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21 Abstract

22 Patients who suffer from traumatic brain injury (TBI) often complain of learning and memory 

23 problems. Their symptoms are principally mediated by the hippocampus and the ability to adapt to 

24 stimulus, also known as neural plasticity. Therefore, one plausible injury mechanism is plasticity 

25 impairment, which currently lacks comprehensive investigation across TBI research. For these studies, we 

26 used a computational network model of the hippocampus that includes the dentate gyrus, CA3, and CA1 

27 with neuron-scale resolution. We simulated mild injury through weakened spike-timing-dependent 

28 plasticity (STDP), which modulates synaptic weights according to causal spike timing. In preliminary work, 

29 we found functional deficits consisting of decreased firing rate and broadband power in areas CA3 and 

30 CA1 after STDP impairment. To address structural changes with these studies, we applied modularity 

31 analysis to evaluate how STDP impairment modifies community structure in the hippocampal network. 

32 We also studied the emergent function of network-based learning and found that impaired networks 

33 could acquire conditioned responses after training, but the magnitude of the response was significantly 

34 lower. Furthermore, we examined pattern separation, a prerequisite of learning, by entraining two 

35 overlapping patterns. Contrary to our initial hypothesis, impaired networks did not exhibit deficits in 

36 pattern separation with either population- or rate-based coding. Collectively, these results demonstrate 

37 how a mechanism of injury that operates at the synapse regulates circuit function.

38

39 Author summary

40 Traumatic brain injury causes diverse symptoms, and memory problems are common among 

41 patients. These deficits are associated with the hippocampus, a brain region involved in learning and 

42 memory. Neural plasticity supports learning and memory by enabling the circuit to adapt to external 
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43 stimulus. After brain injury, plasticity can be impaired, perhaps contributing to memory deficits. Yet, this 

44 mechanism of injury remains poorly understood. We implemented plasticity impairment and learning in 

45 a network model of the hippocampus that is unique because it has a high degree of biological detail in its 

46 structure and dynamics compared to other similar computational models. First, we examined the 

47 relationship between neurons in the network and characterized how the structure changed with injury. 

48 Then we trained the network with two input patterns to test the function of pattern separation, which is 

49 the ability to distinguish similar contexts and underpins general learning. We found that the strength of 

50 the encoded response decreased after impairment, but the circuit could still distinguish the two input 

51 patterns. This work provides insight into which specific aspects of memory become dysfunctional after 

52 injury.

53

54 Introduction 

55 Traumatic brain injury (TBI) is a debilitating condition that involves dysfunction across diverse 

56 neural circuitry. Often a result of impacts to the head, TBI is pervasive with up to 2.5 million cases recorded 

57 in 2014 [1,2]. The incidence of TBI has risen along with increasing societal awareness of the issue [3], 

58 owing in part to the effects of concussion on adolescents and young adults [4]. Despite efforts to mitigate 

59 sports-related and other impacts, young people remain affected and can suffer long-term problems from 

60 even mild injuries [4–6]. Although standards of diagnosis are improving, treatments for TBI are lacking [7]. 

61 Fortunately, most patients with mild TBI recover relatively quickly (< 3 months) [8]; however, others 

62 experience prolonged symptoms, including headaches, reduced processing speed, and attention or 

63 memory impairments [3,8]. 
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64 Memory deficits are among the most common and potentially detrimental complaints among TBI 

65 patients [9–11]. Problems are associated with the hippocampus, a well-studied brain structure known 

66 especially for its contributions to memory.  Earlier work has shown that the hippocampus is vulnerable to 

67 TBI and easily damaged [11–14]. Behavioral studies in rodents have proved hippocampal involvement in 

68 both working and episodic memory and that deficits occur after TBI across the severity spectrum [13]. 

69 More specifically, as measured with a standard T-maze behavior paradigm, injured mice showed impaired 

70 working memory up to 7 days post-injury, suggesting that TBI interferes with the process of memory 

71 formation [15]. Spatial memory, a subtype of episodic memory, has also been extensively studied with in 

72 vivo TBI models, which exhibit protracted dysfunction after mild injury [16,17].

73  The prevailing theory of memory describes three distinct phases – encoding, maintenance, and 

74 retrieval [18,19]. Encoding is the construction of a persistent neural representation, or memory, of an 

75 experience, maintenance entails preservation of the memory over time, and retrieval is the active process 

76 of recall or accessing the memory anew. The hippocampus is involved in all three procedures [13], but 

77 precisely how TBI perturbs these three phases remains unclear. The process of forming memories is 

78 supported by synaptic plasticity, a mechanism by which circuits are strengthened or weakened. In classical 

79 electrophysiology, such enduring, use-dependent increases in synaptic strength are encompassed by the 

80 phenomenon of long-term potentiation (LTP), or the enhancement of synaptic transmission efficiency. 

81 After TBI, several groups have demonstrated that LTP no longer occurs [20–23], especially in area CA1 of 

82 the hippocampus [21,24], suggesting plasticity impairment may underlie post-injury behavioral deficits in 

83 memory tasks. The inability to induce LTP is associated with reduced CamKII phosphorylation and synaptic 

84 protein disruption, which together represent a lower capacity for synaptic potentiation [21,25]. If LTP 

85 impairment represents a potentiation deficit and potentiation undergirds memory formation, we would 

86 anticipate encoding problems to ensue after injury. Surprisingly, there is no consensus about which phase 

87 of the memory process is most disrupted after injury.  
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88 Beyond the biological basis of memory and the disruption posed by TBI, the adaptation of 

89 microcircuit architecture through learning remains largely unaddressed in the existing literature. One tool 

90 used at the macroscale is modularity for community detection in large networks. Communities are clusters 

91 of nodes with connections to one another that facilitate performing a collaborative function [26]. The 

92 division of the brain into functional subnetworks is well-supported at the macroscale [26]. Specific to 

93 learning, one group examined how networks evolve over the course of learning through dynamic 

94 community realignment [27]. How the concepts of modularity and learning integrate in microscale circuits 

95 is unknown. While attention and learning are often studied in macroscale brain networks, there are few 

96 existing studies of learning in biologically derived microscale neural networks [28–31]. A few groups have 

97 documented how connectivity adapts with stimulation and development in vitro [32–34], and some 

98 models have considered learning-related input-output relationships. However, these are limited by either 

99 a lack of plasticity or specific physiological network structure. For instance, Chavlis and colleagues 

100 analyzed the effect of dendritic atrophy on pattern separation in a computational model of the dentate 

101 gyrus [28]; however, since the model does not incorporate plasticity, the results do not invoke classical 

102 potentiated learning. Examining community structure in a computational model of the hippocampus 

103 facilitates finer resolution analysis than could otherwise be obtained experimentally because we can 

104 observe the evolution of thousands of neurons over time. Furthermore, we can study the effects of an 

105 isolated mechanism of injury that has circuity-level implications. Among many possible outcomes of 

106 secondary injury sequelae, plasticity impairment can be directly linked to learning and memory 

107 dysfunction. Reports of learning-dependent network changes in this important, memory-related 

108 microcircuit are currently lacking. 

109 In these studies, we use a model of three integrated subregions of the hippocampal formation 

110 (namely, the DG, CA3, and CA1) that comprise the classical trisynaptic circuit. The model was constructed 

111 according to known electrophysiology and anatomical connectivity data. We simulate one effect of mild 
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112 TBI as STDP impairment by reducing potentiation in the circuit and establish that this deficit reduced 

113 activity and broadband power in the network. Here we extend those results by demonstrating how STDP 

114 impairment affects the structural network, focusing specifically on community organization. STDP 

115 impairment causes realignment among excitatory neurons in CA3. We also implement a learning paradigm 

116 using overlapping input patterns to study pattern separation across the hippocampal subregions. 

117 Networks with STDP impairment exhibit minor learning impairments but no pattern separation deficits, 

118 despite significant activity differences and modified community structure. 

119

120 Methods 

121 Briefly, the model focuses on the dentate gyrus (DG), CA3, and CA1 as the primary subregions of 

122 the hippocampal formation (Fig 1A,1C). The areas follow a primarily feedforward topology with the DG 

123 sending projections to CA3 which terminates in CA1. 

124

125 Fig 1. Modeling STDP impairment in a network model of the hippocampus. (A) The hippocampus consists 

126 of several regions connected in a predominantly feedforward topology with information passed from the 

127 DG to CA3 to CA1. These three regions are represented in the network model. (B) According to classical 

128 STDP, synapses between neurons with causal spikes (positive spike timing) are strengthened, but synapses 

129 between neurons with acausal spikes (negative spiking timing) are weakened. With STDP impairment, 

130 peak strengthening, or potentiation, is decreased. (C) At baseline, each region has a distinct pattern of 

131 firing activity. (D) After STDP impairment, firing rate significantly decreased in areas CA3 and CA1. (E) The 

132 power in the theta band, which is important for information processing and hippocampal function, also 

133 significantly decreased after injury. 
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134 Network structure and model dynamics

135 The network is a system of nodes that represent neurons and edges that designate the 

136 connections between them. For each point neuron, we applied the Izhikevich integrate-and-fire neuron 

137 model, which uses the following system of differential equations to determine the spiking behavior of a 

138 neuron over time [35]:

𝐶𝑣′ = 𝑘(𝑣 ―  𝑣𝑟)(𝑣 ―  𝑣𝑡) ― 𝑢 + 𝐼 (1)

𝑢′ = 𝑎[𝑏(𝑣 ―  𝑣𝑟) ― 𝑢] (2)

𝑖𝑓 𝑣 ≥  𝑣𝑝 , 𝑡ℎ𝑒𝑛 {𝑣 = 𝑐        𝑢 = 𝑢 + 𝑑 (3)

139 Where v is the membrane potential in millivolts (mv), and u is the recovery variable. C is the membrane 

140 capacitance (pF), vr is the resting membrane potential, vt is the threshold potential, and vp is the 

141 membrane potential at the peak of the spike. I  is current in picoamperes (pA). The dimensionless 

142 parameters a, b, c, d, and k are adjusted to represent different subtypes of neurons. The current (I ) 

143 aggregates receptor-based ionic currents, including AMPA, NMDA, and GABA-A receptors, and 1 Hz noise 

144 input that drives the network and follows a gamma distribution (k = 2, θ = ½) [35–37]. 

145 There are 10 different types of neurons represented in the model across the three anatomical 

146 subregions. The dentate consists of granule cells, mossy cells, basket cells, and interneurons. Areas CA3 

147 and CA1 each have pyramidal cells, basket cells, and interneurons with parameters specific to that 

148 subregion. Inhibitory neurons (basket cells and generic interneurons) account for approximately 10% of 

149 the neurons in each subnetwork [38–41]. The subtypes have characteristic electrophysiology and 

150 connectivity, which are represented through functional and structural features of the model, respectively. 

151 Broadly, the connectivity of the hippocampus follows a feedforward architecture. Granule cells, the 
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152 principal excitatory neurons of the dentate, synapse onto CA3 neurons but have no connections to one 

153 another under physiological conditions. CA3 pyramidal cells are known to have a relatively high proportion 

154 of recurrent collaterals, but the majority of their axons project to CA1 pyramidal cells. In total, there are 

155 8,885 neurons in the model, which converts to a scale of approximately 1:185 principal neurons in the rat 

156 hippocampus. 

157 Plasticity implementation and impairment

158 The model incorporates two primary forms of synaptic plasticity – spike-timing-dependent 

159 plasticity (STDP) and homeostatic plasticity (HSP). STDP is a form of order-dependent Hebbian learning. 

160 The process relies on precise spike timing between neurons and strengthens synapses when neurons fire 

161 causally (i.e., when the upstream neuron fires before the downstream neuron) [42]. Synaptic 

162 strengthening and weakening occur according to the following equation [43]: 

∆𝑤(𝑤) =  {𝐴+(𝑤)exp ( ― 𝑡𝑝𝑜𝑠𝑡― 𝑡𝑝𝑟𝑒𝜏 )     𝑖𝑓 𝑡𝑝𝑜𝑠𝑡― 𝑡𝑝𝑟𝑒 > 0𝐴―(𝑤)exp ( ― 𝑡𝑝𝑜𝑠𝑡― 𝑡𝑝𝑟𝑒𝜏 )     𝑖𝑓 𝑡𝑝𝑜𝑠𝑡― 𝑡𝑝𝑟𝑒≤ 0
(4)

163 Where w is the weight of the connection between two neurons. A+ and A- determine the magnitude of 

164 maximal synaptic change. The A+/A- ratio is often biased toward strengthening and equaled 1.05 in this 

165 work [44]. τ is the plasticity time constant and was approximated as 20 ms [44]. Finally, tpre and tpost are 

166 the timing of pre- and post-synaptic spikes, respectively. 

167 Similar to previous models, plasticity applied to excitatory-to-excitatory synapses only [44]. While 

168 there are documented cases of inhibitory plasticity, inhibitory STDP is highly variable [45,46], making it 

169 difficult to implement in the model without further empirical study within this circuit. To stabilize 

170 connection weights in the network [47], we incorporated synaptic scaling, a specific form of HSP that 

171 operates at the level of individual neurons [48]. The activity of each neuron is compared to a target firing 
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172 rate, and all the synapses of the neuron are modified to shift the actual firing rate closer to the target 

173 firing rate [49,50]. The following equation describes a threshold formulation of HSP adapted from [43]:

𝑖𝑓 |(𝑣𝑜― 𝑣𝑡)/𝑣𝑡| > 0.50 (5)

∆𝑤(𝑤) =  ― 𝛾𝑊𝑚𝑎𝑥  (𝑣𝑜― 𝑣𝑡𝑣𝑡  )(𝑤2) (6)

174 Where w is the weight of connection, γ is the dimensionless rate of change and equals 10-8 in these 

175 studies, vo is the observed firing rate, vt is the target firing rate, and Wmax is the maximum excitatory 

176 weight of that neuron subtype. The function has a threshold such that synaptic weights are adjusted for 

177 neurons with firing rate change greater than 50% of their target firing rate (vt) over the course of 120 s. 

178 This threshold ensures that the network continues to adapt with STDP without creating neurons with 

179 unconstrained, runaway activity.  

180 STDP is associated with the well-studied phenomenon of long-term potentiation (LTP) observed 

181 in brain slice electrophysiology [42]. LTP describes the prolonged increase in synaptic efficacy of a circuit 

182 and is believed to support learning at the organismal level. TBI leads to deficits in spatial learning and LTP 

183 [13,20,22,23], especially within CA1 of the hippocampus [21,24]. We sought to mimic a plasticity deficit 

184 and effects of mild TBI by altering the STDP algorithm in our model. To achieve this impairment, we 

185 reduced the maximal amount of potentiation in the model by 10% (A+ = 0.9 instead of 1.0 in Equation 4 

186 above) (Fig 1B). In our previous work, we demonstrated that this modest decrement contributed to 

187 significant decreases in firing rate and signal power in impaired networks (Fig 1D,1E). Simulations ran for 

188 20 min without HSP to expedite synaptic settling and then 30 min with HSP. Simulations with STDP 

189 impairment were run for an additional 30 min. Analysis was performed on the final 5 min of simulation 

190 time for both baseline and impaired networks. 

191
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192 Modularity analysis for community detection

193 Large network architectures can be partitioned into several subnetworks that perform specialized 

194 functions (Fig 2A,2B). These modules or communities generally contain densely connected nodes that are 

195 more weakly connected to other nodes outside the module. There are many methodological options for 

196 conducting community detection in networks [26]. Since our networks are directed, weighted, and signed 

197 in addition to being large (more than 3000 nodes), we required algorithms that could accommodate 

198 networks with this combination of characteristics. Modularity is one common technique used to detect 

199 the community structure of a network. Reorganizing the original matrix based on its underlying 

200 community structure takes several steps that we implemented with functions from the publicly available 

201 Brain Connectivity Toolbox [51]. Overall, we followed a procedure of modularity maximization which seeks 

202 to find the optimal network partition that maximizes the modularity quality function (Q) [26]:

𝑄(𝛾) =  
12𝑚 𝑖,𝑗 [𝑎𝑖𝑗―  𝛾 𝑝𝑖𝑗]𝛿(𝜎𝑖,𝜎𝑗) (7)

203 Where ai,j is the number of connection between modules i and j, pi,j is the expected number of connections 

204 between modules i and j according to a null model, 2m is the total number of connections, γ is the 

205 resolution parameter, and δ(σi,σj) is the Kronecker delta function. 

206

207 Fig 2. Modularity methods. (A) Networks can consist of interconnected modules or communities, where 

208 similar nodes are grouped with one another. (B) The matrix shows a network representation of 

209 community structure where neurons are grouped by module membership. (C) The original empirical 

210 matrix is rewired to produce the null matrix, which is a random directed graph with the same input and 

211 output degree distributions as the original matrix. The process of community detection maximizes 

212 modularity Q to find the optimal community partition. The same parameters are applied to the null matrix 
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213 and module quality Q is measured for both matrices. Hypothesis testing compares the values of Q 

214 between the network of interest and the null model to verify the significance of the identified modular 

215 structure. The network is reordered based on community membership. From the reordered matrix, 

216 module size and composition can be analyzed. Created with BioRender.com.

217

218 The resolution parameter (γ) determines the scale of the modules that can be detected such that 

219 larger modules are detected with smaller gamma values. For hypothesis testing, a null model was 

220 generated by rewiring the original matrix while preserving the original input and output degree 

221 distributions. In gamma optimization, modularity (Q) is calculated for both experimental and null matrices 

222 across a sweep of gamma values (Fig 2C). The value of gamma that yields the largest difference in Q 

223 between the experimental and null matrices was used for subsequent steps. Gamma was optimized for 

224 minute 26 of each baseline simulation and held constant for ensuing timepoints and impaired models. 

225 With the optimized gamma parameter, we partitioned the matrix into communities many times to ensure 

226 robustness [52]. An association matrix was generated from the partition ensemble to obtain the 

227 consensus community partition. A null association matrix was also generated from a permuted partition 

228 ensemble, which is generated by permuting each column of the original partition ensemble. This null 

229 association matrix was used to threshold the experimental association matrix, thereby removing low 

230 weight connections. Consensus clustering produces an optimal partition with community assignments for 

231 each node, or neuron. Based on these assignments, the original matrix was reordered to represent the 

232 underlying community structure. We report the modularity (Q), the number and size of modules, and the 

233 composition of modules in the hippocampal networks.

234

235

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403766
http://creativecommons.org/licenses/by/4.0/


12

236 Learning and pattern separation

237 The hippocampus plays a key role in the broad functions of learning and memory, which depend 

238 on long-lasting, if not permanent, changes to network circuitry. These network modifications are 

239 supported by plasticity mechanisms like STDP that encode persistent responses to network stimulation. 

240 More specifically within the hippocampal formation, the dentate is known to execute the function of 

241 pattern separation, a crucial learning task in which similar incoming patterns become increasingly 

242 different from one another as they exit the network. In contrast, area CA3 with its recurrent collateral 

243 structure better supports pattern completion whereby partial pattern representations are completed as 

244 they pass through the network. 

245 Although there are many ways to test learning in a neural network, given the size of our networks 

246 (> 8000 nodes), an unsupervised learning algorithm was preferable to a supervised approach, so we 

247 evaluated learning with a similar method to our previous work [31]. To summarize this method, we 

248 applied two protocols to assess learning. During training, the network was stimulated and able to adapt 

249 with plasticity to encode responses to periodic input over 30 minutes. During testing, static networks were 

250 stimulated for 6 minutes. Networks were tested before and after training to determine how training 

251 modified the network response. 

252 The networks were first settled as described previously for 30 min of simulation time with 1 Hz 

253 noise and then trained with exogenous 1 Hz stimulus. For each of two patterns, we simultaneously 

254 stimulated a set of 200 input neurons in the DG and measured the response in all three subregions. The 

255 input patterns overlapped by 50% with 100 neurons that were common to both patterns and 100 neurons 

256 that were unique to each stimulus. The simulation ran for an additional 30 min with 1 Hz noise and 1 Hz 

257 stimulation of each pattern to encode the activity response before the network was tested. The response 

258 was measured in the 200-ms epoch immediately following stimulation of either pattern 1 or pattern 2. 
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259 Since learning is defined by training-dependent changes in network activity, we tested the response of 

260 untrained and trained networks to the two input patterns in order to determine which neurons 

261 augmented their activity after the training period. The activity of each neuron post-training was 

262 normalized by its activity before training to account for neurons with inherently high activity. The 200 

263 neurons that increased their firing the most from untrained levels comprised the desired, target response. 

264 The remaining neurons made up the off-target response where increases in activity are undesirable. Thus, 

265 the response for each subregion consists of a target component of 200 neurons that respond maximally 

266 to the stimulus and an off-target component of the remaining principal neurons. The signal-to-noise ratio 

267 was measured as the ratio of the target to off-target response. Finally, this paradigm was repeated for 

268 two training conditions. One set of networks was trained under baseline conditions, and another set of 

269 networks underwent training with STDP impairment to test whether reduced potentiation interferes with 

270 the ability to encode patterned responses. 

271 To evaluate pattern separation across the subregions of the network, we turned to several 

272 additional metrics. First, we examined the extent to which the target output populations from patterns 1 

273 and 2 differed by calculating the percent overlap among the two populations for each network. More 

274 formally, we measured the change in population distance via the Hamming distance, which calculates the 

275 proportion of positions that differ between two binary vectors:

𝑃𝐷∆ = 𝐷𝑖𝑛―  𝐷𝑜𝑢𝑡 (8)

𝐷 =  
1𝑁  

𝑁
𝑗=1

𝑋𝑗≠ 𝑌𝑗 (9)

276 Where PDΔ is the change in population distance. Din and Dout are the Hamming distance between the input 

277 and output patterns, respectively. Xj and Yj are binary vectors representing patterns 1 and 2, and N is the 

278 length of the binary vectors. By this metric, identical vectors have a Hamming distance of 0 while two 
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279 unique vectors have a Hamming distance of 1. If a network performs pattern separation, the Hamming 

280 distance of two input populations will be greater than that of the corresponding output populations [28]. 

281 If PDΔ > 0, the network performs pattern separation. If PDΔ < 0, the output patterns are more similar than 

282 the input patterns. A second feature of pattern separation accounts for rate differences between the 

283 output patterns [28]. For this analysis, we focused on the target neurons that were common responders 

284 to both patterns and measured the mean Spearman distance between the pattern 1 and pattern 2 

285 responses of common neurons. The Spearman distance (SD) is calculated as one minus the Spearman rank 

286 correlation between two vectors:

𝑆𝐷 = 1 ―  
(𝑟𝑠― 𝑟𝑠)(𝑟𝑡― 𝑟𝑡)′

(𝑟𝑠― 𝑟𝑠)(𝑟𝑠― 𝑟𝑠)′ (𝑟𝑡― 𝑟𝑡)(𝑟𝑡― 𝑟𝑡)′ (10)

𝑟𝑠 =  
1𝑁 𝑁

𝑗 𝑟𝑠𝑗 =  
𝑁 + 1

2
(11)

𝑟𝑡 =  
1𝑁 𝑁

𝑗 𝑟𝑡𝑗 =  
𝑁 + 1

2
(12)

287 Where rs and rt are the rank vectors of xs and xt, representing the normalized rate response pattern 1 and 

288 pattern 2, respectively. N is the length of the vectors and number of common neurons between patterns 

289 1 and 2. 

290 Statistical analysis

291 For statistical comparisons between baseline networks and rewired, null models, we used 

292 Student’s t-test. To compare baseline and impaired networks, we applied a paired Student’s t-test with 

293 Bonferroni correction to determine significance for cases of multiple comparison. Statistical testing also 

294 included repeated measures ANOVA with Tukey-Kramer post-hoc test for comparisons with multiple 

295 timepoints.  
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296 Results 

297 Modularity in baseline networks

298 For modularity analysis, we narrowed our focus to areas CA3 and CA1 due to network size and 

299 because these two subregions displayed the largest injury effects in our preliminary analysis of functional 

300 changes after impairment (Fig 3A). To establish whether the hippocampal networks had detectable 

301 community structure (Fig 3B), we compared them to null models generated by rewiring the connections 

302 of the original matrix while preserving the input and output degree distributions. We found that the 

303 number of modules was significantly lower in the hippocampal model matrices than in the randomized 

304 networks, indicating that empirical communities are more integrated than predicted by random models 

305 (Baseline hippocampal: 6 ± 0.5 vs. Randomized: 24.9 ± 1.5; Student’s t-test; p < 1e-10) (Fig 3C). As 

306 expected, modularity (Q) was significantly higher in experimental baseline networks than in randomized 

307 controls (Baseline hippocampal: 0.269 ± 0.002 vs. Randomized: 0.089 ± 0.001; Student’s t-test; p < 1e-10) 

308 (Fig 3D). High values of Q mean that the detected communities have higher internal connectivity than 

309 predicted by chance. Together, these results confirm that the hippocampal networks have significant 

310 modular structure as compared to null models. Furthermore, we evaluated modularity Q for the last 5 

311 min of simulation time at baseline and found no change in Q over time (One-way ANOVA; 

312 F-statistic = 0.08; p > 0.5) (Fig 3E). Therefore, we used the final connectivity matrices (from min 30) to 

313 compare baseline and impaired networks in subsequent analysis. 

314

315 Fig 3. Hippocampal model networks have significant community structure compared randomized 

316 control networks. (A) A representative baseline network organized by anatomical structure (CA3 vs. CA1). 

317 (B) A representative network reorganized by module. (C) The number of modules is significantly higher in 

318 the randomized networks than at baseline (p < 1e-5). (D) Modularity, Q, is significantly lower for 
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319 randomized networks (p < 1e-5). Randomized controls rewired connections in the original network while 

320 preserving the degree distribution. (E) There was no significant change in modularity over time at baseline.

321

322 Effects of STDP impairment on community structure

323 We next compared the community structure of baseline networks with that of STDP impaired 

324 networks (Fig 4A,4B). Models with STDP impairment ran for an additional 30 minutes, and the ending 

325 connectivity was compared to the pre-injury connectivity using the same modularity algorithm and 

326 holding gamma constant. Modularity Q decreased significantly after plasticity impairment (Baseline: 

327 0.26 ± 0.01 vs. STDP Impaired: 0.24 ± 0.02; paired Student’s t-test; p < 0.01) (Fig 4D). However, the number 

328 of modules did not differ (Baseline: 5.0 ± 1.0 vs. STDP Impaired: 5.3 ± 1.3; Student’s t-test; p > 0.1) (Fig 4E). 

329 While the average number of modules per network remained the same, we did identify trends in the sizes 

330 of modules after injury. Modules derived from networks with STDP impairment were more likely to fall at 

331 the extreme ends of the size range (Fig 4C). In particular, there are more small communities below a size 

332 of 250 nodes. On a network level, the size range between the largest and smallest module of each network 

333 increased after STDP impairment, reflecting the evolution of these smaller communities (Baseline: 1129 

334 ± 333 vs. STDP Impaired: 1439 ± 332; Student’s t-test; p < 0.05) (Fig 4F). 

335

336 Fig 4. STDP impairment decreases modularity in the CA3-CA1 network. (A) A representative network 

337 organized by community assignment shows 5 modules at baseline. (B) The same representative network 

338 has 5 communities after STDP impairment, but individual node assignments can change resulting in 

339 different module size characteristics. (C) Histograms of module size across all 10 networks show that there 

340 are more modules at the extreme ends of the size range after STDP impairment. (D) Module quality Q 
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341 decreased significantly with injury (p < 0.01). (E) The average number of modules per network did not 

342 change after injury. (F) The range of module size increased significantly after injury (p < 0.05).

343

344 The shifts in module size suggested a broader realignment of neurons among existing 

345 communities, and we further hypothesized that the detected community structure might reflect the 

346 anatomical designations of the hippocampal circuitry. Therefore, we analyzed the neuron subtype 

347 composition of each module for both baseline and impaired networks. Each module was characterized 

348 based on the percentage of neurons from CA3 vs. CA1 and the percentage of inhibitory neurons. We found 

349 that excitatory neurons from CA3 tended to segregate into their own communities (Fig 5A). The remaining 

350 communities contained most of the CA1 excitatory neurons (pyramidal cells) as well as inhibitory neurons 

351 from both CA3 and CA1. Accordingly, we identified a significant relationship between the percentage of 

352 inhibitory neurons in the module and the percentage of CA1 neurons. As the inhibitory percentage 

353 increased, the percentage of CA1 neurons decreased, indicating that these additional inhibitory neurons 

354 were anatomically derived from CA3 (Y = 0.40X + 0.005; linear regression; R2 = 0.75; p < 1e-5). After STDP 

355 impairment, we found that CA3 excitatory neurons continued to form separate communities; however, 

356 the relationship between the percentage of inhibitory neurons and CA1 neurons disappeared (Fig 5B). 

357 This occurs due to the appearance of many small modules that contain excitatory neurons from both CA1 

358 and CA3. Most likely, some neurons from the CA3 excitatory modules realign with excitatory neurons from 

359 CA1 to form these small communities.  

360

361 Fig 5. Module characterization by underlying neuron type reflect hippocampal anatomy. (A) At baseline, 

362 one subgroup of modules is comprised primarily of CA3 excitatory neurons (within circle). Predominantly 

363 CA1 modules contain most of the inhibitory neurons from both CA3 and CA1. Therefore, there is a 
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364 significant relationship between the percentage of inhibitory neurons and the percentage of CA1 neurons 

365 in these modules (inset) (R2 = 0.75; linear hypothesis test; p < 1e-5). As the percentage of inhibitory 

366 neurons increases, the percentage of CA1 neurons decreases (inset). (B) After STDP impairment, there 

367 remains a subgroup of modules comprised of CA3 excitatory neurons (within circle). However, a new 

368 subgroup of small modules develops. These are made up of excitatory neurons from both CA1 and CA3. 

369 The appearance of these small excitatory modules eliminates the relationship between inhibitory tone 

370 and the percentage of CA1 neurons (inset) (R2 = 0.03; linear hypothesis test; p > 0.1).

371

372 Pattern separation in baseline and impaired networks

373 Learning and memory are crucial hippocampal functions supported by synaptic potentiation. As a 

374 mechanism of synaptic weight modification, STDP facilitates use-dependent circuit adaptation. To test 

375 whether and how STDP impairment affects higher-level network functions, we implemented a method of 

376 unsupervised learning characterized by training-dependent changes in neural activity (Fig 6A). Baseline 

377 networks were trained with STDP impairment or under control conditions. During training, two 

378 overlapping sets of 200 neurons in the DG were stimulated in addition to receiving baseline noise input. 

379 The two stimulus patterns were interleaved and stimulated at 1 Hz. During testing, the same two input 

380 patterns were activated in a static network. Networks were tested before and after training to determine 

381 the relative change in firing rate on a neuron basis. Not including those neurons stimulated with input 

382 patterns, the rest of the principal excitatory neurons in the network were divided into two groups of 

383 responders. For each subregion (DG, CA3, CA1), those that increased their spiking activity the most were 

384 termed target neurons, and the remainder were classified as off-target neurons. Target and off-target 

385 neurons were not identified a priori but rather based on their response to the training paradigm. 

386
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387 Fig 6. Networks successfully encode patterned responses although STDP impairment decreases the 

388 signal-to-noise ratio. (A) Training consisted of stimulating sets of 200 neurons in the DG. Baseline 

389 networks were trained once with STDP impairment and once under control STDP conditions. Networks 

390 were tested before and after training to compare the activity response in each region. (B) Firing rates after 

391 training are normalized by the response to stimulation in the untrained network. The gray dashed line is 

392 the reference point for activity in untrained baseline networks. The activity of target neurons increases 

393 significantly from baseline while the average activity of off-target neurons remains the same or decreases. 

394 (C) Networks with STDP impairment exhibit the same paradigm as baseline networks with higher activity 

395 in target neurons than in off-target neurons. (D) The signal-to-noise ratio (on-target divided by off-target 

396 response) decreases significantly after injury in each region (paired Student’s t-test, p < 0.02 with 

397 significance determined by Bonferroni correction).

398

399 Although we hypothesized that limiting potentiation would interfere with the encoding phase of 

400 memory, we found that both baseline and STDP impaired networks were capable of encoding conditioned 

401 responses to input stimulation. The target neurons had significantly higher average normalized firing rate 

402 than their off-target counterparts across all three subregions and both conditions (Student’s t-test; p < 1e-

403 5 for all conditions) (Fig 6B,6C). We also computed the signal-to-noise ratio (SNR) as the target activity 

404 divided by the off-target activity and found that STDP impaired networks expressed lower SNR in all three 

405 subregions of the hippocampus with the most significant change in CA1  (Paired Student’s t-test; p < 0.02 

406 for all subregions) (Fig 6D). This decrease in SNR appears primarily driven by a decrease in firing among 

407 target neurons. Although significant, the magnitude of the difference was modest.

408 Thus far in our analysis of the learning paradigm, we focused only on the magnitude of the output; 

409 however, we also investigated whether the response to each pattern differed. Given the observed 
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410 decrease in SNR among the responder neurons, we sought to determine whether this decrease affected 

411 the ability of the circuit to perform pattern separation by discriminating between the two overlapping 

412 input patterns. Successful pattern separation requires that the output patterns be more different than 

413 the input patterns (Fig 7A). Accordingly, we evaluated the amount of overlap between the groups of target 

414 neurons for each pattern, finding that the mean percentage of overlap was 16% and 13% for the DG and 

415 CA1, respectively (Fig 7B). This is well below the 50% overlap of the input patterns, indicating strong 

416 pattern separation. Interestingly, the percentage of overlap among target neurons from CA3 was 48% on 

417 average (Fig 7B), so this area did not execute pattern separation. This is most likely attributable to the 

418 recurrent collaterals in CA3 that putatively make the area uniquely adept at pattern completion, the ability 

419 to complete an output response based on partial input information. Due to the limited ability to 

420 potentiate synapses, we hypothesized that STDP impairment would limit the ability to encode unique 

421 output patterns. However, we found that the percentage of overlap did not decrease in networks that 

422 were trained with impairment. In fact, the change in population distance between the input and output 

423 populations increased in the DG and CA3 of impaired networks, suggesting that pattern separation was 

424 more successful in these subregions (DG: 0.18 ± 0.06 vs. 0.24 ± 0.04; paired Student’s t-test; p < 0.001. 

425 CA3: -0.15 ± 0.04 vs. -0.03 ± 0.05; p < 0.001. CA1: 0.21 ± 0.03 vs. 0.21 ± 0.02; p > 0.1 for CA1) (Fig 7C). 

426

427 Fig 7. There is no pattern separation deficit in circuits with STDP impairment. (A) Pattern separation 

428 occurs when the output patterns differ more than the input patterns do. In this study, we stimulated two 

429 patterns with 50% overlap in the population of input neurons. (B) For each region, the output populations 

430 consisted of 200 target neurons for each pattern. The percent overlap in baseline networks was below 

431 20% for the DG and CA1. Similar to baseline networks, STDP impaired networks had low percentage 

432 overlap in the DG and CA1 with higher overlap in area CA3. (C) The difference between the Hamming 

433 distance of the input population and the output population measures pattern separation where a higher 
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434 value indicates greater pattern separation. With STDP impairment, the distance between output 

435 populations was greater in the DG and CA3 than at baseline (paired Student’s t-test, p < 0.02 with 

436 significance determined by Bonferroni correction). (D) The rate difference between common neurons 

437 shows that common neurons responded preferentially to one pattern or the other. Common target 

438 neurons from the DG in one representative network are shown. P1 = pattern 1; P2 = pattern 2. (E) The 

439 distance between the rate response to pattern 1 vs. pattern 2 was computed as the Spearman distance. 

440 The rate distance for CA3 outputs was significantly different between baseline and STDP impaired 

441 networks (paired Student’s t-test, p < 1e-5).

442

443 In addition to distinct populations of responsive neurons, rate coding is another attribute of 

444 pattern separation [28]. Since most of the neurons in the target populations were unique to one pattern 

445 or the other, we were interested in the neurons that activated with both patterns and whether these 

446 common neurons responded preferentially to either pattern. We calculated the normalized rate 

447 difference between pattern 1 and pattern 2 activity for all common neurons (Fig 7D). To compute the 

448 distance between the response vectors, we evaluated the mean Spearman distance across networks. We 

449 found that the only subregion to show a significant change after STDP impairment was CA3, but there 

450 were no significant differences in rate coding among common neurons of the DG or CA1 (Paired Student’s 

451 t-test with Bonferroni correction for multiple comparisons; p < 1e-5 for CA3) (Fig 7E). Therefore, although 

452 STDP impairment reduced the total SNR, rate coding was still effective for pattern separation among 

453 common responder neurons. While no deficits were observed in population- or rate-based analyses of 

454 pattern separation in these circuits, these results do not preclude the possibility that there may be subtle 

455 differences in temporal coding based on specific spike timing. 

456
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457 Nodal flexibility in target neurons

458 Finally, we assessed modularity in trained baseline and STDP impaired networks. Similar to 

459 untrained impaired networks, trained circuits with STDP impairment had lower modularity than untrained 

460 baseline networks (Repeated measures ANOVA with Tukey-Kramer post-hoc for multiple comparisons; 

461 p < 0.05) (Fig 8A). Trained baseline networks did not significantly differ from either untrained baseline or 

462 STDP impaired networks (Fig 8A). After verifying community structure in trained networks, we 

463 investigated how community affiliations changed over time. To do so, we applied the concepts of 

464 ‘flexibility’ and ‘promiscuity’ (Fig 8B). As it relates to network theory, flexibility describes whether nodes 

465 change their community affiliation at different time points. Nodes with high flexibility frequently associate 

466 with different modules. Promiscuity is a related yet distinct concept that quantitatively captures whether 

467 nodes associate with several unique modules or only a few. A highly flexible node could have low 

468 promiscuity if it shifts between only two unique communities. We analyzed flexibility and promiscuity in 

469 the aggregate target and off-target populations of CA3 and CA1. Target neurons, which increased their 

470 activity the most after training, were most likely to fall in the highest or lowest quintiles of the flexibility 

471 distribution (Fig 8C). These neurons also had low promiscuity, indicating that changes in community 

472 assignment included few unique modules (Fig 8D). Together, these results suggest that target output 

473 neurons have comparatively stable community affiliations since even those that were flexible were 

474 associated with lower promiscuity. In contrast, off-target neurons fell relatively evenly into the flexibility 

475 and promiscuity quintiles (Fig 8C,8D). We found no significant differences in these properties after STDP 

476 impairment. 

477

478 Fig 8. Target output neurons have low promiscuity among network communities. (A) Both trained and 

479 untrained networks with STDP impairment have lower modularity than untrained baseline networks. (B) 
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480 Neurons that change their community affiliation frequently have high flexibility. If their affiliation shifts 

481 between unique communities, those neurons also have high promiscuity. (C) Target neurons are more 

482 likely to fall in the first or fifth quintiles of the flexibility distribution. (D) Target neurons have low 

483 promiscuity, most likely falling into the first two quintiles of the distribution.

484

485 Discussion

486 In these studies, we examined the community structure of a neuronal network model of the 

487 hippocampus. At baseline, we found that the CA3-CA1 networks displayed significant modular structure 

488 in which excitatory neurons from CA3 (pyramidal cells) reliably segregated into distinct communities. The 

489 remaining neurons, including CA1 pyramidal cells and inhibitory neurons from both subregions, formed 

490 separate modules. After STDP impairment, modularity decreased significantly, and more small modules 

491 appeared. With their small, spurious nature, these modules are purportedly less functionally well-defined. 

492 We then trained the networks with an unsupervised learning algorithm to test the critical function of 

493 pattern separation across the subregions of the circuit. In the learning process, we identified a critical 

494 group of target neurons that showed the largest rate-dependent training effect. STDP impairment during 

495 the encoding phase of pattern acquisition reduced the magnitude of the learning effect; however, 

496 impaired networks executed pattern separation successfully as analyzed with both population- and rate-

497 based coding. Finally, we found that target neurons had a unique modularity-derived profile characterized 

498 by low nodal promiscuity, which indicates that these target neurons were relatively stable and affiliated 

499 with few unique network communities. In comparison, off-target neurons followed more homogenous 

500 flexibility and promiscuity distributions.

501 There are several limitations to the current studies that influence the interpretation of this work. 

502 Fundamentally, the hippocampal model is not full-scale and contains a limited number of cell and receptor 
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503 types. It does not have lamellar structure or complex geometry; however, the synaptic connectivity is 

504 faithful to the literature and the most important attribute for the network-based analysis presented here. 

505 We use a point neuron model of Izhikevich integrate-and-fire neurons that is more phenomenological 

506 than other, more biophysical neuron models. This drawback is balanced by high computational efficiency, 

507 which enabled the development of a large network model of the hippocampus, and by extensive use and 

508 validation of cell-specific spike timing across different neuron types [35,53–56]. Our simulation of STDP 

509 impairment as a consequence of mild TBI is also a limitation of these studies. Despite the prevalence of 

510 learning and memory deficits after TBI, there is not extensive literature surrounding plasticity impairment. 

511 Beyond inhibiting long-term potentiation in hippocampal circuitry, injury reduces CaMKII expression and 

512 synaptic protein assemblies, thereby impeding synaptic strengthening. In contrast, long-term depression 

513 generally remains intact in damaged hippocampal slices. Accordingly, we modeled these effects as a 

514 biased decrement in potentiation only. The change was modest, consisting of a mere 10% decrease in 

515 maximal strengthening, to ensure that network activity did not collapse at baseline. However, given our 

516 results that STDP impairment did not have a strong negative effect on learning and pattern separation, 

517 additional injury mechanisms should be explored in future work. Since damage is known to cause pattern 

518 separation deficits in both animals and humans [13,57,58], our results suggest that some additional 

519 mechanism beyond STDP impairment must contribute to those effects. Upcoming modeling studies might 

520 also examine the interplay between different plasticity algorithms since a stronger homeostatic 

521 mechanism might compensate for larger decreases in STDP-related potentiation, thereby preserving 

522 baseline untrained activity levels while exposing larger learning deficits. 

523 Lastly, we implemented an unsupervised learning paradigm, which makes no a priori designation 

524 between desired and undesired responses. For each of two patterns, we stimulated a subset of 200 

525 neurons in the dentate and identified the most responsive neurons in all three hippocampal subregions 

526 based on their normalized firing rate. We also implemented training and STDP impairment at the same 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403766doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403766
http://creativecommons.org/licenses/by/4.0/


25

527 time to hold the runtime constant between impaired and control networks. Yet, we could also consider 

528 training networks that had already adapted to STDP impairment controlled. It is possible that training 

529 mitigated the effects of injury and that networks with ingrained diminished activity are less responsive to 

530 training. Although this unsupervised method of network learning cannot address complex temporal 

531 coding, it has several advantages. Since it is a computationally efficient post-hoc algorithm without prior 

532 topological assumptions, it could be applied with spiking data of this size and density. It also exploits our 

533 incorporation of use-dependent plasticity (STDP) as one of the major advances in a model of this size and 

534 biological fidelity. Therefore, this method constituted a reasonable biological proxy despite its 

535 unsupervised nature. One popular alternative in biologically inspired neural networks is the detection of 

536 polychronous neural groups, which is better adapted to handling many neural groups and memory traces 

537 and evaluating the maximal amount of information that might be stored in a given circuit. While the 

538 original algorithm requires computationally expensive, brute-force computations, some groups are 

539 developing more efficient alternatives inspired by the field of machine learning [59,60]. These approaches 

540 might offer an opportunity to extend these results with a quantification of the information storage 

541 capacity of this hippocampal circuit.

542 Modularity is a useful framework for assessing the architectural organization of a network. Large 

543 networks often consist of several smaller subnetworks that are more densely connected internally than 

544 they are externally [26]. This partitioned organization is posited to support faster, more efficient 

545 processing by facilitating functional compartmentalization [26,61]. By reducing the energy requirements 

546 for network-wide modifications, a more modular structure is also a more adaptable one [27,62]. In the 

547 present study, we identify post-injury modularity reduction, which may constitute an adaptation that 

548 increases integration between communities to support overall activity levels. This result further suggests 

549 that potentiation supports baseline segregation in the hippocampal circuit. Although there is also 

550 evidence of the opposite [63,64], previous findings that TBI reduces modularity in functional brain 
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551 networks correlate with persistent post-concussive syndrome [62,65]. In addition, more modular 

552 structure was predictive of better training outcomes after injury [62]; this may occur because lower 

553 energy costs are associated with adaptation in more highly segregated networks. The variable response 

554 (increase vs. decrease) may relate to individual heterogeneity, other measures of network-wide 

555 integration, or whether the network is still in a state of active adaptation. Aside from analyzing the 

556 microcircuit scale, differences between our results and others may be attributable to our focus on 

557 structural, instead of functional, connectivity. Since functional connectivity is dynamic and malleable while 

558 structural connectivity is more stable as a reflection of the underlying neural anatomy, it is possible that 

559 the training effect is larger for functional networks. Ultimately, the demonstrated effects in structurally 

560 well-defined microcircuits corroborate the idea that modularity may be a useful (bio)marker of 

561 intervention-dependent network plasticity [66]. 

562 With a modest amount decrement in STDP-related potentiation, networks could still learn and 

563 execute pattern separation. In another recent study from our group, we tested the circuit-level 

564 consequences of NMDA receptor damage, which increases network activity, in a generic circuit with a 

565 similar learning paradigm [31]. Since injury-induced, elevated activity obscured the training effect, we 

566 found the most detrimental outcome of NMDA receptor dysfunction occurred during recall of previously 

567 trained patterns but also tested injury during different phases of memory [31]. Here, we exclusively tested 

568 STDP impairment during the encoding stage. In our preliminary work analyzing impaired networks without 

569 exogenous stimulation, we found significant declines in firing rate and signal power. Based on those 

570 effects, we expect the maintenance phase would also challenge STDP impaired networks, which would 

571 likely lose the entrained response more quickly as overall activity decreases without exogenous 

572 stimulation. This idea is supported by behavior studies that find injured animals perform the task 

573 successfully if tested quickly after training but not if the time between testing and training is longer [16]. 

574 If we integrated both STDP impairment and NMDA receptor damage simultaneously, we expect that STDP 
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575 impairment might enhance pattern recall because the two mechanisms have opposing influence on 

576 network activity. Alternatively, as trauma-induced changes to NMDAR physiology will disappear when 

577 receptors are replaced hours after injury [67–69] and plasticity impairments may persist for days after 

578 injury, one might expect an acute early impairment in the retrograde memory [70–72] with a longer lasting 

579 impairment in memory acquisition [16,73,74].  

580 As a measure of encoding, pattern separation conveys the capacity to distinguish similar events 

581 and contexts; therefore, this function underpins general learning abilities. TBI causes behavioral deficits 

582 in spatial memory and spatial object recognition in animal models of injury [13,16,75]. These trained 

583 behaviors depend on discrimination between similar experiences. Recent findings also demonstrate that 

584 injury impairs pattern separation in humans [57,58]. The dentate is traditionally the primary focus of 

585 studies on hippocampal pattern separation because its intrinsic properties of high inhibition and parallel 

586 circuity intuitively support this filter function; however, there is growing evidence that other subregions 

587 (CA3 and CA1) also facilitate pattern separation. In fact, temporary CA1 lesions impair pattern separation 

588 in humans [58]. Since CA1 relays information processed by the hippocampus to neocortical brain regions 

589 [76], the area clearly plays an important role in the wider circuitry, making it an intuitively important 

590 subregion. For these reasons, it is interesting that in our work changes in the DG and CA3 appear to 

591 compensate for one another because the population- and rate-based output distances measured from 

592 CA1 do not differ. These results suggest that the output patterns transduced by CA1 are essentially the 

593 same and that the network adapts to maintain that final output. While one might predict a larger effect 

594 of STDP impairment on pattern separation, these subtle differences are an intuitive extension of our 

595 collective results. With our preliminary functional analysis in networks without learning, we found that 

596 the DG was remarkably robust after STDP impairment. Specifically, the average firing rate and signal 

597 power did not decrease significantly. Given its intrinsically low rates of activity, the DG is more resilient to 

598 minor changes in STDP. Others have found that deficits in pattern separation are associated with 
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599 hyperexcitability and elevated activity in the DG [28,77,78], which increases activation and thereby 

600 reduces the capacity of the filter function. In general, STDP impairment reduces synaptic weights in the 

601 network, making it more difficult to activate. Although its impact on learning is more indirect, NMDA 

602 receptor damage or inhibitory cell degeneration might have outsized influence on pattern separation 

603 because these mechanisms would increase spurious noise in the output patterns. Finally, our analysis in 

604 this work focused on population and rate coding; however, we cannot exclude the importance of temporal 

605 coding because it is possible that the spike timing changes while the activity rate remains stable. Indeed, 

606 previous results from our group indicate that networks adapt to preserve firing rate first as other 

607 measures of spike timing exhibit longer lasting changes after neurodegeneration [37]. 

608 One natural extension of this work is prospective training or other interventions designed to 

609 facilitate active recovery in damaged networks. For instance, a stimulation protocol that could restore 

610 activity in a damaged network would be of interest for rehabilitation [13,79], and certain types of 

611 stimulation (frequencies, magnitudes, etc.) might bet associated with better training outcomes. There is 

612 a clear need to investigate stimulation in conjunction with injury and the role that it may play in network 

613 recovery. It is often assumed that concussed patients should limit exposure to any form of stimulation 

614 because it mitigates their symptoms; however, targeted stimulation may instead help resolve chronic 

615 deficits [79]. Relatedly, the functional connectivity characteristics of our hippocampal network should be 

616 examined more completely, as we may discover a structurally modified network achieves nearly the same 

617 functional organization that appeared before injury. This analysis would enable us to address how closely 

618 functional networks reflect underlying structural connectivity at the microcircuit scale. At the macroscale, 

619 a link between axonal tractography and a resting state functional network is established [80,81], but the 

620 relationship between structural and functional connectivity is not well understood in microcircuits. 

621 Further, characterizing functional networks from these simulations would offer an opportunity to link this 
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622 work with experimental results measured via microelectrode arrays and make structurally based insights 

623 about those empirical functional data [82].

624 With this work, we investigate the modular network structure of a computational model of the 

625 hippocampus, a region of the brain that has well-characterized anatomy and electrophysiology, and we 

626 examine the functional implications of plasticity impairment on network-defined pattern separation. 

627 These studies contribute to a growing body of work regarding the circuit-level effects of cellular damage 

628 in neuronal networks [31,36,37,83]. Studying a posited substrate of physiological learning with this 

629 biologically inspired computational model of the hippocampus, which is known for its role in learning and 

630 memory, guides new insights into both temporary and more permanent impairments that could occur 

631 from cellular-based changes after traumatic injury. In addition, combining this cellular-level mechanistic 

632 insight with new tools in data science (e.g., deep learning and machine learning) provides an opportunity 

633 to create biologically inspired autonomous learning models that could aid the recovery and repair of 

634 damaged circuits. By understanding network-based learning in this hippocampal circuit, we will not only 

635 advance practical analytical tools, but we may also develop targeted interventions to improve outcomes 

636 for patients with diseases of brain-network organization. 
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