these par-

ticles? Experimental data are reported in Fig. 16, showing the

torque exerted by the suspension on the vane as a function of

its dimensionless rotational speed Γ . Obviously, when the solid

concentration in fine particles φf is low, there is not much dif-

ference compared to the results found above with the granular

suspension (see Fig. 13). Conversely, when φf is sufficiently

high, bulk behavior is expected to be viscoplastic (Sengun and

Probstein’s approximation). Both statements are right, as shown

in Fig. 16 (material A refers to a suspension poor in kaolin
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Fig. 16. Variation in the dimensionless torque M = C/(πρ′ghR3
1) (where C is

the measured torque) exerted on the vane by the tested suspension as a function

of the rotational speed Γ . For material features, see Table 2. After [6].

while material C is rich in kaolin). At an intermediate con-

centration φf (material B in Fig. 16), an odd behavior was

observed.

Measuring the torque with time revealed that, when a shear

rate was applied, the shear stress first increased rapidly and

reached a maximum (short-term behavior), then decreased

slowly and flattened out, and rose once again to finally attain

its late-time value (typically after 1000 revolutions of the vane).

Reporting the early-time and late-time values of the measured

torque in Fig. 17, we observed a complicated response of the ma-

terial: over a short time span, it behaved like a power-law (shear-

thinning) fluid while, over a long time span, its flow curve was

identical to that of material A. A possible explanation for this

behavior is that, when a shear rate step is applied, the network of

particles is broken and contact between coarse particles is lubri-

cated by the kaolin-water suspension. Since the yield stress of

the kaolin–water suspension is not sufficient for coarse-particle

Fig. 17. Variation in the dimensionless shear stress S = τ/(ρ̄gh) as a function

of dimensionless time t̃ = tΩ. Experiments made for a suspension made up of

glass beads (φc = 0.589, a = 0.4 mm), kaolin (φk = 0.098, τc = 1.2 Pa), and

water (φt = 0.629). After [6].

sedimentation to be hindered, a network of particles in close

contact forms again after a finite period of time. An alternative

explanation is the following: according to Iverson [129], impos-

ing a shear-rate step on the slurry first caused dilatancy at short

times, then contraction within the bulk and a pore-pressure in-

crease. Pore pressure slowly diffused (see Eq. (6)) until it became

hydrostatic. According to the Coulomb law (τ = (σ − p) tan ϕ),

during the phase of contraction and high pore pressure, the shear

stress was lower than its long-time value (when the pressure was

became hydrostatic), but slowly increases toward this value as

the pore pressure decreased.

A more quantitative analysis of Ancey’s experiments can be

performed as follows. Fine colloidal particles and water form

a homogeneous colloidal blend, which becomes the interstitial

fluid. If the yield stress of this blend is sufficiently high, it coun-

terbalances settling effects for the coarse fraction. This explana-

tion can be more evident using dimensional arguments. Let us

consider two coarse neighboring particles within this blend. If

these particles are squeezed to expel the thin layer of interstitial

fluid between them, the normal-stress limit is 2τc. The squeezing

force is the buoyant gravity force. We can define a dimensionless

number N as the ratio of a buoyancy stress (here 4ρ′ga/3) to the

resisting force:

N =
2ρ′ga

3τc
.

When N ≪ 1, the blend impeded coarse-particle settling; as a

result, the coarse particles cannot come into contact. From the

rheological point of view, this entails that, since all the con-

tacts are lubricated by a viscoplastic material, the bulk is in turn

viscoplastic.

On the other hand, when N ≫ 1, direct contacts between

particles arise. For certain flow conditions (e.g., at low shear

velocities Γ ≪ 1), a percolating network of particles experi-

encing sustained frictional contacts develops, which means that

the bulk behaves like a Coulomb mixture. Increasing the shear

rate (Γ ≫ 1) can break direct contacts and induce contact lubri-

cation.

Experimentally, three classes can be distinguished:

• For N ≥ 4, the bulk behavior is either frictional (Γ ≪ 1) or

viscous. The viscous behavior exhibits a shear-thinning trend.
• For N ≤ 1.1, the bulk behavior is viscoplastic. This regime

is quickly achieved (within a few milliseconds). For the same

material and flow conditions, the flow curve varies signifi-

cantly between two runs (deviation of the order of ±10%).
• For 1.1 ≤ N ≤ 4, the bulk behavior depends on typical

timescales. As shown by Fig. 17, when we impose a shear-

rate step, the mechanical response is time-dependent. A stress

peak is first reached within a few milliseconds after the

shear rate is imposed (t̃ ≈ tmax). The shear stress then re-

laxes and reaches a plateau. Finally, at long times (pour

t̃ > tst.state), the shear stress increases and flattens out to

reach a new plateau. For low shear rates (Γ < 10−5), the

characteristic times are nearly constant, with tmax = O(2),

tmin = O(10), and tst.state = O(500). At high shear rates, the

characteristics vary with Γ : tmax ∝ Γ , while tst.state ∝ Γ −1.



22 C. Ancey / J. Non-Newtonian Fluid Mech. 142 (2007) 4–35

Fig. 18. Glass beads (φc = 0.589, a = 0.4 mm), kaolin (φk = 0.098, τc =
1.2 Pa), water (φt = 0.629). After [6].

It is worth noting that for Γ ≫ 1, the timescales are similar:

tmax ≃ tst.state = O(100). It is then possible to distinguish an

instantaneous behavior (at short times) and delayed behavior

(long term, when a steady regime is achieved). The variation

in the timescales with Γ is reported in Fig. 18. The behavior

for short times is shear thinning: S ∝ Γ 0.35, whereas for long

times, the bulk behavior is frictional.

3.2. Flow features

Parsons et al. ran a series of experiments to investigate

the transition between viscoplasticity-dominated and friction-

dominated regimes [188]. They used a semi-circular inclined

flume and measured the velocity profile at the free surface; in

addition, they estimated the bulk viscosity and yield stress using

independent tests. Different slurries were prepared by altering

the sand, clay, and silt fractions. They obtained muddy slurries,

when the matrix was rich in silt and clay, and poorly sorted

mixtures, when the silt and clay contents were reduced. Sur-

prisingly enough, the change in fine-particle content did not

significantly modify the appearance of the body, whereas it

markedly altered the composition of the front and its behavior.

In all the experiments, they found that the Herschel–Bulkley

performed well since the velocity profile and the plug posi-

tion were properly estimated. Reducing the fine fraction in the

slurries induced a radical change of behavior for the front (see

Fig. 19):

• For muddy slurries, the front takes the form of a blunt nose.

Lack of slip along the flume bottom caused a conveyer-belt-

like flow at the front.
• For coarse-grained slurries, the front takes the form of a dry

granular locked nose slipping along the bed as a result of the

driving force exerted by the fluid accumulating behind the

snout. Additional material was gradually incorporated into

the snout, which grew in size until it was able to slow down

the body.

Fig. 19. Schematic of the behavior contrast beween fine-grained and coarse-

grained flows. (a) Conveyer-belt-like flow at the front and (b) formation of a

frictional front. After [188].

Interestingly enough, the changes in the rheological properties

mainly affected the structure of the flow, especially within the

tip region.

Iverson, Denlinger, and Major investigated slurries predomi-

nantly made up of a water-saturated mixture of sand and gravel,

with a fine fraction of only a few percent [127–129,156]. Exper-

iments were run on the USGS flume and consisted in releasing a

volume of slurry (approximately 10 m3) down a 31◦, 95 m-long

flume. At the base of the flume, the material spread out on a pla-

nar, nearly horizontal, unconfined runout zone. Flow-depth, base

normal stress, and base interstitial flow pressure were measured

at different places along the flume. Iverson and his co-workers

observed that at early times, an abrupt front formed at the head of

the flow, followed by a gradually tapering body, then a thin, more

watery tail. The front remained relatively dry (with pore pres-

sure dropping to zero) and of constant thickness, while the body

elongated gradually in the course of the flow. Over the longest

part of the flume, the basal pore pressure nearly matched the

total normal stress, which means that shear strength was close

to zero and the material was liquefied within the body [129].

Note that this behavior is consistent with the rheometrical data

reported in Fig. 16, were data for material B did not show any

yield stress in the short-term response to a shear-rate step.

Fig. 20 shows a sequence of aerial photographs taken when

the material spread out on the runout surface. Self-organization

of the slurry flow into a coarse-grained boundary and a muddy

core became quite visible as the flow traveled the runout surface.

Lateral levees were formed by the granular front and confined

the ensuing muddy body. Note the levee formation is probably

not induced by particle segregation since it is also observed for

dry granular flows involving spherical equal-size particles [90].

In short, experiments performed by Parson et al. and Iver-

son et al. have shown that the flow of poorly sorted ma-

terials was characterized by the coexistence of two zones,

each one with a distinctive rheological behavior: the flow bor-

der was rich in coarse-grained materials (Coulomb frictional

behavior), while the core was fine-grained (viscoplastic be-

havior). This self-organization has a great influence on the

flow behavior; notably the run-out distance can be signifi-

cantly enhanced as a result of levee formation limiting lateral

spreading.
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Fig. 20. Snapshots showing slurry flow discharging from the U.S. Geological

Survey Debris-flow Flume and crossing the unconfined, nearly horizontal runout

zone. The dark-toned material around the perimeter of the flow was predomi-

nantly gravel, while the light-toned material in the center of the flow was liquified

mud. Figure reproduced from [127]; courtesy of Dr. R.M. Iverson.

4. Application: sheet flows

In this section, we will examine the consequences of the

rheological properties the flow features have for thin free-

surface flows (referred to as sheet flows), a typical flow con-

figuration for geophysical flows. Different flow regimes can

occur depending on the relative strength of inertial, pressure,

and viscous contributions in the governing equations. In Sec-

tion 4.1, dimensional analysis will be used to help clarify the

notions of inertia-dominated and friction-dominated regimes.

We will then focus on creeping flows on gentle slopes (Sec-

tion 4.2) and fast flows (Section 4.3). In the analytical com-

putations, we will use the shallowness of sheet flows to de-

rive approximate equations. Since the Bingham model is the

most studied and widespread constitutive equation, most ex-

amples will be based on this model, but we will also refer to

papers dealing with alternative viscoplastic models or Coulomb

friction.

4.1. Scaling and flow regimes

We consider a shallow layer of fluid flowing over a rigid

impermeable plane inclined at an angle θ (see Fig. 21). The

fluid is viscoplastic and incompressible; its density is denoted

by ρ and its bulk viscosity by η = τ/γ̇ . The ratio ǫ = H∗/L∗
between the typical vertical and horizontal lengthscales, H∗ and

Fig. 21. The configuration of the flow.

L∗, respectively, is assumed to be small. The streamwise and

vertical coordinates are denoted by x and y, respectively.

A two-dimensional flow regime is assumed, namely any

cross-stream variation is neglected. The depth of the layer is

given by h(x, t). The horizontal and vertical velocity compo-

nents of the velocity u are denoted by u and v, respectively.

The fluid pressure is referred to as p(x, y, t), where t denotes

time. The surrounding fluid (assumed to be air) is assumed to be

dynamically passive (i.e., inviscid and low density compared to

the moving fluid) and surface tension is neglected, which implies

that the stress state at the free surface is zero.

The governing equations are given by the mass and momen-

tum balance equations

∇ · u = 0, (25)

ρ
du

dt
= ρ

∂u

∂t
+ ρ(u · ∇)u = ρg − ∇p + ∇ · σ, (26)

supplemented by the following boundary conditions at the free

surface

v(x, h, t) =
dh

dt
=

∂h

∂t
+ u(x, h, t)

∂h

∂x
, v(x, 0, t) = 0. (27)

There are many ways of transforming these governing equa-

tions into dimensionless expressions [20,140,149,191]. Here

we depart slightly from the presentation given by Liu and Mei

[149]. The characteristic streamwise and vertical velocities, the

timescale, the typical pressure, and the order of magnitude of

bulk viscosity are referred to as U∗, V∗, T∗, P∗, and η∗, re-

spectively. Moreover, in addition to the lengthscale ratio ǫ, we

introduce the following dimensionless numbers that character-

ize free-surface, gravity-driven flows: the flow Reynolds number

and the Froude number

Re =
ρU∗H∗

η∗
and Fr =

U∗√
gH∗ cos θ

.

The following dimensionless variables will be used in this sec-

tion:

û =
u

U∗
, v̂ =

v

V∗
, x̂ =

x

L∗
, ŷ =

y

H∗
, and t̂ =

t

T∗

A natural choice for T∗ is T∗ = L∗/U∗. The stresses are scaled

as follows:

σ̂xx =
η∗U∗
L∗

σxx, σ̂xy =
η∗U∗
H∗

σxy, σ̂yy =
η∗U∗
L∗

σyy, and

p̂ =
p

P∗
,
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whereσxx,σxy, andσyy are the normal stress in the x direction, the

shear stress, and the normal stress in the x direction, respectively.

Here we are interested in free-surface flows. This leads us to

set P∗ = ρgH∗ cos θ, since we expect that, to leading order,

the pressure adopts a hydrostatic distribution (see below). If we

define the vertical velocity scale as V∗ = ǫU∗, the mass balance

Eq. (25) takes the following dimensionless form

∂û

∂x̂
+

∂v̂

∂ŷ
= 0. (28)

Substituting the dimensionless variables into the momentum bal-

ance Eq. (26) leads to

ǫRe
dû

dt̂
=

ǫRe

Fr2

(

1

ǫ
tan θ −

∂p̂

∂x̂

)

+ ǫ2 ∂σ̂xx

∂x̂
+

∂σ̂xy

∂ŷ
, (29)

ǫ3Re
dv̂

dt̂
=

ǫRe

Fr2

(

−1 −
∂p̂

∂ŷ

)

+ ǫ2 ∂σ̂xy

∂x̂
+ ǫ2 ∂σ̂yy

∂ŷ
. (30)

The momentum balance equation expresses a balance between

gravity acceleration, inertial terms, pressure gradient, and vis-

cous dissipation, whose order of magnitude is ρg sin θ, ρU2
∗/L∗,

P∗/L∗, and η∗U∗/H
2
∗ , respectively. Depending on the values

considered for the characteristic scales, different types of flow

regime occur. At least four regimes, where two contributions

prevail compared to the others, could be achieved in principle

(1) Inertial regime, where inertial and pressure-gradient terms

are of the same magnitude. We obtain

U∗ =
√

gH∗ cos θ.

The order of magnitude of the shear stress is ∂σxy/∂y =
ρg O(ǫ−1Re−1). This regime occurs when: ǫRe ≫ 1 and

Fr = O(1).

(2) Viscous regime, where the pressure gradient is balanced by

viscous stresses within the bulk. In that case, we have

U∗ =
ρg cos θH3

∗
η∗L∗

.

Inertial terms must be low compared to the pressured gra-

dient and the slope must be gentle (tan θ ≪ ǫ). This im-

poses the following constraint: ǫRe ≪ 1. We deduced that

Fr2 = O(ǫRe) ≪ 1.

(3) Visco-inertial regime, where inertial and viscous contribu-

tions are nearly equal. In that case, we have

U∗ =
1

ǫ

η∗
ρH∗

.

The pressure gradient must be low compared to the vis-

cous stress, which entails the following condition η∗ ≫
ǫρ

√

gH3
∗ . We obtain ǫRe ∼ 1 and Fr = η∗/(ρǫ

√

gH3
∗ ) ≫

1.

(4) Nearly steady uniform regime, where the viscous contribu-

tion matches gravity acceleration. In that case, we have

U∗ =
ρg sin θH2

∗
η∗

.

Inertia must be negligible, which means ǫ ≪ 1 (stretched

flows). We obtainRe = O(Fr2) and tan θ ≫ ǫ (mild slopes).

In the inertial regime, the rheological effects are so low that they

can be neglected and the final governing equations are the Euler

equations. The visco-inertial regime is more spurious and has

no specific interest in geophysics, notably because the flows are

rapidly unstable. More interesting is the viscous regime that may

achieved for very slow flows on gentle slopes (θ ≪ 1), typically

when flows come to rest. We will further describe this regime in

Section 4.2. When there is no balance between two contributions,

we have to solve the full governing equations. This is usually

a difficult task, even numerically. To simplify the problem, one

can use flow-depth averaged equations (see Section 4.3). The

nearly-steady regime will be exemplified in Section 4.3 within

the framework of the kinematic-wave approximation. Finally, it

should be kept in mind that the partitioning into four regimes

holds for viscous (Newtonian) fluids and non-Newtonian mate-

rials for which the bulk viscosity does not vary significantly with

shear rate over a sufficiently wide range of shear rates. In the

converse case, further dimensionless groups (e.g., the Bingham

number Bi = τcH∗/(μU∗)) must be introduced, which makes

this classification more complicated.

4.2. Slow motion

Slow motion of a viscoplastic material has been investigated

by Liu and Mei [149,150], Mei [171], Mei and Yuhi [170], Cous-

sot et al. [68,69], Balmforth and Craster [20,23], and Matson and

Hogg [165]. Taking the two dominant contributions in Eqs. (29)

and (30) and returning to the physical variables, we deduce

σxy = ρg cos θ(h − y)

(

tan θ −
∂h

∂x

)

, (31)

p = ρg(h − y) cos θ. (32)

The bottom shear stress is then found to be τb = σxy|y=0. For

bottom shear stresses in excess of the yield stress τc, flow is

possible. When this condition is satisfied, there is a yield surface

at depth y = h0 within the bulk, along which the shear stress

matches the yield stress

σxy|y=h0 = ρg cos θ(h − h0)

(

tan θ −
∂h

∂x

)

= τc. (33)

The yield surface separates the flow into two layers [20,149]: the

bottom layer, which is sheared, and the upper layer or plug layer,

where the shear rate is nearly zero. Indeed, using an asymptotic

analysis, Balmforth and Craster demonstrated that in the so-

called plug layer, the shear rate is close to zero, but nonzero

[20]. This result may be seen as anecdotic, but it is in fact of

great importance since it resolves a number of paradoxes raised

about viscoplastic solutions [2,148].

On integrating the shear-stress distribution, we can derive a

governing equation for the flow depth h(x, t). For this purpose,

we must specify the constitutive equation. For the sake of sim-

plicity, we consider a Bingham fluid in one-dimensional flows

as Liu and Mei [149] did; the extension to Herschel–Bulkley

and/or two-dimensional flows can be found in [20,23,170]. In
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the sheared zone, the velocity profile is parabolic

u(y) =
ρg cos θ

μ

(

tan θ −
∂h

∂x

)(

h0y −
1

2
y2

)

for y ≤ h0,

while the velocity is constant to leading order within the plug

u(y) = u0 =
ρgh2

0 cos θ

μ

(

tan θ −
∂h

∂x

)

for y ≥ h0,

The flow rate is then

q=
∫ h

0

u(y) dy =
ρgh2

0(3h − h0) cos θ

6μ

(

tan θ −
∂h

∂x

)

. (34)

Integrating the mass balance equation over the flow depth pro-

vides

∂h

∂t
+

∂q

∂x
= 0. (35)

Substituting q with its expression (34) and the yield surface

elevation h0 with Eq. (33) into Eq. (35), we obtain a governing

equation for h, which takes the form of a nonlinear diffusion

equation

∂h

∂t
=

∂

∂x

[

F (h, h0)

(

∂h

∂x
− tan θ

)]

, (36)

with F = ρgh2
0(3h − h0) cos θ/(6μ).

A typical application of this analysis is the derivation of the

shape of a viscoplastic deposit. Contrary to a Newtonian fluid,

the flow depth of a viscoplastic fluid cannot decrease indefinitely

when the fluid spreads out along an infinite plane. Because of

the finite yield stress, when it comes to rest, the fluid exhibits

a nonuniform flow-depth profile, where the pressure gradient is

exactly balanced by the yield stress. On an infinite horizontal

plane, the bottom shear stress must equal the yield stress. Using

Eq. (31) with θ = 0 and y = 0, we eventually obtain [149]

σxy|y=0 = τc = −ρgh
∂h

∂x
, (37)

which, on integrating, provides

h(x) − hi =

√

2τc

ρg
(xi − x),

where h = hi at x = xi is a boundary condition. This equation

shows that the deposit-thickness profile depends on the square

root of the distance. When the slope is nonzero, an implicit

solution for h(x) to Eq. (31) is found [149]

tan θ(h(x) − hi) +
τc

ρg cos θ
log

[

τc − ρgh sin θ

τc − ρghi sin θ

]

= tan2 θ(x − xi). (38)

The shape of a static two-dimensional pile of viscoplastic fluid

was investigated by Coussot et al. [69], Mei and Yuhi [170], Os-

mond and Griffiths [185], and Balmforth et al. [23]; the latter de-

rived an exact solution, while the former authors used numerical

methods or ad hoc approximations to solve the two-dimensional

equivalent to Eq. (31). Similarity solutions to Eq. (36) have also

been provided by Balmforth et al. [23] in the case of a vis-

coplastic flow down a gently inclined, unconfined surface with

a time-varying source at the inlet.

4.3. Fast motion

The most common method for solving fast-motion free-

surface problems is to depth-average the local equations of mo-

tion. In the literature, this method is referred to as the Saint-

Venant approach, the boundary-layer approximation, the lubri-

cation approximation, the long-wave approximation, etc. Here,

by fast motion, we refer to situations where inertia, rheological

effects, and pressure play all a role in flow dynamics. However,

the flow velocity must not be too high; otherwise instabilities

occur at the free surface [24,65,151,229].

The Saint-Venant approach involves integrating the mo-

mentum and mass balance equations over the depth. A

considerable body of work has been published on this

method for Newtonian and non-Newtonian fluids, includ-

ing viscoplastic [64,65,116,117,191,223] and granular materi-

als [45,61,101,102,130,142,161,195,199,212]. Here, we shall

briefly recall the principle and then directly provide the result-

ing governing equations. Let us start with the local mass balance

(25). Integrating this equation over the flow depth leads to
∫ h(x,t)

0

(

∂u

∂x
+

∂v

∂y

)

dy

=
∂

∂x

∫ h

0

u(x, y, t) dy − u(h)
∂h

∂x
− v(x, h, t) − v(x, 0, t).

(39)

At the free surface and the bottom, the y-component of velocity

v satisfies the boundary conditions (27). We then easily deduce

∂h

∂t
+

∂hū

∂x
= 0, (40)

where we have introduced depth-averaged variables defined as

f̄ (x, t) =
1

h(x, t)

∫ h(x,t)

0

f (x, y, t) dy.

The same procedure is applied to the momentum balance Eq.

(26). Without any difficulty, we can deduce the averaged momen-

tum equation from the x-component of the momentum equation

ρ̄

(

∂hū

∂t
+

∂hu2

∂x

)

= ρ̄gh sin θ −
∂hp̄

∂x
+

∂hσ̄xx

∂x
− τb, (41)

where we have introduced the bottom shear stress: τb =
σxy(x, 0, t). In the present form, the system of Eqs. (40) and (41)

is not closed since the number of variables exceeds the number

of equations. A common approximation involves introducing a

parameter (sometimes called the Boussinesq momentum coeffi-

cient), which links the mean velocity to the mean square velocity

u2 =
1

h

∫ h

0

u2(y) dy = αū2. (42)

Most of the time, the coefficient α is set to unity.

Another helpful (and common) approximation, not men-

tioned in the above system, concerns the computation of stress.

Within the framework of long wave approximation, we assume

that longitudinal motion outweighs vertical motion: for any

quantity m related to motion, we have ∂m/∂y ≫ ∂m/∂x. This
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allows us to consider that every vertical slice of flow can be

treated as if it was locally uniform. In such conditions, it is pos-

sible to infer the bottom shear stress by extrapolating its steady-

state value and expressing it as a function of u and h. Using this

approximation, Coussot [64,65] obtained the following bottom

shear stress

τb = μ

(

1 + 2n

1 + n

)n
ūn

hn+1
0 ((2 + n−1)h − h0)n

,

for Herschel–Bulkley fluids. Using the first-order approximation

of the y-component of the momentum balance Eq. (26), he found

that the pressure was hydrostatic, which leads to a flow-depth

averaged pressure

p̄ = 1
2ρgh cos θ.

The effects of normal stresses can be neglected to first order. Note

that this derivation is not the only way of deriving the Saint-

Venant equations for a Bingham fluid; alternative procedures

have been proposed [116,117,189]. For instance, Huang and

Garcìa further considered two partial differential equations to

supplement the governing Eqs. (40) and (41) [116,117]: one

equation governing the elevation h0 of the yield surface and

another providing the bottom shear stress.

For Coulomb materials, the same procedure can be repeated.

The only modification concerns the momentum balance Eq. (41),

which takes the form [130,212]

ρ̄

(

∂hū

∂t
+

∂hū2

∂x

)

= ρ̄gh

(

sin θ − k cos θ
∂h

∂x

)

− τb, (43)

with k a proportionality coefficient between the normal stresses

σ̄xx and σ̄yy, which is computed by assuming limiting Coulomb

equilibrium in compression (∂xū < 0) or extension (∂xū > 0);

the coefficient is called the active/passive pressure coefficient.

In Eq. (43), the bottom shear stress can be computed by us-

ing the Coulomb law τb = (σ̄yy|y=0 − pb) tan ϕ, with σ̄yy|y=0 =
ρ̄gh cos θ and pb the pore pressure at the bed level.

Analytical solutions can be obtained for the Saint-Venant

equations. Most of them were derived by seeking self-similarity

solutions (see [61,212,214] for the Coulomb model and [114]

for viscoplastic and hydraulic models). Some solutions can also

be obtained using the method of characteristics. We are going

to see two applications based on these methods.

In the first application, we use the fact that the Saint-Venant

equations for Coulomb materials are structurally similar to those

used in hydraulics when the bottom drag can be neglected. The

only difference lies in the nonhydrostatic pressure term and the

source term (bottom shear stress). However, using a change in

variable makes it possible to retrieve the usual shallow-water

equations and seek similarity solutions to derive the Ritter so-

lutions [84,139,142,161,220]. The Ritter solutions are the so-

lutions to the so-called dam-break problem, where an infinite

volume of material at rest is suddenly released and spreads over

a dry bed (i.e., no material laying along the bed). Much attention

has been paid to this problem, notably in geophysics because it

is used as a paradigm for studying rapid surge motion. We pose

x∗ = x − 1
2δt2, t∗ = t, u∗ = u − δt, and h∗ = h,

where we introduced the parameter δ = g cos θ(tan θ − μ). We

deduce

∂h∗

∂t∗
+

∂h∗u∗

∂x∗ = 0, (44)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + gk cos θ
∂h∗

∂x∗ = 0. (45)

For the dam-break problem, the initial and boundary conditions

are

−∞ < x < ∞, u(x, 0) = 0,

x < 0, h(x, 0) = hi,

x > 0, h(x, 0) = 0.

(46)

The analytical solutions to Eqs. (44) and (45) are the well-known

Ritter solutions. We are looking for a similarity solution in the

form [100]

ū∗ = t∗β/αU(ζ∗) and h∗ = t∗γ/αH(ζ∗),

with ζ∗ = x∗/t∗α the similarity variable, and H and U two un-

known functions. Substituting ū∗ and h∗ with their similarity

forms into (44) and (45), we find: β + α = 1 and γ + 2α = 2.

For this solution to satisfy the initial and boundary conditions,

we must pose β = γ = 0, hence α = 1. We then infer
(

H U − ζ∗

U − ζ∗ kg cos θ

)

·

(

U ′

H ′

)

= 0,

where the prime denotes the ζ∗-derivative. For this system

to admit a nonconstant solution, its determinant must van-

ish, which leads to kg H cos θ = (U − ζ∗)2. On substituting

this relation into the system above, we deduce U ′ = 2ζ∗/3,

thus U = 2(ζ∗ + c)/3, where c is a constant of integration,

H = 4(c − (1/2)ζ∗)2/(9 kg cos θ). The constant c is found us-

ing the boundary conditions and by assuming that the undis-

turbed flow slides at constant velocity δt: c =
√

kghi cos θ. Re-

turning to the original variables, we find

ū(x, t) = ū∗ + δt =
2

3

(x

t
+ δt + c

)

, (47)

h(x, t) =
1

9kg cos θ

(

−
x

t
+

δ

2
t + 2c

)2

. (48)

The boundary conditions also imply that the solution is valid

over the ζ-range [−c − δt, 2c + δt/2]; the lower bound corre-

sponds to the upstream condition ū = 0, while the upper bound

is given by the downstream condition h = 0. It is worth noting

that the front velocity uf = 2c + δt/2 is constantly increasing or

decreasing depending on the sign of δ. When δ < 0 (friction in

excess of slope angle), the front velocity vanishes at t = 4c/|δ|.
Fig. 22 shows that the shape of the tip region is parabolic at short

times (δt ≪ c), in agreement with experimental data [21,221].

Solutions corresponding to finite released volumes were also

obtained by Dressler [84] and Savage [212,214].

In the second application, we use the method of characteris-

tics to find a solution to the governing equations for Bingham

flows that are stretched thin when they are nearly steady uniform.

In Section 4.1, we found that for mild slopes, when the aspect

ratio ǫ is very low, the inertial and pressure contributions can
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Fig. 22. Flow-depth profile generated just after the wall retaining a granular

material is removed. Computations made with c = 1 m/s. The similarity variable

ζ is ζ = x/t.

be neglected. This means that the flow-depth averaged velocity

is very close to the mean velocity reached for steady uniform

flows

ūs = up

(

1 −
h0

3h

)

,

where up is the plug velocity

up =
ρgh2

0 sin θ

2μ
,

with h the flow depth and h0 = h − τc/(ρg sin θ) the yield-

surface elevation; h0 must be positive or no steady flow occurs.

We then use the kinematic-wave approximation introduced by

Lighthill and Whitham [147] to study floods on long rivers; this

approximation was then extensively used in hydraulic applica-

tions [16,116,117,119,236]. It involves substituting the mean

velocity into the mass balance Eq. (40) by its steady-state value

∂h

∂t
+

∂

∂x
up

(

h −
h0

3

)

= 0. (49)

Introducing the plug thickness hp = h − h0 = τc/(ρg sin θ), we

obtain an expression that is a function of h and its time and space

derivative

∂h

∂t
+ K

(

h2 − hhp

) ∂h

∂x
= 0,

with K = ρg sin θ/μ. The governing equation takes the form of

a nonlinear advection equation, which can be solved using the

method of characteristics [145].

Using the chain rule for interpreting this partial differential

Eq. (49), we can show that it is equivalent to the following or-

dinary equation

dh

dt
= 0, (50)

along the characteristic curve

dx

dt
= λ(h), (51)

in the (x, t) plane, with λ(h) = Kh
(

h − hp

)

. Eq. (50) shows that

the flow depth is constant along the characteristic curve, hence

the characteristic curves are straight lines, the slope of which

are given by the right-hand side term λ(h) in Eq. (51). These

characteristic curves can be used to solve an initial value prob-

lem, where the initial value of h is known over a given interval:

h = hi(xi) (at t = 0). The value of h along each characteristic

curve is the value of h at the initial point x(0) = xi. We can thus

write

h(x, t) = hi(xi) = hi(x − λ(hi(xi))t).

It is worth noting that because of the nonlinearity of Eq. (49), a

smooth initial condition can generate a discontinuous solution

(shock) if the characteristic curves intersect, since at the point

of intersection h takes (at least) two values [145]. An interesting

related issue is the Riemann problem, where we seek a solution

to the nonlinear advection Eq. (49) when the initial condition

is discontinuous and step-shaped (see Eq. (46) for the initial

conditions). Here, this problem is of particular interest not only

for developing numerical algorithms, but also for finding solu-

tions to the dam-break problem. It can be shown that, when the

bed is dry ahead of the front, the solution takes the form of a

simple wave or rarefaction wave, i.e., a continuous similarity

solution to Eq. (49), which links the material still at rest behind

and the surge tip. Indeed, if we seek similarity solutions to Eq.

(49) in the form h = tαH(ζ), with |ζ| = x/tβ, we find on sub-

stituting this form into Eq. (49) that α = 0 and β = 1; here we

pose h = H(−x/t). Furthermore, H is solution of the equation

H ′ (ζ − KH(H − hp)
)

= 0,

from which we deduce that either H is constant or satisfies the

quadratic equation ζ − KH(H − hp) = 0. Solving this equation

we find

h =
hp

2

(

1 +

√

1 −
4

Kh2
p

x

t

)

,

defined for x ≤ ẋft with ẋf = Kh2
p/4. Contrary to the Ritter solu-

tion for water, the flow-depth profile presents a steep nose at the

front (confusingly called shock in earlier work) and is concave

backward, as shown in the numerical example of Fig. 23. Note

that the flow depth at the front is exactly half the plug thickness

hp. The front moves at constant velocity ẋf. Note that the solu-

tion given here differs from the approximate solution provided

in the engineering literature [16,116,119], where a constraint

Fig. 23. Flow-depth profile of the viscoplastic simple wave generated after the

wall is removed. Computations made with K = 4 m−1 s−1 and hp = 1 m.
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on the volume released was used to compute the front position.

It is also worth wondering whether the approximation of the

kinematic wave can be used to provide a correct solution to the

dam-break problem, where both inertia and pressure gradient

should be taken into account.

5. Field evidence

5.1. Using historical or monitored events

For a long time, the only source of information was the traces

of past events [132]. For instance, measuring the flow-depth pro-

file of a debris flow deposit and using the flow-depth profile Eq.

(38) for a Bingham fluid makes it possible to derive the yield

stress [69,207]; the mean flow thickness of a muddy debris flow

in straight channels or the slope angle of a coarse-grained de-

posit can also be used to infer the yield stress τc or the friction

angle ϕ. Figs. 24 and 25 shows typical examples of debris-flow

deposit. In Fig. 24, the deposit is a lateral levee left by a granu-

lar debris flow, which is characterized by a nearly straight free

surface. In Fig. 25, the deposit profile is nearly parabolic, which

is interpreted as the hallmark of viscoplastic behavior (see Eq.

38). Another example is provided by superelevation in channel

bends. Indeed in the course of an avalanche or a debris flow, the

flowing material sometimes encounters curved channel bends,

which cause the material to superelevate or climb up on the

bend side because of centrifugal forces. The level of flowing

material is higher on the outward side than on the inward side.

This can provide information on mean velocity at that location

[228,133,168].

Over the last two decades, an increasing number of sites

throughout the world have been equipped with sensors and vide-

orecorders, such as the Illgraben torrent (debris flow) [166,167],

the Schipfenbach stream [121], and the Vallée de la Sionne (snow

avalanches) in Switzerland [4], the Acquabona river in Italy

[42], the Col du Lautaret (snow avalanches) [172] in France,

etc. Monitored and historical events have been used to back-

calculate the constitutive parameters by matching the field data

(run-out distance, flow-rate, etc.) and the model’s predictions

[25,50,77,81,237,242]. This, however, does not provide evi-

Fig. 24. Lateral levee of a coarse-grained debris flow in the Bez torrent (France,

24 July 1995). The levee looks like a unconsolidated, noncohesive granular pile.

Fig. 25. Deposit lobe of a poorly sorted debris flow in the Valgaudemar valley

(France, 30 July 2003), caused by heavy rainfalls. The deposit-thickness profile

exhibits a parabolic shape.

dence that the constitutive equation is appropriate. Occasionally,

some useful information such as the velocity profile within the

bulk has been obtained; for instance, Gubler [104] took measure-

ments on real avalanches using a Doppler radar. He found that the

velocity profile inside the observed avalanches exhibited a plug

flow (constant-velocity zone) and a sheared zone at the bottom,

clearly revealing that there was shear localization at the bottom.

5.2. Inferring rheological information from velocity records

If we wish to derive rheological information from field data,

the first idea would be to extend viscometric methods (e.g., the

method for deriving the flow curve from the flow-velocity/flow-

depth relationship [13]) or to develop inverse-problem tech-

niques (e.g., see [209]), where information can be inferred from

field data by assuming a particular form of the governing equa-

tions [e.g., the sheet-flow Eqs. (40)–(41)]. In practice, however,

this idea is of limited interest given how difficult it is to obtain

field measurements of both the flow depth and mean velocity.

In most cases, the only information available is the front veloc-

ity, which substantially the possibility of inferring rheological

information.

However, the idea deserves further development by simpli-

fying the equations of motion. Here, the simplest case where

the fluid can be considered a slender sliding body, of volume

V and mass m, is examined. Investigating this simplified case,

Ancey and Meunier [12] performed a back analysis on 15 well-

documented avalanches by inferring the bulk frictional force

from avalanche velocity. In their treatment, the avalanche is as-

sumed to behave as a rigid body, which moves along a curvilinear

two-dimensional profile, whose equation in a Cartesian frame

takes the form: y = z(x), where y is the elevation and x is an ar-

bitrary distance measured along a horizontal axis (see Fig. 26).

The curvature radius is denoted by R. The sliding body experi-

ences a frictional force, the tangential and normal components

of which are denoted by Ft and Fn, respectively.

The position of the center of mass is given by its curvilinear

abscissa ξ =
∫ x

0

√

1 + z2
x(x′) dx′ (where zx is the x-derivative of

z). Therefore, we have x = ξ cos θ̄, with θ̄ the mean path inclina-
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Fig. 26. Curvilinear frame related to the one-dimensional path profile traveled

by avalanches.

tion computed over the interval [0, x]. The ordinate of the center

of mass (relative to the curve z) is denoted by η. In the natural

basis (e1, e2) associated with the curvilinear coordinates (ξ, η),

the contravariant components of the velocity vector are denoted

by (u(1), u(2)) = (dξ/dt, dη/dt) and its physical components are

given by (u〈1〉, u〈2〉) = ((1 − η/R)u(1), u(2)). The contravariant

components of acceleration in the natural basis are

a(1) =
d2ξ

dt2
+ Γ 1

11

(

dξ

dt

)2

+ 2Γ 1
12

dξ

dt

dη

dt
+ Γ 1

22

(

dη

dt

)2

,

a(2) =
d2η

dt2
+ Γ 2

11

(

dξ

dt

)2

+ 2Γ 2
12

dξ

dt

dη

dt
+ Γ 2

22

(

dη

dt

)2

,

where Γ k
ij are the Christoffel symbols. Because the natural ba-

sis is orthogonal, the Christoffel coefficients are zero, except

for Γ 1
12 = Γ 1

21 = −C/(1 − Cη), Γ 2
11 = C(1 − Cη), and Γ 1

11 =
−η(dC/dξ)/(1 − Cη), where C = 1/R is the curvature. The ve-

locity in the ξ-direction is u = u〈1〉 = (1 − ηC) dξ/dt; η is fairly

constant and the velocity u〈2〉 in the η-direction is close to zero.

The downward and normal components of the momentum equa-

tion can be expressed in the physical curvilinear basis as

(

1 −
η

R

)2 d2ξ

dt2
+

η

R2

dR

dξ

(

dξ

dt

)2

= g sin θ(ξ) −
Ft

m
, (52)

−
1

R − η

(

dξ

dt

)2

= −g cos θ(ξ) +
Fn

m
. (53)

On the left-hand side of (52), the first term represents the down-

ward component of the acceleration, while the second term re-

flects the radial effect due to the curvature of the path profile.

On the right-hand side of (52), the first contribution is the driv-

ing action of gravity while the second term stands for the fric-

tional force exerted by the bottom (ground or snowcover) on the

avalanche.

The interpretation of Eqs. (52) and (53) is clear: if one has

a record yielding the body velocity as a function of the posi-

tion along the path, then it is possible to directly deduce the

frictional force components and its relationship with the veloc-

ity u to a multiplicative factor m. To first order (R being very

large in most cases), the average normal force only depends on

the local slope: Fn = mg cos θ(ξ). Eq. (52) should provide the

Fig. 27. Variation in the frictional force per unit mass F/m with the avalanche

velocity u for the avalanche of 21 December 1997 at the Arabba site (solid line);

F/m was obtained by applying Eq. (52) to the measured velocities and path

profile, both regularized using Legendre polynomials. The dashed curve stands

for the variation in the driving force per unit mass g sin θ. In the inset, we have

reported the variations in the measured velocities (dots) with downstream dis-

tance x. In the inset, the solid line represents the interpolated velocities while the

dashed line stands for the velocity of a rigid body sliding in a purely Coulom-

bic regime (with f = 0.66). Letters from A to C refer to various stages of the

avalanche run (see text). After [12].

main trends of the rheological behavior. Plotting the resulting

force per unit mass in a phase space (u, F/m) can give an idea

of the dependence of the frictional force on the mean velocity

and normal component.

For most events, the frictional force was found to be weakly

dependent on velocity or to fluctuate around a mean value dur-

ing the entire course of the avalanche. Fig. 27 shows a typical

example provided by the avalanche at the Arraba site (Italy)

on 21 December 1997. This figure reports the variation in the

frictional force per unit mass with velocity (solid line) and the

downward component of the driving force per unit mass g sin θ

(dashed line). In the inset, we have plotted the measured ve-

locities (dots) together with the interpolation curve (Legendre

polynomials) used in the computations. On the same plot, we

have drawn the velocity variations as if the avalanche were in

a purely Coulomb regime (dashed line): assuming that the fric-

tional force is in the Coulomb form F = fmg cos θ, where f

is the bulk friction coefficient, we numerically solved the equa-

tion of motion (Eq. (52), in which Ft/m is replaced with the

expression of F above). As shown in Fig. 27, in the early phases

(between points A and B), the frictional force gently decreased

with increasing velocity and was slightly lower than the gravity

acceleration g sin θ. Because of the small difference between

g sin θ and F/m, the avalanche accelerated less vigorously than

an avalanche in an inertial regime. At instant B, the avalanche

reached its maximum velocity (24 m/s). At this point, the fric-

tional force started exceeding the gravitational force and the

avalanche decelerated monotonically. Obviously, the frictional

force did depend on the avalanche velocity, as shown in Fig.

4, but this dependence remained slight since between B and C

we have: F/m ∝ u0.1±0.05. Thus, as a first approximation, the

frictional force can be considered constant between instants A
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Fig. 28. Empirical probability distribution functions (pdf) of the 173 f values

collected from the seven paths. The thick line represents the distribution function

of the total sample, whereas the thin lines are related to individual paths. Each

curve has been split into three parts: the central part (solid line) corresponds to

the range of computed μ values, while the end parts have been extrapolated.

After [8].

and C: F/m = 5 ± 1.3 m/s2. As shown in the inset of Fig. 27,

the computed velocities obtained by assuming a purely Coulom-

bic regime (dashed curve) compare well with the data: like the

recorded values, the computed velocities exhibit an asymmet-

ric U-shaped form, while the relative deviation between the two

curves is less than 20%.

For a few events, the bulk frictional force exhibits a depen-

dence on the mean velocity, but no clear trend in the f (u) de-

pendence was found [12]. An interesting property of this simple

Coulomb block model is that knowing the run-out distance (point

of furthest reach) of an avalanche makes it possible to infer the

f value. Since in different alpine regions, avalanche events have

been recorded over a long time period at different sites, we can

deduce the statistical properties of the f distribution at different

places. If the bulk friction coefficient f were a true physical pa-

rameter, its statistical properties should not vary with space. An-

cey thus conducted a statistical analysis on f values by selecting

173 avalanche data collected from seven sites in France. These

sites are known to produce large avalanches and their activity

has been followed up since the beginning of the 20th century.

Fig. 28 shows the probability distribution of f for each site to-

gether with the entire sample. Although the curves are close and

similar, they are not statistically identical. This means that the

probability distribution function of f is not uniquely determined

and depends on other parameters such as snow properties, site

configuration, etc. Within this approach, the Coulomb model

successfully captures the flow features, but its friction parame-

ter is not a true physical parameter. This, however, should not

negate the interest of the Coulomb model because, given the

number of approximations needed to derive (52) and (53), the

statistical deviance may originate from crude assumptions.

6. Conclusion

In this review paper, we have shown various aspects of

Coulomb plasticity and viscoplasticity. Although the physical

mechanisms on the particle scale are quite similar on numerous

points, the rheological properties differ significantly on the bulk

scale in the continuum-mechanics description. The key differ-

ences lie mainly in the two-phase nature of the bulk and the role

of normal stress in the shear-stress generation.

For idealized suspensions of equal-size particles within a

Newtonian fluid, microstructural analysis together with dimen-

sional arguments help clarify the physical origins of plasticity

and the different forms of plastic behavior. On the whole, this

understanding remains qualitative and, although the theoreti-

cal predictions are often in agreement with experimental data,

full and quantitative agreement is far from complete. In partic-

ular, recent experiments have substantiated the notion of time-

dependent yield stress/surface. Note that in soil mechanics, the

nonuniqueness of the yield surface and its history-dependence

(hardening/softening) has long been recognized [78,234]. Labo-

ratory experiments carried out on model suspensions have shown

that post-yielding behavior is usually properly characterized by

either a Coulomb-like or a viscoplastic model depending on

the material properties and flow features. Phenomenological

laws (e.g., Herschel–Bulkley, Coulomb) successfully capture

the salient rheological properties for flow conditions that do not

depart significantly from steady, simple-shear flow conditions.

Not much experimental work has been accomplished so far on

unsteady and three-dimensional flows. In this respect, it is worth

noting that to date, as far as I am aware, no rheological determi-

nation of the yield surface has been carried out in the rheology

of concentrated suspensions.

Contrasting with model suspensions, natural suspensions ex-

hibit a diversity of grain sizes and types, which makes the use

of concepts drawn from model suspensions trickier and, per-

haps, more deceptive. When the bulk is well sorted with a net

separation between the fine and coarse fractions, it usually ex-

hibits viscoplastic properties [218,219]. For poorly sorted mate-

rials, there is a nearly continuous size distribution, which gives

rise to a wide range of characteristic times in the rheological

response of the bulk to a sudden variation in the stress state.

This time-dependence of the rheological properties is exacer-

bated by unsteady processes such as particle sedimentation,

cluster formation, and pore-pressure diffusion. According to

Iverson, Denlinger, and Major [79,128,157], Coulomb friction

and pore pressure diffusion predominate over viscous dissipa-

tion, and the Coulomb plastic model provides a correct approx-

imation for describing the time-dependent properties of natural

slurries.

The review paper also explores sheet flows of Coulomb or

viscoplastic flows. Slow viscoplastic flow can be described us-

ing a nonlinear diffusion equation, for which exact or approx-

imate analytical solutions have been provided, shedding light

into the features of creeping motion and deposits. Fast mo-

tion can be characterized within the framework of flow-depth

averaged or Saint-Venant equations. Analytical solutions can

also be found for some ideal flow conditions, such as the dam-

break problem. To date, most analytical and numerical solutions

concern ideal cases, where the rheological properties are sim-

ple (i.e., viscoplastic or Coulomb models). Few results have

been produced on self-organization (front formation, levee de-

velopment). A proper treatment of bottom boundary conditions
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(including slipping velocity, mass entrainment/deposition) have

also attracted little attention within the geophysics community

[33], even though this issue is of prime importance for modeling

geophysical flows.

In the last part, we tackle the difficult issue of rheological

inference from field data. In addition to parameter fitting and

deposit interpretation, we provide the simplest method for de-

riving rheological properties when the only information avail-

able is the front velocity variation along the path. Applications

to avalanche data have demonstrated that the Coulomb frictional

model captures the salient features of avalanche motion. How-

ever, a thorough statistical analysis has shown that the friction

coefficient is not a true physical parameter, but depends on the

site where the avalanches occurred. This last section emphasizes

the importance of the physical reliability of models used in geo-

physical fluid mechanics, especially when these models are used

for engineering purposes.
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