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Memristive devices present a new device technology allowing for the realization

of compact non-volatile memories. Some of them are already in the process of

industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which

make them good candidates for the implementation of artificial synapses in neuromorphic

engineering. However, memristive effects rely on diverse physical mechanisms, and

their plastic behaviors differ strongly from one technology to another. Here, we present

measurements performed on different memristive devices and the opportunities that

they provide. We show that they can be used to implement different learning rules

whose properties emerge directly from device physics: real time or accelerated operation,

deterministic or stochastic behavior, long term or short term plasticity. We then discuss

how such devices might be integrated into a complete architecture. These results highlight

that there is no unique way to exploit memristive devices in neuromorphic systems.

Understanding and embracing device physics is the key for their optimal use.

Keywords: memristive device, memristor, neuromorphic engineering, plasticity, hardware neural network

INTRODUCTION

In 1971, Leon Chua indicated the possible existence of a fourth

basic electrical component (Chua, 1971). This component, the

memristor, would complement those already known namely

resistance, capacitor, and inductor, and offer new opportunities

for system design (Chua and Kang, 1976). In particular, Chua

proposed to use memristors or similar memristive devices to

fabricate synapses and neurons following the Hodgkin–Huxley

formalism. From this theoretical work, several publications have

cited the memristive phenomenon without naming it as such and

without linking it to Chua’s theory (Upadhyaya and Chandra,

1995; Lau et al., 2004; Waser and Aono, 2007; Wu et al., 2007;

Pershin and Di Ventra, 2008). HP labs were the first to recognize

a device as a memristor in 2008 (Strukov et al., 2008), and they

highlighted both the technology and its possible applications.

In parallel, the designers of the neuromorphic community

worked hard on achieving CMOS neurons to reach electri-

cal energy consumption of the order of picojoule per spike

(Wijekoon and Dudek, 2008; Livi and Indiveri, 2009; Rangan

et al., 2010; Merolla et al., 2011; Joubert et al., 2012). However, if

the neuron implementation still have to face important challenges

to match the neurons density and functionality required for

neuromorphic circuits, the most abundant element in a neu-

ral network is the synapse. Consequently, most of the efforts

have been concentrated on achieving high density memories with

embedded synaptic functionalities (i.e., synaptic plasticity) in a

single component. To become functional, the realization of a plas-

tic synapse requires three parts: (i) synaptic weight storage, (ii)

circuit for updating this weight depending on the network activ-

ity, and (iii) circuit for information transmission between two

neurons. The neuromorphic community has developed a strong

interest in memristive devices because these nanodevices and the

associated integration strategies offer potential solutions to realize

these three functions.

Resistive Random Access Memory (ReRAM) technologies in

its broad sense have been developed for pure memory applica-

tions but can fall into the memristive system classification (Baek

et al., 2004; Lee et al., 2008; Wong et al., 2012). These different

technologies are mostly used in binary mode and are at the stage

of industrialization and commercialization (e.g., ReRAM from

Panasonic and Samsung) with high endurance, low energy, and

high integration capability performances (Kawahara et al., 2012;

Liu et al., 2013). Such performances can be an interesting plat-

form for the implementation of synaptic weight storage (even
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in binary mode) if integration strategies and specific architec-

tures are developed in order to offer a suitable solution to the

large access required between neuron (i.e., computing node) and

synapses (memory) inherent to parallel computing in neuromor-

phic circuits (and unsolved by Von Neumann architectures and

associated bottleneck). In addition, their use in analog mode

(or multilevel), is the subject of great attention and could be an

effective solution for the implementation of synaptic functions.

Defining a memristor itself (see Figure 1A) can be debatable.

Leon Chua now defines a memristor as any element that has an

I(V) curve pinched at 0 V (Figure 1B) (Chua, 2014). This defi-

nition is widely used in the literature for characterizing devices,

and in this paper we synonymously use the historic word mem-

ristor or the more generic “memristive device.” A general feature

of memristive devices is to offer a non-volatile modification of its

resistance (or conductance) as a function of the current (charge)

or voltage (flux) driving the device. In particular, neuromorphic

circuit designers prefer to think of memristors as resistive com-

ponents that have the following properties: (i) the greater the

electrical charge that has passed through the component, the

more the resistance value decreases, (ii) the resistance value is

stored in the element even after it is turned off. Moreover, this

modification appears if the charge through the memristor goes

over a “threshold” (Figure 2D).

Memristors can be realized using several technologies and

we can categorize these technologies in four large families. The

first includes anionic and cationic Red-Ox devices operating

on Oxidation–Reduction principles. The second is phase-change

memories (PCM), where resistive switching is connected with a

physical phase change. Organic elements represent the third fam-

ily. The fourth family finally comprises elements using purely

electronic effects such as ferroelectric tunnel and spintronic

memristors. These technologies possess different behaviors and

therefore different fields of application. As part of this paper about

synaptic plasticity, we also point out that these technologies will

lead to different plastic behaviors and learning rules. These differ-

ences enrich the palette of possibilities for neuromorphic design.

As Jeong et al. (2013), the purpose of this paper is not to present

an exhaustive list of memristive technology and of their associ-

ated behavior, but rather to present the different forms of learning

that have been observed. In our paper, all data about memristive

devices have been measured by at least one of the co-authors.

FIGURE 1 | (A) Symbol of memristor; (B) characteristic transport features

of memristors: pinched iv loops for different values of the maximum

injected current.

If computing and memorization principles in neural networks

are not completely understood, it is now widely recognized that

learning in such systems is associated to synaptic weight mod-

ification that tends to reinforce or depress the strength of the

connection between two neurons and grouped into the wide class

of synaptic plasticity. The most popular description of learning

was proposed by Hebb with the postulate “who fire together, wire

together” (Hebb, 1949). In other words, two neurons presenting a

correlated activity will tend to reinforce their synaptic connection.

A first requirement is to define what we call neuron activity: two

different approaches are commonly used, (i) rate coding strate-

gies correspond to the definition of neuron activity as the mean

firing rate estimated on a chosen time window while (ii) temporal

coding corresponds to the assignment of neuron activity to a sin-

gle spike event with a given time stamp with respect to the other

spiking neurons considered in the network. Based on this differ-

ent coding strategies, variations of Hebbian learning have been

proposed such has Spike Rate Dependent Plasticity (SRDP) or

the very popular Spike Timing Dependent Plasticity (STDP). In

particular, STDP has attracted a large interest in the memristive

device community because of its practical implementation based

on overlapping pulses coming from the pre and post neurons.

We present in Section STDP Learning Thanks to Overlapping

Events theoretical elements that allow the understanding of the

application of this basic learning algorithm. Starting from this

ideal case, we present practical implementations of STDP in solid

state devices and show how material constraint (i.e., switching

mechanism, operating conditions, . . . ) can be used to realize var-

ious form of STDP. Then we present two cases of “ferroelectric”

memristors based on thin film semiconductor-metal-metaloxide

compounds. These compounds were some of the first materials

to be used as memristive synapses (see Kuzum et al., 2013 for a

review). The first of our ferroelectric memristors is based on sev-

eral 100 nm thick BiFeO3 films experiencing resistive switching in

the Schottky barrier formed with one of the contacts. Specifically,

the memristive effect in these devices is effected by a change of the

depletion layer of the Schottky diode due to a non-volatile charge

transfer similar to the “moving barrier” of TiO2. The second con-

sists of ferroelectric tunnel junctions of very thin (∼1 nm) BiFeO3

films in which tunneling resistance is linked to the polarization

of the barrier. They differ radically by the time scales on which

they operate and thus by the contexts in which they could be

used. A third case based on spin-transfer torque magnetic tun-

nel junction is also presented in Section Spin-Transfer Torque

Magnetic Tunnel Junction as a Stochastic Synapse. It presents

a stochastic behavior in learning which is in some ways rem-

iniscent of biological neural networks. In Section SRDP with

Memristive Devices, we present different form of SRDP observed

in biological synapses and of interest for spike rate coding strate-

gies. We first show how Short Term Plasticity, corresponding

to a temporary modification of the weight that tends to relax

toward a resting state, can be used to implement rate depen-

dent modification of the weight. A second example describes how

Short Term/Long Term plasticity transitions can be reproduced

by taking advantage of device stability characteristics. Before the

conclusion, Section Toward Memristor-CMOS Architectures and

Circuits opens the discussion on the characteristics of circuit
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FIGURE 2 | (A) Experimentally measured STDP function ξi (�T ) on

biological synapses (data from Bi and Poo, 1998, 2001). (B) Ideal STDP

update function used in computational models of STDP synaptic

learning. (C) Anti-STDP learning function for inhibitory STDP synapses.

(D) Shape of memristor weight update function f (vMR ). (E) Spike

shape waveform.

architectures that will drive memristors following their electrical

behavior.

STDP LEARNING THANKS TO OVERLAPPING EVENTS

THEORETICAL PRINCIPLES

STDP is the ability of natural or artificial synapses to change

their strength according to the precise timing of individual pre-

and/or post-synaptic spikes (Gerstner et al., 1993, 1996; Markram

et al., 1997; Bi and Poo, 1998, 2001; Zhang et al., 1998; Feldman,

2000; Mu and Poo, 2006; Cassenaer and Laurent, 2007; Jacob

et al., 2007; Young, 2007; Finelli et al., 2008; Masquelier et al.,

2008, 2009). A comprehensive overview of STDP and of its his-

tory can be found elsewhere (Sjöström and Gerstner, 2010).

STDP learning in biology is inherently asynchronous and on-line,

meaning that synaptic incremental update occurs while neu-

rons and synapses transmit spikes and perform computations in

parallel. Early proposals of this used artificial time-multiplexing

to alternate continuously and synchronously between “perform-

ing” and “weight update” phases (Snider, 2008), thus requiring

global system-wide synchronization. This can become a severe

handicap when scaling up systems. Another option is a fully

asynchronous implementation for memristor-based STDP where

“performing” and “weight update” phases happen simultane-

ously in a natural manner, as in biology (Linares-Barranco and

Serrano-Gotarredona, 2009a,b; Zamarreño-Ramos et al., 2011;

Bichler et al., 2012b; Kuzum et al., 2012), and where there is no

need for any global synchronization.

Figure 2A shows the change of synaptic strength (in percent)

measured experimentally from biological synapses as function

of relative timing �T = tpos − tpre between the arrival time tpre

of a pre-synaptic spike and the time tpos of the generation of a

post-synaptic spike. Although the data shows stochasticity, we

can infer an underlying interpolated function ξ(�T) as shown

in Figure 2B.

ξ (�T) =

{

a+e
− �T

τ+ if �T > 0

−a−e
− �T

τ− if �T < 0
(1)

For a causal pre- to post-spike timing relation (�T > 0) the

strength of the synapse is increased, while for an anti-causal rela-

tion (�T < 0) it is decreased. In the case of synapses with negative

synaptic strength (as in some artificial realizations), the reversed

version shown in Figure 2C can be used. Microchip CMOS cir-

cuit implementations of STDP rules that follow the description

of Equation (1) have been reported (Indiveri et al., 2006), which

result in about 30 transistors per plastic synapse, and thus may

lead to high costs for their hardware realization. There is, over-

all, general thinking that STDP is very expensive to implement in

conventional CMOS microchips (Fieres et al., 2008; Khan et al.,

2008). However, it can be implemented with just one memristor

per synapse if appropriate peripheral signal conditioning neurons

are used in hybrid CMOS/memristor realizations.

For our purpose, we will consider a particular type of memris-

tors, named voltage/flux driven memristor, which can be mathe-

matically defined by.

i MR = G (w, v MR) v MR

ẇ = f (v MR)
(2)
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Memristor current and voltage are in general related through

a non-linear conductance G (in the iMR vs. vMR plane), whose

shape is tuned by parameter w. Most of the times, however, we

may approximate the conductance as being totally linear iMR =

G(w)vMR, where the value of w is dependent on the history of vMR.

Parameter w represents some structural property of the memris-

tor. This parameter changes non-linearly as a function f ( ) of the

evolution of the memristor voltage vMR, so that the derivative of

w is governed by the second equation in (Equation 2). A typical

shape of this function is shown in Figure 2D, where a “dead zone”

between two threshold voltages is present. While the memristor

voltage is kept within this dead zone, parameter w will remain

constant, and G will not change. But if the memristor voltage goes

out of the dead zone, the (linear or non-linear conductance G)

will change.

The STDP learning rule (as modeled by Equation 1) can, in

theory, be implemented by (i) using a particular type of volt-

age/flux driven memristor (Jo et al., 2010), while (ii) providing

appropriately shaped pre- and post-synaptic spikes available at

both synapse (memristor) electrodes (Zamarreño-Ramos et al.,

2011). For example, we can consider a pair of identical pre- and

post-synaptic spikes with a shape resembling that of biological

spikes (see Figure 2E), with an on-set duration |t+ail| and a tail of

duration |t−ail|,

spk (t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A+
mp

e
t

τ+ −e
−

t+
ail
τ+

1−e
−

t+
ail
τ+

if − t+ail < t < 0

−A−
mp

e
− t

τ− −e
−

t−
ail
τ−

1−e
−

t−
ail
τ−

if 0 < t < t−ail

0 if otherwise

(3)

Under these circumstances, memristor voltage is vMR(t, �t) =

αpos spk(t) – αpre spk(t + �t) and synaptic strength change can

be computed as.

�w (�T) =

∫

f (vMR (t,�T)) dt = ξ (�T) (4)

which has been shown to result in the same shape illustrated

in Figure 2B (Zamarreño-Ramos et al., 2011). Furthermore, by

reshaping the spike waveform, one can fine tune or completely

alter the STDP learning function ξ(�T), as illustrated in Figure 3.

This way, by building neurons with a given degree of shape pro-

grammability, it is possible to change the STDP learning function

at will, depending on the application, or make it evolve in time as

learning progresses.

Figure 4A shows a way of interconnecting memristors and

CMOS neurons for STDP learning. Triangles represent the neu-

ron soma, the flat side indicating its input (dendrites) and the

sharp side its output (axon). Dark rectangles are memristors,

each representing one synaptic junction. Every neuron controls

the voltage at its input (Vpost in Figure 4B) and output (Vpre in

Figure 4B) nodes. When the neuron is not spiking it forces a con-

stant voltage at both nodes, while collecting through its input

node the sum of input synaptic spike currents coming from the

memristors, which contribute to changing the neuron internal

state. When the neuron spikes, it sets a one-spike waveform at

both input and output nodes. This way, they send their output

spikes forward as pre-synaptic spikes for the destination synaptic

memristors, but also backward to preceding synaptic memristors

as post-synaptic spikes. Zamarreño et al. showed extensive simu-

lations on these concepts, and how one can change from STDP

to anti-STDP by switching polarities of spikes or memristors

(Zamarreño-Ramos et al., 2011). For example, (Figures 3F1,F2)

illustrate the case where forward and backward spikes have oppo-

site polarities, resulting in a symmetric STDP update function

ξ(�T). Figures 3G1,G2 illustrate an example where forward and

backward spikes are different, with the backward spike such that

its positive part exceeds the positive memristor threshold (vth =

1.0). This produces LTD (long term depression) or negative STDP

update whenever there is a post-synaptic spike sufficiently apart

from a pre-synaptic one; and produces LTP (long term poten-

tiation) if pre- and post-synaptic spikes happen within a given

time window (Bichler et al., 2012a,b). Figures 2H1,H2 illustrate

a similar STDP update behavior, except that the update (whether

positive or negative) is restricted to a limited time window.

If the system is structured into neural layers (for exam-

ple, Figure 4A shows a 3-neuron-layer system) with memristive

synapses in between, then for each layer all pre-synaptic neurons

should have the same forward spike shape and all post-synaptic

neurons should have the same backward shape. This way, all

memristive synapses between these two neural layers will have the

same STDP function ξ(�T).

WAVEFORM-DEFINED PLASTICITY IN FERROELECTRIC RESISTIVE

SWITCHING MEMRISTORS

In this section, we concentrate on an analysis of resistive switch-

ing BiFeO3 (BFO). Our BFO memristors are grown by pulsed

laser deposition on Pt/Ti/SiO2/Si substrate with a circular Au top

contact (Shuai et al., 2013), see Figure 5A. The BFO films have

a thickness of some 100 nm. The top contact forms a Schottky

diode, causing the created devices to show resistive switching with

a rectifying behavior (Shuai et al., 2011). The devices exhibit a

combination of voltage- and charge-driven behavior, and are con-

sistent with the requirements of Section Theoretical Principles.

When stepping DC voltages across the device, the resistance will

follow an exponential curve (Mayr et al., 2012). The voltage level

defines the converged resistance value, while the charge passed

through the device defines the time frame until this converged

value is achieved.

Resistive switching in BFO shows a number of characteris-

tics which make it well-suited for use as a synapse. For instance,

the dependence between voltage level and converged resistance

makes the BFO devices conform closely to the ideal waveform-

driven plasticity postulated in Figure 3, as plastic changes in the

memristor closely follow the overlapping pre- and post-synaptic

waveforms. Up to 8 bit analog resolution can be reliably pro-

grammed in the device (Shuai et al., 2013). Due to the Schottky

diode, there is also high-ohmic region up to 1 V. Similar to the

paradigm of Linn et al. (2010), this can be used in an array of

BFO devices to define a voltage readout-region where only a sin-

gle device in the array is active, eliminating the multiple sneak

Frontiers in Neuroscience | Neuromorphic Engineering March 2015 | Volume 9 | Article 51 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Saïghi et al. Plasticity in memristive devices

FIGURE 3 | Illustration of influence of action potential shapes on the

resulting STDP memristor weight update function ξ (�T ). Memristor

upper and lower thresholds are normalized to amplitudes ±1.0. From (A1,A2)

to (E1,E2) the same spike waveform travels forward and backward. In (F1,F2)

the forward and backward waveforms are the same but have opposite

polarity. In (G1,G2) to (H1,H2) the forward and backward waveforms are

different. In (G1,G2), the positive pulse of the backward waveform exceeds

amplitude +1.0, thus producing negative STDP update whenever there is a

post-synaptic spike alone (G2); otherwise if pre- and post-synaptic spikes

happen within a given time window, there will be positive STDP update.

current paths that would otherwise severely limit practical array

size (Flocke and Noll, 2007). While this characteristic potentially

enables large crossbar arrays of BFO devices, defect density is on

the order of 30% for an “open circuit” type failure, so a place-

ment algorithm (Mayr et al., 2007) would have to be used in a

memristive array to map around defect memristors.

The devices also experience a modification threshold at ca.

2 V, i.e., starting from the Schottky diode threshold at 1 V up to

2 V, the memristance can be measured by the current flow, but

the charge inherent in this current does not change the mem-

ristance. If appropriate waveforms are chosen, the 2 V threshold

extracts pre- and post-synaptic activity correlation as memris-

tance change, as postulated in Section Theoretical Principles. All

these voltages are broadly compatible with CMOS logic processes,

in contrast to other material choices that need significantly higher

voltages (Kuzum et al., 2013).

The waveforms in the upper two curves of Figure 5B are used

as pre- respectively post-synaptic voltage. Those curves have not

been shown in Figure 3; however their asymmetry is in the spirit

of Figures 3G1,H1. These waveforms implement the plasticity

model of Mayr et al. (2010), which allows for both rate- and

spike-based plastic behavior. In the third curve of Figure 5B,

which shows the resulting differential voltage across the memris-

tor, the modification thresholds at about 2 V are marked. As can

be seen, these are crucial in permitting modification only for true

pre-post coincidences (such as at 30 ms), filtering out single pre-

or post-synaptic events (such as at 20 ms). The resulting synaptic

modification is shown in the last curve of Figure 5B, exhibiting a

close match with the theoretical model (Mayr et al., 2010).

Measured STDP curves using this paradigm are shown in

Figure 5C. With their exact reproduction of the waveform-

defined exponential time window, they showcase the capability
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FIGURE 4 | (A) Example of Memristors and CMOS neuron circuits

arrangement for achieving STDP learning: feed-forward neural system with 3

layers of neurons and two fully connecting synapse crossbars. (B) Details of

parts around one post-synaptic neuron. While a neuron is silent, it sets a

constant DC voltage at its input (Vpost ) and output (Vpre) nodes. When a

neuron is sending a spike, it sets a voltage spike at both nodes.

FIGURE 5 | (A) Layout/processing of BiFeO3 devices used (Shuai et al.,

2013); (B) driving voltage waveforms (from top to bottom): pre-synaptic

waveform, post-synaptic waveform, resulting differential voltage across

memristor and resulting memristance change shown as percentage change

in current through the memristor for a fixed 2 V measurement voltage

(Cederstroem et al., 2013); (C) measured STDP curves for two different STDP

time window settings; time windows are adjusted via the time constants of

the exponentials slopes of pre- and post-synaptic waveform, which changes

the LTP respectively the LTD part of the STDP window; Weight change as

change in current through the memristor; (D) measured spike triplet curves

(Froemke and Dan, 2002), weight change as change in current through the

memristor (Mayr et al., 2012).

of BFO synapses for fine-grained analog weights. In most cur-

rent memristive materials, the STDP curves deviate significantly

more, and their time windows are primarily defined by the physi-

cal device characteristics, not the driving waveform (Alibart et al.,

2012; Kuzum et al., 2013). In contrast, the voltage-memristance

relationship of the BFO synapses lets them conform nicely to

the waveform-defines-plasticity paradigm postulated in theory

(Zamarreño-Ramos et al., 2011). Through this direct translation

of the driving voltage waveforms into the plasticity shape, dif-

ferent time windows can be easily configured via the pre- and

post-synaptic waveforms, as can be seen from the two sample

curves in Figure 5C.

By introducing adaptation into the post-synaptic waveform,

specifically an exponential dependence of the post-synaptic
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action potential duration on the inter-spike interval, the plastic-

ity rule of Mayr and Partzsch (2010) is also able to reproduce

triplet and rate plasticity (Froemke and Dan, 2002). When explor-

ing the triplet paradigm with memristors, a faithful reproduction

of biological triplet data can be seen (Figure 5D), due again to

the excellent correlation between driving waveform and evoked

memristive plasticity. The post-synaptic adaptation introduced

for triplet plasticity can be observed in the different pulse widths

in the second curve in Figure 5B (Noack et al., 2010).

Defining the plasticity entirely through the waveform can also

be used to substantially speed up synapse behavior in BFO up

to a 50 µs time scale (You et al., 2014). A switched capacitor

system such as (Mayr et al., 2014b), if equipped with a scal-

able time base (Eisenreich et al., 2009), also offers the intriguing

possibility of operating a high-density, CMOS-memristor hybrid

neuromorphic system at varying timescales to accommodate dif-

ferent tasks, such as real-time interoperation with a visual sensor

vs. offline, high-speed classification tasks where an accelerated

timescale leads to faster classification.

HIGH-SPEED PLASTICITY IN FERROELECTRIC TUNNEL MEMRISTORS

“Purely electronic” memristors are nanodevices in which the

resistance changes are obtained through electron mediated phe-

nomena at interfaces. These memristors promise an increased

endurance and reliability, since the material structure is pre-

served, as well as a faster switching speed.

The “ferroelectric tunnel memristor” (Bibes et al., 2010)

is based on an emerging digital memory concept, subject of

intense academic and industrial developments, the ferroelec-

tric resistive RAM (International Technology Roadmap For

Semiconductors, 2011). Its base is the ferroelectric tunnel junc-

tion (FTJ): an insulating ultrathin (several nanometers) fer-

roelectric barrier sandwiched between two metallic electrodes

(Figure 6A). Strain from the substrate assures that the ferroelec-

tric polarization points to one of the electrodes. The polarization

can be switched upon application of short voltage pulses and

results in resistance changes of up to several orders of mag-

nitude (Garcia et al., 2009; Chanthbouala et al., 2012a). This

resistance contrast is linked to different polarization screen-

ing in the electrodes: the effective tunneling barrier height

dependents on the direction of the ferroelectric layer’s polar-

ization and therefore strongly influences the tunneling current.

Additionally, the strong non-linearity of the ferroelectric tunnel

junction allows for a non-destructive resistance reading at low DC

voltage.

By designing the devices in such way that the switching occurs

through non-uniform ferroelectric domain configurations, quasi-

analog resistance variations can be obtained (Chanthbouala et al.,

2012b). A direct link between these intermediate resistance states

and the ferroelectric domain configuration allows the description

of its dynamic behavior through models of domain nucleation

and growth in ferroelectric films. Furthermore, the cumulative

behavior upon application of trains of voltage pulses has already

been demonstrated. As the polarization reversal process in the

ferroelectric film depends on pulse amplitude and duration,

these parameters can be adapted to achieve the desired resistance

change in the memristive device—a very promising feature for the

implementation of STDP-based learning with ferroelectric tunnel

memristors (Chanthbouala et al., 2012b).

It has recently been demonstrated that fully-patterned solid-

state ferroelectric tunnel memristors based on BiFeO3 (fully

patterned submicron Co/BiFeO3/Ca0.96Ce0.04MnO3 tunnel junc-

tions) can be produced with high yield and with low device-to-

device variations. They show resistance contrasts of more than

3 orders of magnitude, can be commuted with pulses of 100 ns

and amplitudes of about 2 V, and have a large endurance of over

4 × 106 cycles (Boyn et al., 2014).

In Figure 6, we plot as in Yamada et al. (2013) the multi-

level behavior of a ferroelectric tunnel memristor depending on

applied voltages. The curves in Figure 6B show the DC resistance

value of the device after writing pulses of different amplitudes. To

use this memristor as a plastic synapse we consider −VMR to rep-

resent the time difference �T = tpost − tpre. Then �T > 0, i.e.,

VMR < 0 in Figure 6B, implies increasing conductance that cor-

responds to Hebb’s rule. Conversely, �T < 0 results in a decrease

of the synaptic weight.

Choosing the waveform of Figure 3B1 for pre- and post-

synaptic voltage neurons, the width of the positive square pulse

can be as low as 100 ns in the case of the ferroelectric tunnel

memristor. Accordingly, the ramp phase of the waveform will be a

few times larger than this. As a result, the time difference between

spikes for the STDP shown in Figure 3B2 can be less than 1 µs.

SPIN-TRANSFER TORQUE MAGNETIC TUNNEL JUNCTION AS A

STOCHASTIC SYNAPSE

Spin-Transfer Torque Magnetic Tunnel Junctions (STT-MTJs)

constitute another choice to implement plastic non-volatile

synapses. They rely on a different operating mechanism than

the devices presented in the rest of the paper, and for this rea-

son are not always thought as memristive devices. Their specific

stochastic behavior, however, can be particularly interesting for

synaptic applications. And as they constitute the basic cell of the

second generation of Spin Transfer Torque Magnetic RAM (STT-

MRAM)—which is currently reaching the market—, they present

a high level of CMOS compatibility and of maturity.

The basic structure of a STT-MTJ is presented in Figure 7A

and is constituted by an ensemble of layers of different materials.

The magnetic “fixed” layer is a small magnet whose magnetiza-

tion is pinned in one direction. The magnetic “free” layer is a

thinner magnet whose magnetization can be either parallel (P) or

antiparallel (AP) to the one of the fixed layer. Due to the Tunnel

Magnetoresistance effect, the electrical resistance of the P and AP

state is different. And due to the Spin Transfer Torque effect, a

positive current can switch the device from AP to P state, and a

negative current can switch the device from P to AP state. This

leads to the I–V curve seen in Figure 7B, which is reminiscent

of a memristive device. However, MTJs are truly binary device:

AP and P states are the only possible states. Some proposals exist

to increase the number of states (Lou et al., 2008) or to include

another physical effect (domain wall motion) in the MTJ to

reach multilevel behavior (Wang et al., 2009; Chanthbouala et al.,

2011). However, these variations do not exhibit the same degree

of maturity as binary STT-MTJs. In comparison with traditional

memristive devices, STT-MTJs are fast to write (programming
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can be as fast as 1.5 ns) and possess outstanding endurance

(switching the free layer magnet is not associating with an aging

mechanism). Their main drawback is a relatively high fabrication

cost and a low ROFF/RON ratio. STT-MTJs should be associated

with different CMOS circuits than other memristive devices for

this reason (Zhang et al., 2014).

Additionally, a specificity of STT-MTJs, of special interest for

synaptic applications, is that switching is stochastic. When one

applies a programming pulse, a STT-MTJ has only a probability to

switch state, which is independent of the STT-MTJ’s history: every

time the programming pulse is applied, the STT-MTJ has the

same probability to switch state. This is well-seen on the exper-

imental measurements of Figure 7C on devices of Devolder et al.

(2008), Marins de Castro et al. (2012). The switching probability

can be controlled by programming voltage and pulse duration.

The basic physics behind this effect is well-understood (Diao

et al., 2007; Devolder et al., 2008) and we have recently devel-

oped a comprehensive analytical model of it for circuits and

systems designers (Vincent et al., 2015). As seen in Figure 7D,

a striking feature is that the mean switching time of the STT-

MTJ can be adjusted over many orders of magnitude by choosing

the programming current. It has also been proven that STT-MTJ

stochastic switching can be used to generate high quality random

numbers that pass standardized statistical tests qualifying true

random number generators (Fukushima et al., 2014). Stochastic

switching can also be adjusted by layout of the junctions (size and

eccentricity).

STT-MTJs are suitable for implementing a stochastic version

of STDP that has been studied in several recent works (Kavehei,

2013; Suri et al., 2013; Yu et al., 2013; Vincent et al., 2014). They

exploit, at the system level, a functional equivalence (Goldberg

et al., 2001) that exists between multi-level deterministic synapses

and binary probabilistic synapses. When a long term potentiation

or depression occurs, instead of changing the conductance of

the synapse partially, stochastic STDP has a small probability of

changing it totally. And if several STT-MTJs are connected in par-

allel, a multibit synapse can be emulated. Since STT-MTJs have no

internal dynamic besides stochastic switching, stochastic STDP

can be implemented using similar strategies to the one used for

ferroelectric devices. Only the behavior at the system level will be

different.

In our works, we have been working with a stochastic ver-

sion of the simplified version of STDP which is theorized in

Nessler et al. (2013) and also used in Bichler et al. (2012a), Suri

et al. (2013), Querlioz et al. (2013), and similar to the one of

Figures 3G1,G2. A possible implementation with STT-MTJs is

summarized on Figure 7E. It relies on overlapping pulses, but

with clear separation of transmission and programming oper-

ation (Suri et al., 2013; Vincent et al., 2014). Although very

simple, this STDP rule can lead to complex machine learning

tasks like learning to detect cars on a video (Vincent et al.,

2014). Additionally, we have observed that it is surprisingly

robust to STT-MTJ variability (Vincent et al., 2014). However,

this is just an example and other forms of STDP may be

implemented with STT-MTJs if one accepts their stochastic

nature.

SRDP WITH MEMRISTIVE DEVICES

The learning process described in the previous section has been

implemented in a large variety of solid state memory devices with

non-volatile characteristics. However, if we consider the synaptic

plasticity mechanisms observed in biological computing systems,

modification of the synaptic efficiency (evaluated by measuring

the transmission of a single spike and equivalent to the synap-

tic weight) can be either permanent (i.e., lasting for months

to years) or temporary (i.e., relaxing to its initial state with a

characteristic time constant in the milliseconds to hours range).

This observation leads to the definition of Long Term Plasticity

FIGURE 6 | (A) Optical microscope image of the chip after patterning

showing 5×10 ferroelectric tunnel junctions (FTJ); (B) 3D representation of a

zoomed area containing a few FTJs. The three parallel bars are the

ground-signal-ground contact pads; (C) 3D sketch of one FTJ (Boyn et al.,

2014); (D) schema of the voltages applied to the memristor. The reading

pulse Vread is lower than the threshold (Vread = 200 mV). Writing is performed

by the application of 100 ns voltage pulses of different amplitudes. The

writing voltages increase from −2 V to Vmax by a step of 0.1 V. Then, the

amplitude of the writing pulses decreases to −Vmax; (E) dependence of the

resistance of the ferroelectric tunnel memristor measured at Vread on the

applied writing cycles. The different curves correspond to different

consecutive measurements with varying Vmax.
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FIGURE 7 | From Vincent et al. (2014, 2015). (A) Cartoon of a Spin Transfer

Torque Magnetic Tunnel Junction (STT-MTJ). (B) Typical I–V curve of the

STT-MTJ. (C) Experimental measurements of stochastic switching. (D) Model

of mean switching time as a function of programming current. (E) Our

simplified STDP rule and PRE and POST overlapping pulses which implement

it naturally with STT-MTJs.

(LTP) and Short Term Plasticity (STP), respectively. We can notice

that the boundary classification into Long Term (LT) and Short

Term (ST) effects is not well-defined and should be considered

with respect to the required task. Both STP and LTP can corre-

spond to an increase or decrease of the synaptic efficiency thus

leading to the definition of Short Term (Long Term) potentia-

tion and depression, respectively. In biology, synaptic plasticity

can be attributed to various mechanisms involved in the trans-

mission of the signal between a pre- and post-neuron, such as

neurotransmitter release modification, neurotransmitter recovery

in the pre-synaptic connection, receptors sensitivity modification

or even structural modification of the synaptic connection (see

Bliss and Collingridge, 1993), for a description of the different

mechanisms involved in STP and LTP). Based on this observa-

tion, two important points need to be stressed. First, STP and

LTP processes are not restricted to a particular learning strategy

(i.e., STDP and SRDP, for example). In this section, we present

examples of STP and LTP processes based on a particular case

of rate coding strategy but these considerations are still valid for

other coding strategies (see Alibart et al., 2012, for STDP with

STP devices). Secondly, if plasticity is intimately linked to the

notion of learning, it is important to notice that there is no one-

to-one equivalence between the concepts of STP, LTP and the

notion of Short Term Memory (STM) and Long Term Memory

(LTM). Indeed, even if a direct parallel has been proposed based

on the particular concept of memory consolidation (Lamprecht

and Ledoux, 2004), which corresponds to accumulation of Short

Term effect leading to Long Term memory, there are still very

important questions to be answered about how learning (and

the associated synaptic plasticity) is related to the memorization

of information that can also present different time scale from

milliseconds to years.
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FIGURE 8 | (A) Schematic of the NOMFET in a diode-like configuration. This leaky memory transistor was proposed to implement the Short Term Plasticity (B)

STP measured in biological synapses (Varela et al., 1997) and (C) STP implement in solid state device.

SHORT TERM PLASTICITY (STP)

Implementation of STP has been proposed in a variety of

nanoscale memory devices. The first proposition of STP was real-

ized in a nanoparticles/organic memory transistor (NOMFET)—

Figure 8 (Alibart et al., 2010). The basic principle of this

device is equivalent to a floating gate transistor. Charges are

stored in the nanoparticles and modify the channel conductiv-

ity via Coulombic repulsion between the carriers (holes) and

the charged nanoparticles. The particularity of this device is to

present a leaky memory behavior: charges stored in the nanopar-

ticles tend to relax with a characteristic time constant in the

1–100 s range. When the NOMFET is connected in a diode like

configuration (Figure 8A), each input spike (with a negative volt-

age value) charges the nanoparticles and decreases the NOMFET

conductivity. Between pulses, charges escape from the nanopar-

ticles and the conductivity relaxes toward its resting value. By

analogy with biology, this device mimics the STP observed in

depressing synapses (Figures 8B,C) and described by Abbott et al.

(1997). As a matter of comparison, this synaptic functionality is

realized with a single memory transistor when its implementa-

tion in Si based technologies (i.e., CMOS) required 7 transistors

(Boegerhausen et al., 2003). STP has been also demonstrated

in two-terminal devices that would ensure higher device den-

sity when integrated into complex systems. Equivalently, STP in

two terminals devices is implemented by taking advantage of the

volatility of the different memory technologies (i.e., low retention

of the state that is often a drawback in pure memory applications).

Cationic redox systems based on Electro-Chemical Memory cells

(ECM) (Ohno et al., 2011) or anionic Valence Change Memory

(Chang et al., 2011; Yang et al., 2013) have demonstrated STP

with a facilitating behavior. In such devices, Short Term Plasticity

is ensured by the low stability of the conducting filaments that

tend to dissolve, thus relaxing the device toward the insulating

state. TiO2 VCM cells have been reported with both facilitat-

ing and depressing behavior (Lim et al., 2013) with relaxation

related to oxidation-reduction counter reaction. Protonic devices

have demonstrated STP with depressing functionality due to

proton recovery latency from atmosphere required to restore

the proton concentration and conductivity (Josberger et al.,

2014).

In the case of rate dependent plasticity, STP can be of depress-

ing type (i.e., decrease of the synaptic efficiency when synaptic

activity increase) or facilitating type (i.e., increase of synaptic

efficiency when synaptic activity increase). In terms of func-

tionality, Abbott et al. (1997) has demonstrated that depressing

synapses with STP act as a gain control device (at high frequency,

i.e., high synaptic activity, the synaptic weight is decreased, thus

leading to a reduction of the signal when activity becomes too

important). More generally, STP (both depressing and facilitat-

ing) provides a very important frequency coding property (as

depicted in Figures 8B,C) that could play a major role in the

processing of spike-rate coded information. Indeed, if a simple

Integrate and Fire neuron (I&F) is associated with static weight

(with no dependence with spike frequency), the computing node

(i.e., neuron and synapses) is only a linear filter (linear com-

bination of the different input) while STP turns the node to

non-linear. This property can be used to implement reservoir

computing approaches as proposed by Maass (Buonomano and

Maass, 2009) with the Liquid State Machine and could be an

important property of biological systems for computation.

CO-EXISTENCE OF STP AND LTP IN THE SAME DEVICE

If the contribution of ST and LT processes to computing is

not completely understood in biological systems, we should
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consider that both STP and LTP effects in synaptic connec-

tions are required in neuro-inspired computing systems. A first

approach is to consider that repetition of short term effects

should lead to Long Term modification in the synaptic connec-

tions. This behavior would explain the important hypothesis of

memory consolidation in the sense of psychology (Lamprecht

and Ledoux, 2004). Ohno et al. (2011) reported the coexis-

tence of Long Term and Short Term Potentiation in atomic

bridge technology (Figure 9). Depending on pre-synaptic activity

(associated to spike rate in this case), the synaptic conductiv-

ity is increased due to the formation of a Ag filament across

the insulating gap. While for low frequency, the bridge tends to

relax between pulses, higher frequencies lead to a strong fila-

ment that maintains the device in the ON state. These results

suggest a critical size of the bridging filament in order to

maintain the conductive state (i.e., providing a LTP of the synap-

tic connection). Similar results have been obtained in a vari-

ety of memory devices where filamentary switching displayed

two regimes of volatility. Chang et al. (2011) have evidenced

a continuous evolution of the volatility as a function of the

conductivity level of the device in WO3 oxide cells attributed

to the competition between oxygen vacancies drift (creation of

conductive path across the device) and lateral diffusion (dis-

ruption of the conducting filaments). Another description of

these two regimes of volatility could be associated to a compe-

tition between surface and volume energies in the conductive

filament.

If this transition between Short Term Plasticity and Long Term

Plasticity is intuitively well-associated to the concept of STM to

LTM learning in psychology, we can note that it induces some

restriction in term of network functionality. Indeed, in biol-

ogy, the facilitating process observed at short time scale and

associated to an increase of neurotransmitter release probabil-

ity during a burst of spike (i.e., corresponding to an increase

of synaptic efficiency at high frequency spiking rate) is addi-

tive with LTP (Bliss and Collingridge, 1993). In this case the

node (neuron and synapses) maintains its rate coding prop-

erty (associated to short term process and described previously

as a non-linear node) and can also display long term modifi-

cation of the synaptic weight. Alternative approaches are still

needed as proposed by Cantley et al. (2011) where Short Term

processes and Long Term Processes are realized by two differ-

ent devices (leaky floating gate transistor and non-volatile two-

terminal devices) in order to match the complexity of biological

synapses. One fundamental issue that needs to be explored is

the balance between the device functionality required for proper

operation of computing systems (i.e., performances) and opti-

mal integration in order to match synaptic density required for

computing.

TOWARD MEMRISTOR-CMOS ARCHITECTURES AND

CIRCUITS

In order to exploit the plasticity of memristor-based arti-

ficial synapses, specific circuit architecture needs to be

developed. Indeed, depending on the polarity and electrical

characteristics of investigated devices, two types of circuits

have been identified which are described in the following

paragraphs.

CIRCUITS FOR BIPOLAR MEMRISTORS

Most of the works on memristive devices that have been pub-

lished over the last couple of years focus on bipolar resistive

switching devices (Waser and Aono, 2007; Snider, 2008; Strukov

et al., 2008; Jo et al., 2010). This is the case for all the devices

presented in Section STDP Learning Thanks to Overlapping

Events. These devices exhibit characteristics close to the original

Memristor predicted by Chua. Their resistance can be increased

or decreased with opposite polarity voltage pulses and the resis-

tance change is cumulative with the previous state of the device,

which makes them particularly suitable to implement synaptic-

like functionality.

A biologically-inspired spiking NN-based computing

paradigm which exploits the specific physics of those devices

is presented in Querlioz et al. (2011, 2013). In this approach,

CMOS input and output neurons are connected by bipolar

memristive devices used as synapses. It is natural to lay out

the nanodevices in the widely studied crossbar as illustrated on

Figure 10. Learning is competitive thanks to lateral inhibition

and fully unsupervised using a simplified form of STDP.

Using this topology, performance comparable to traditional

supervised networks has been measured (Querlioz et al., 2013)

for the textbook case of character recognition, despite extreme

variations of various memristive device parameters. With the

same approach, unsupervised learning of temporally correlated

patterns from a spiking silicon retina has also been demon-

strated. When tested with real-life data, the system is able

to extract complex and overlapping temporally correlated fea-

tures such as car trajectories on a freeway (Bichler et al.,

2012a).

CIRCUITS FOR UNIPOLAR MEMRISTORS

All that we have discussed in this work can be adapted to

another class of memristive devices—the unipolar devices where

all applied voltages to increase or decrease the resistance value

are positive. Among them, in particular, Phase-Change Memory

(PCM) has good maturity, scaling capability, high endurance, and

good reliability (Fantini et al., 2010). PCM resistance can be mod-

ified by applying a temporal temperature gradient modifying the

material organization between an amorphous and a crystalline

phase. The amorphous region inside the phase change layer can

be crystallized by applying set pulses, thus increasing device con-

ductance. It was shown that the magnitude of the relative increase

in conductance can be controlled by the pulse amplitude and by

the equivalent pulse width (Kuzum et al., 2012). Amorphization,

on the other hand, is a more power-hungry process and is not

progressive with identical pulses. The current required for amor-

phization is typically 5–10 times higher than for crystallization,

even for state-of-the art devices.

To overcome these issues, a novel low-power architecture

“2-PCM Synapse” was introduced in Bichler et al. (2012b). The

idea is to emulate synaptic functions in large scale neural net-

works using two PCM devices constituting one synapse as shown

in Figure 11. These two devices have an opposite contribution to

the neuron’s integration. When the synapse needs to be potenti-

ated, the Long Term Potentiation (LTP) PCM device undergoes

a partial crystallization, increasing the equivalent weight of the

synapse. Similarly, when the synapse must be depressed, the Long
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FIGURE 9 | Adapted from Ohno et al. (2011). (A) Schematic of atomic

bridge devices that was proposed for Short Term Plasticity, Long Term

Plasticty (STP/LTP) transition demonstration. Depending on the spiking

activity, (B) the metallic filament do not bridge the two electrodes and tends

to relax toward the OFF state while it remains (C) in the ON state once it

bridges the two electrodes.

FIGURE 10 | Basic crossbar circuit topology. Wires originate from CMOS input layer (horizontal black wires) and from the CMOS output layer (vertical gray

wires). Memristive nanodevices are located at the cross points of the horizontal and vertical wires.
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FIGURE 11 | Left: Experimental LTP characteristics of the unipolar PCM device. Right: Principle of an equivalent bipolar synapse realized with a 2-PCM circuit.

Note that the neuron circuit is not represented on the schematic.

Term Depression (LTD) PCM device is crystallized. As the LTD

device has a negative contribution to the neuron’s integration,

the equivalent weight of the synapse is reduced. Furthermore,

because gradual crystallization is achieved with successive identi-

cal voltage pulses, the pulse generation is greatly simplified. Note

however that such synaptic circuit will require a slightly more

complex post-synaptic neuron circuit in order to deal with pulse

integration and generation. This should have a limited impact

on the overall neuromorphic circuit given the lower number of

neurons vs. synapses.

DISCUSSION

Memristive devices are an appealing solution to implement plas-

tic synapses, if we develop the specific driving signals to emulate

different learning rules. The most popular synaptic plasticity

implementation is based on the realization of Hebbian learning,

and in particular of STDP. We shall however note that other plas-

ticity mechanisms exist that have been studied and modeled as

suggested in a recent work (Kornijcuk et al., 2014). In this paper,

we focused on different implementations of STDP, by taking

advantage of the device physics of different memristive devices.

The functional differences in the behaviors of the devices directly

translate into differences in the learning rules (real time or accel-

erated, deterministic or stochastic). Using other devices, we also

presented other synaptic ideas, such as short term plasticity, or

those which exploit interactions between short term and long

term plasticity. Finally, we proposed some implementation ideas,

offering a large overview of the different possibilities in several

material systems.

As memristors are primarily targeted toward future high-

density nanoscale arrays, CMOS driver circuits need to be scaled

to these dimensions as well. That is to say, the required neuro-

morphic driver circuits need to be moved to deep submicron

technologies. One recently presented method to achieve this is

the use of switched-capacitor neuromorphic circuits, which are

able to implement the required analog waveforms in high den-

sity technologies as small as 28 nm (Mayr et al., 2014b). Coupled

with deep submicron CMOS sensors (Henker et al., 2007), they

offer the possibility of a full image processing pyramid based

on memristive computation in a nanoscale CMOS-memristor

hybrid. However, developing appropriate and highly scaled driver

circuits for memristive synapses which do not bring large over-

heads is a significant goal for today’s research. This is especially

true for proposals that exploit passive crossbar integration. Such

circuit topology is particularly appealing for neuromorphic engi-

neers as it offers a direct equivalent for the neuron/synapse circuit

with high parallelism and high integration density in which a sin-

gle device is associated to a single synapse between two neurons

(input line and output column). However, it brings circuit chal-

lenges (crosstalk, sneak path, impedance mismatch,...) that need

to be overcome.

From a more systems’ perspective, the most interesting appli-

cations for nanoscale memristors will be those that require a

large number of learned or programmed synaptic weights. It is

important to already consider such applications, to understand

the true impact of memristive technology. One of these appli-

cations is the Neural Engineering Framework (Eliasmith and

Anderson, 2004), which can be used to implement straightfor-

ward signal computation, sensor fusion (Mayr et al., 2014a), and

recognition (Bichler et al., 2012a), but also models of cognition

(Eliasmith et al., 2012). The large number of synapses offered by

nanoscale memristive arrays makes the implementation of com-

plex cognitive processing of such large-scale models (Eliasmith

et al., 2012) on a single CMOS-memristor hybrid IC a real

possibility.

Finally, it is important to understand that there are no absolute

optimal memristive devices for the implementation of plasticity

in hardware neural networks. The variety of behaviors observed

in today’s research will be an advantage for neuromorphic chip

designers and computational neuroscientists since it opens new

paths of implementation of neural computations. In this respect,

the plastic behaviors measured on memristive devices and pre-

sented in this paper provide the primitive for future neuromor-

phic breakthroughs.
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