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ABSTRACT: Complexity is widespread in neuronal spike trains and propagation of spike activity, in that variations 

in measurements of neural activity are irregular, heterogeneous, non-stationary, transient, and scale-free. There are 

numerous possible reasons for this complexity, and numerous possible consequences for neural and behavioral func-

tion. The present review is focused on relationships among neural plasticity, learning, and complex spike dynamics 

in animal nervous systems, including those of humans. The literature on complex spike dynamics and mechanisms 

of synaptic plasticity are reviewed for the purpose of considering the roles that each might play for the other. That is, 

the roles of complex spike dynamics in learning and regulatory functions are considered, as well as the roles of learn-

ing and regulatory functions in generating complex spike dynamics. Experimental and computational studies from a 

range of disciplines and perspectives are discussed, and it is concluded that cognitive science and neuroscience have 

much to gain from investigating the adaptive aspects of complex spike dynamics for neural and cognitive function.

KEY WORDS: Neural dynamics, synaptic mechanisms, scaling laws, critical branching, reinforcement learning, 

selectionist learning

I. INTRODUCTION

A fundamental fact of nervous systems is that they 

are perpetually in flux as energy flows through them.1 

Neuron membrane potentials are always fluctuat-
ing; action potentials are always being generated; 

synaptic strengths are constantly being modulated; 

and network structures never stop changing, albeit 

these changes may happen on slower or faster time 

scales.2 Together, these factors result in complex 

variations in neural activity.3 We will define “com-

plex variations” over the course of this review, but 

to begin, variations range widely in their magnitude 

and time course, and it has proven challenging to 

characterize their intricate regularities, irregulari-

ties, and dependencies.4,5 

Whereas complex variations are generally rec-

ognized as widespread in nervous systems, their im-

plications for theories of neural function are open to 

debate. Regularities and dependencies indicate co-

ordination among neural components, in the sense 

that degrees of freedom in activity are far less than 

what is possible given the numbers of components.6,7 

But coordination per se does not have to be so com-

plex, so why the complexity? One might first reason 
that complexity could be an inevitable byproduct of 

complicated systems.8 That is, nervous systems have 

many different parts made of parts made of parts, 

and so on. Their aggregated effects may end up ap-

pearing as complex variations in measurements. If 

so, complex variations may be nothing more than 

noise with respect to functions like perception, at-

tention, memory, and motor control. Complex varia-

tions would be a hindrance to neural function in this 

case, unless noise is helpful for signal encoding and 

transmission, as in stochastic resonance.9 

Plasticity is particularly interesting with regard 

to complex variations in neural activity. Learning 

theories and algorithms tend to rely on stable, station-

ary relations between neural activity and the environ-

mental conditions in which learning occurs.10 Also, 

plasticity is hypothesized to aid in regulating and 
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stabilizing activity.11 The prevalence of complex 

variations suggests either that the goals of stabiliza-

tion and stationarity are not fully achieved or that 

these are not primary goals of learning and regula-

tory functions.12 If stability and stationarity are in-

deed primary goals, then complex variations would 

seem to interfere with the shaping of neural activity 

on the basis of stable relations among sensory in-

puts, and between sensory inputs and behavioral ac-

tions.13 But what if complex spike dynamics play an 

important role in learning and regulatory function, 

and what if plasticity contributes to this complex-

ity? Then it would seem that stabilization and sta-

tionarity are not primary goals of neural function.14 

In the present article, we selectively review the 

literature on complex variations in neural activity 

and mechanisms of plasticity in nervous systems, 

with an emphasis on exploring how findings in 
these studies might inform one another. We focus 

on action potentials, often referred to as “spikes,” 
as a level of analysis that bridges neural dynam-

ics, neural mechanisms of plasticity, and behavior. 

Our overarching goal is to highlight questions, hy-

potheses, and research directions at the junction of 

plasticity, complexity, and function in neurosci-

ence and cognitive science.

II. COMPLEX VARIATIONS IN  
SPIKE DYNAMICS

One of the most basic issues in the physical and 

life sciences is how the physical becomes infor-

mational.15,16 In neuroscience, this issue goes by 

the name neural coding. Nearly all contemporary 

theories and approaches identify spikes as central 

to how neurophysiological processes encode infor-

mation.17 Specifically, spikes are treated as discrete 
events that occur at instantaneous points in time, 

which means that spikes code information only in 

terms of when they occur. Temporal coding is the 

hypothesis that information is coded in the precise 

timing of individual spikes from individual neu-

rons, whereas rate coding is the hypothesis that 

information is coded more coarsely in the num-

bers of spikes occurring within given windows of 

time. Rate coding is nearly universally accepted as 

playing some role in neural function. There is less 

consensus on whether precise spike times carry in-

formation,17 but evidence has been mounting that 

temporal coding does indeed play a role in neu-

ral function (e.g., Van Rulen et al.18 and Dan and 

Poo19). 

Given our focus on spikes, what kinds of vari-

ations are found in spike activity, and what is the 

evidence for complexity in these variations? Re-

cordings of spike trains from individual neurons 

tend to yield spike times that deviate from any kind 

of simple, regular pattern. Instead, spike trains 

generally show highly irregular interspike inter-

vals (ISIs) in raster plots (Figure 1a). One might 

assume that these irregularities can be explained 

as random variations in synaptic inputs and other 

factors that cause membrane potentials to fluctu-

ate. However, Softky and Koch20 showed that ir-

regularities in single-cell recordings from macaque 

visual and extrastriate cortices cannot be explained 

by random inputs to neurons. The coefficients of 
variation for ISIs are far too high. These authors 

and others have interpreted such high coefficients 
as evidence that inputs to neurons are temporally 

correlated,21 despite the apparent irregularities in 

spike times. This is our first hint of complexity in 
spike variations—dependencies among irregular 

sources of input are indicative of complex coor-

dination among neurons that reduces potential de-

grees of freedom in spike activities. 

We can also consider whether irregularities in 

spike trains are themselves complex. Irregular spike 

times appear as intermittent bursts and clusters of 

spikes, but such bursts and clustering are not nec-

essarily complex. Even simple, randomly timed 

spikes exhibit bursts and clustering by chance. 

Random spike times can be described by Poisson 

point processes, which have high coefficients of 
variation near unity and ISI distributions with expo-

nential tails.22 Some studies, such as that of Softky 

and Koch,20 have treated spike trains as Poisson 

point processes, which is to treat their irregularities 

as correlated but random nonetheless, and hence 

non-complex. However, a comprehensive review 

of the literature yields evidence for many different 

statistical patterns in spike trains. ISI distributions, 
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for instance, have been associated with bimodal,23 

bi-exponential,24 lognormal,25 inverse Gaussian,26 

gamma,27 and power-law ISI distributions.28 This 

heterogeneity is our second hint at complexity in 

spike time variations. ISI distributions are useful 

but limited as expressions of spike time statistics, 

because ISI distributions discard the temporal 

distributions of spikes. Thus we can ask further 

whether spike trains exhibit complex temporal 

structures. The Poisson process again serves as our 

baseline of simplicity, because each Poisson spike 

time provides no information about previous or 

subsequent spike times—Poisson spike trains ex-

hibit no temporal correlations beyond chance. To 

the contrary, Teich et al.29,30 found temporal corre-

lations in spike clustering beyond what is expected 

from Poisson processes. They used methods like 

Fano factor and Allan factor analyses to examine 

clustering as a function of temporal scale in spike 

trains from cat visual and auditory systems. Results 

showed that, starting at the time scale of seconds, 

the smallest spike clusters are nested within larger 

ones, which are nested within even larger ones, in 

a lawful scaling relation over more than three or-

ders of magnitude in time (Figure 1b). These tem-

poral correlations add to the complexity of spike 

trains by showing that irregularities in spike times 

at least partly reflect fractal clustering of spikes. 
Investigations of spike trains emphasize the 

neuron as a unit of analysis, but spikes are signals 

that propagate among neurons in networks. Studies 

of propagating potentials have found that activity 

spreads in so-called “neuronal avalanches” under 
a range of preparations and measurement condi-

tions.31 These avalanches are complex in that their 

sizes follow a scaling law similar to clustering in 

spike trains. Spontaneous local field potentials 
were examined in vitro in the original studies of 

neuronal avalanches in rat somatosensory cortical 

slice preparations.32,33 Activity was measured as 

voltages from electrodes on a microarray, and most 

activities were short-lived, isolated events over 

just one or two adjacent electrodes. But sometimes 

activity spread to a few adjacent electrodes, and 

sometimes it spread farther and for longer periods 

of time (Figure 1c). Beggs and Plenz32 measured 

these spreading events as avalanches of various 

sizes, where size was measured as the cumulative 

voltage over contiguous events on electrodes.32 

Results showed that avalanche sizes followed a 

scaling law similar to earthquakes: most avalanch-

es were very small, and the probability of observ-

ing avalanches decreased with their size according 

to P(S) ~ 1/Sα, where α ~ 3/2 (Figure 1d). Neuronal 

avalanches are complex partly because sizes vary 

over a wide range of scales but also because ava-

lanches are transient, even when exogenous factors 

are held constant. Avalanches do not comprise a 

simple, steady “hum” of background noise in neu-

ral activity. 

Another kind of transience in the propagation 

of neural activity is found in the synchronization 

of spikes across neurons. It is well known that 

large-scale brain activity is characterized by os-

cillatory waves generated by synchronous neural 

activity. Synchronization has been hypothesized 

as a temporal basis for neural information process-

ing,34 and as such, synchronizations are theorized 

and observed to be locally transient. For instance, 

Bressler and Kelso showed that 12-Hz oscillations 

in local field potentials at striate and inferotempo-

ral cortical sites come into phase with each other 

transiently, with the onset of visual stimuli.7 These 

and other local transients create fluctuations that 
extend over a wide range of frequencies and am-

plitudes.35 Once again, we find these fluctuations to 
follow a scaling relation, this time between power 

and frequency: P(f) ~ 1/fα, where α is often ob-

served to be near one (Figure 1e and 1f ).36,37

In summary, neurons continually produce 

complex variations in spike dynamics that can be 

characterized as irregular, heterogeneous, non-sta-

tionary, transient, and scale-free. The term “com-

plex” can refer to other characteristics of neural 

networks as well, most notably chaotic dynamics38 

and complex network structures.39 These charac-

teristics are all interrelated, and together they pose 

basic questions for neural theories of learning and 

regulatory function: Do complex variations help 

or hinder these functions as expressed in spike dy-

namics, and do these functions themselves contrib-

ute to such complex variations? Before we address 
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these questions directly, we first review neural 
mechanisms of plasticity as a basis for considering 

relations with complex spike dynamics.

III. NEURAL PLASTICITY IN  
SPIKING NETWORKS

Nervous systems are fundamentally adaptive, in 

that their structures and activities change in re-

sponse to conditions and stimuli in the environ-

ment, and within the organism itself. These adap-

tations happen across many different time scales, 

from evolutionary to developmental to experi-

ential. Plasticity refers to all adaptive processes 

in nervous systems that unfold on time scales 

no longer than the lifespan, and result in lasting, 

structural changes. Learning refers to plasticity 

that improves specific cognitive functions like per-
ception, memory, motor planning, and language. 

Other mechanisms of plasticity are more regula-

tory in nature, resulting in changes that establish 

and maintain the capacity for learning and healthy 

function.

With respect to spike dynamics, plasticity most 

often refers to processes that affect the potentiation 

of synapses as well as the response properties of 

neurons. Synapses connect presynaptic neurons 

to postsynaptic neurons. Synaptic potentiation 

and depression govern the efficacy of presynaptic 
spikes in triggering or suppressing postsynaptic 

spikes, as supported by neurotransmitter release 

and regulation. Spikes on some neurons are caused 

primarily by spikes on neurons projecting into 

them, and spikes on other neurons are caused by 

sensory transduction and other inputs from outside 

of the nervous systems in question. Thus learning 

and regulatory mechanisms are theorized to modu-

late spike dynamics primarily via synaptic effica-

cies, and in conjunction with extrinsic factors. 

Our first hint that plasticity might give rise to 
complexity is found in the very mechanisms hy-

pothesized to modulate synaptic efficacy. Because 
spikes are the primary currency of neural informa-

tion transmission and processing, spike times are 

hypothesized to play a primary role in mechanisms 

of synaptic plasticity. Thus, spike dynamics affect 

synaptic dynamics, and vice versa. Moreover, ef-

fects of plasticity on synaptic efficacies are rela-

tively long lasting, whereas spike dynamics unfold 

on much faster time scales. The result is bi-direc-

tional interactions between processes on disparate 

time scales. These interactions are potential sourc-

es of complexity, as explained later, but first we 
elaborate the mechanisms of plasticity.

The most widely studied and accepted mecha-

nisms of learning are long-term potentiation (LTP) 

and long-term depression (LTD). LTP generally 

occurs when two neurons connected by a synapse 

are depolarized together, resulting in a long-term 

increase in synaptic efficacy.40 By contrast, LTD 

generally occurs when the presynaptic neuron re-

mains hyperpolarized while the postsynaptic neu-

ron becomes depolarized, resulting in a long-term 

decrease in synaptic efficacy.41 Depolarization and 

hyperpolarization correspond with the presence 

and absence of spike activity, respectively. While 

FIGURE 1: A: Example spike train raster plots from model neurons in Kello’s (2012)1 critical branching res-

ervoir (blue), and Poisson spike trains (green) for comparison. B: Mean Allan factor analyses of spike trains 

showing that clustering scales with window size T, A(T) ~ Tα, with dashed line showing α = 1. C: Local field 
potentials recorded from multi-electrode array in Beggs and Plenz (2003),32  with raster plot showing spon-

taneous periods of synchronized activity, and bubble plot showing example avalanche “burst” of activity. D: 

Probability density function from Beggs and Plenz showing avalanche probability scales with size, P(S) ~ 1/

S3/2, with size measured as either summed electrodes or voltages. E: Band-pass filtered signal (6.7–13.3 Hz, 
thin blue lines) from a single channel (0.1–100 Hz) of magnetoencephalography recording from (118), shown 
at two time scales and filtered through a Morlet wavelet. F: Log-log power spectrum of the amplitude envelope 

of oscillations from data like those shown in E. Evidence for 1/f scaling is seen in the negatively sloped line 

for data (open red circles), and evidence against an artifactual explanation is seen in the flat line for reference 
channel control data (filled black circles).
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there are numerous exceptions to these rules,42 

synaptic efficacies generally change in relation to 
coincidences of depolarized and hyperpolarized 

states. 

Spike dynamics come into play more precisely 

in a phenomenon known as spike timing dependent 

plasticity (STDP ).43 STDP is characterized by op-

posite effects on synaptic efficacy depending on 
whether a spike on the presynaptic neuron is shortly 

preceded or followed by a spike on the postsynap-

tic neuron. Canonically, efficacy increases when 
a postsynaptic spike shortly follows a presynaptic 

spike, and it decreases for the opposite timing re-

lation. STDP captures properties of both LTP and 

LTD, but experiments have shown non-additive ef-

fects for multiple spikes in close succession, sug-

gesting that the latter cannot be simply subsumed 

by the former.44,45 Regardless, all three are theorized 

as Hebbian learning mechanisms because they can 

be used to learn associations among stimulus-driven 

and behavior-driven spike patterns.46 A fundamental 

challenge for these learning mechanisms is to ex-

plain how changes in efficacy support new learning 
while also preserving older learning—the stability–

plasticity dilemma.47 

Stability of learning is a regulatory function 

that must be integrated with mechanisms of syn-

aptic plasticity used for learning. Another regula-

tory function associated with synaptic plasticity is 

homeostasis of spike rates.48 Spikes cannot support 

neural function if there are too few or too many 

spikes per unit of time. These extremes would re-

sult in insufficient variability in spike times, not 
to mention insufficient capacity for complex varia-

tions. Synaptic scaling is a term used for homeo-

static mechanisms hypothesized to potentiate and 

de-potentiate synapses in non-specific ways to 
regulate overall spike rates. Another challenge for 

theories of plasticity, akin to the stability–plastic-

ity dilemma, is to explain how homeostatic and 

learning mechanisms are integrated.49 Otherwise, 

changes in efficacy for purposes of learning could 
be “undone” by changes for purposes of homeo-

stasis, and vice versa. STDP is promising in this 

regard because it inherently balances potentiation 

and de-potentiation. 

Finally, we have focused on mechanisms of plas-

ticity driven by spike times and spike rates, but 

there are also neuromodulatory mechanisms driv-

en by rewards and reward prediction. For instance, 

concentrations of the neuromodulator dopamine 

at some synapses serve to gate mechanisms of 

learning like LTP, LTD, and STDP.50,51 Gating is 

hypothesized to increase probability of reward, 

or increase reward expectation, because major 

dopamine nuclei are associated with both actual 

and predicted rewards.52 These neuromodulatory 

mechanisms are hypothesized to implement re-

inforcement learning,53 but neuromodulators also 

have been associated with arousal, attention, mo-

tivation, and other regulatory functions.54 Again, it 

appears that learning and regulatory functions are 

supported by common mechanisms of plasticity, 

presumably helping to minimize interference be-

tween synaptic changes driven by learning versus 

regulation. 

IV. ROLES OF NEURAL PLASTICITY IN  
COMPLEX SPIKE DYNAMICS 

Our review of plasticity highlights the bi-direction-

al relationship between spike dynamics and synap-

tic dynamics. This relationship suggests that expla-

nations of complex variations in spike dynamics 

will include roles for mechanisms of plasticity, but 

what these roles might be is an open question. Here 

we review three of possible roles: Mechanisms of 

plasticity may generate complex variations 1) as a 

byproduct of regulation, 2) as an adaptive aspect 

of learning, and 3) as a reflection of complexity in 
the environment.

Most generally, mechanisms of plasticity 

may directly generate complex variations in the 

course of implementing their learning and regu-

latory functions. As mentioned previously, we 

have some inkling of this possibility in the fact 

that spike times unfold on a much faster time 

scale than the effects of learning and plasticity 

on synapses. This disparity in time scales means 

that the bi-directional relationship between spike 

and synaptic dynamics spans a wide range of time 

scales. Interactions between processes at disparate 
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time scales are sometimes associated with critical 

point dynamics,55 and models of criticality exhibit 

complex variations in the form of pervasive scal-

ing laws.56–59 Critical points generally occur when 

interactions among system components are poised 

between two or more phases of dynamics.60 Theo-

rists have argued that nervous systems operate 

near such critical points,4 and findings of complex 
variations are interpreted by some as evidence for 

criticality.61 

Mechanisms of plasticity are usually theorized 

to affect excitation and inhibition in neural net-

works, so these mechanisms are implicated in phas-

es of spike dynamics defined in terms of excitation 
and inhibition. If plasticity draws spike dynamics 

toward a critical point between such phases, then 

spike dynamics are predicted to exhibit scaling 

laws. Kello1 recently investigated these hypotheses 

and predictions in a spiking neural network model. 

The model was developed around a mechanism of 

homeostasis that draws spike dynamics to a criti-

cal point by virtue of bi-directional interactions be-

tween spiking and synaptic time scales. 

The critical point was formulated in terms of 

critical branching,62 whereby spike propagation is 

formulated as a branching process.63 Each spike 

may branch into some number of future spikes, 

where the number of branches is the number of 

times a neuron is “blamed” for subsequent spikes. 
A neuron may be blamed each time one of its spikes 

is followed by a subsequent spike on one of the 

neurons toward which it projects. Excitatory neu-

rons can trigger spikes, and inhibitory neurons can 

fail to prevent spikes, so blame can be assigned to 

either type of neuron. Critical branching is the state 

whereby each spike is blamed for one subsequent 

spike, on average. This state is homeostatic because 

spikes are conserved, statistically speaking, as they 

propagate through a network. This conservation re-

quires a balance between excitation and inhibition, 

which previously has been associated with com-

plex, chaotic variations in neural activity.64

The mechanism formulated by Kello1 targets 

critical branching by tracking blame locally for in-

dividual neurons. If a neuron is blamed more than 

once during an ISI, one of its axonal synapses is 

depotentiated with some probability, to reduce the 

chance of being blamed more than once in the fu-

ture. If a neuron is not blamed during an ISI, one of 

its axonal synapses is potentiated with some prob-

ability, to increase the chance of being blamed in 

the future. To create disparity between spike and 

synaptic time scales, rates of synaptic change were 

set to be much slower than spike rates by setting a 

low probability of (de)potentiation (5%). Thus bi-

directional interactions between slow synaptic dy-

namics and relatively fast spike dynamics resulted 

in continual adjustments in connectivity toward 

and around critical branching. As predicted, these 

adjustments caused complex variations in the form 

of scaling laws in spike clustering, ISI distribu-

tions, neuronal avalanches, and 1/f scaling. 

The critical branching model shows how plas-

ticity for maintaining homeostasis can result in 

complex variations in spike dynamics. The critical 

branching mechanism was not designed for learn-

ing, but as mentioned earlier, neuroscientific evi-
dence indicates that learning and regulatory func-

tions are supported by common mechanisms. This 

evidence leads to the consideration of whether a 

learning mechanism like STDP might be inte-

grated with critical branching. Kello1 showed that 

adding an STDP mechanism to the critical branch-

ing model does not interfere with homeostasis and 

complex variations in spike dynamics. It remains 

to be seen whether STDP or other mechanisms 

might support learning in conjunction with critical 

branching, and thereby also play a role in complex 

variations.

The homeostatic function of critical branching 

is adaptive in itself, but by virtue of attraction to a 

critical point, critical branching spike dynamics also 

are associated with computational benefits. This as-

sociation raises the possibility of a second role for 

plasticity in the creation of complex variations in 

spike dynamics. Learning mechanisms may draw 

spike dynamics toward critical points and thereby 

benefit from associated computational capacities. 
For instance, Kinouchi and Copelli65 reported a 

stochastic model of critical branching that was not 

mechanistic and self-tuning like Kello’s,1 but none-

theless showed that the dynamic range of sensory 
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systems is maximized at the critical branching point 

(see also Chen et al.66). Similarly, Haldeman and 

Beggs67 showed that critical branching maximizes 

information transmission, and Kello1 showed that 

critical branching maximizes the memory and en-

coding capacities of spike dynamics. These model-

ing results suggest that some learning mechanisms 

may be designed to target these maxima near critical 

points, and thereby produce complex variations in 

spike activity. Thus far, we have considered ways 

that mechanisms of plasticity intrinsically might 

result in complex spike dynamics. That is, critical 

point dynamics have been hypothesized to emerge 

regardless of stimuli or task conditions, or any 

other factors extrinsic to nervous systems them-

selves. The third and final role of plasticity that 
we consider is the shaping of spike dynamics to 

reflect complex variations that originate outside of 

nervous systems. Natural environments are irregu-

lar, heterogeneous, non-stationary, transient, and 

scale-free, just like neural and behavioral activity. 

Therefore, it may be adaptive for nervous systems 

to shape themselves to match the complex varia-

tions that constantly impinge upon them.68 For in-

stance, the long-run statistics of both visual and au-

ditory stimuli are characterized by 1/f scaling.69,70 

Recent evidence shows that eye movements and 

the response properties of auditory nerve cells also 

exhibit scaling laws.71–74 Complex spike dynamics 

underlying these scaling laws may reflect the sta-

tistics of visual and auditory inputs. 

V. ROLES OF COMPLEX SPIKE DYNAMICS 
IN NEURAL PLASTICITY 

In the previous section, a wealth of studies were 

reviewed, illustrating different ways that mecha-

nisms of plasticity may be at least partly responsi-

ble for complex variations in spike dynamics. In all 

cases, adaptive qualities of these mechanisms led 

to complex variations. However, as mentioned at 

the outset, complex variations may appear to pose 

a challenge for learning and regulatory functions if 

neurally mediated relations among sensory inputs 

and behavioral actions are made less stable or reli-

able. If this is the case, then complex variations 

need to be shaped for purposes of learning. In fact, 

some evidence from brain imaging studies is con-

sistent with this possibility.75 Complex variations 

also need to be overcome by learning mechanisms. 

Consistent with this idea, a spike-based mecha-

nism akin to back-propagation has been shown to 

support learning in the face of complex variations 

treated as noise.76 But rather than treat complexity 

as something to be overcome, we turn to model-

ing studies in which complex variations were hy-

pothesized and shown to be adaptive for learning 

and regulatory functions. The overarching theme of 

these studies is that the heterogeneity of complex 

spike dynamics makes available a wide range of 

useful patterns and nonlinear functions of external 

inputs. 

We begin with two studies that exploited the 

complexity of critical branching dynamics for 

purposes of learning nonlinear functions. First, 

de Arcangelis and Herrmann77 formulated a sim-

ple mechanism of synaptic plasticity for learning 

nonlinear functions like XOR embedded in criti-

cal branching networks. Their method of learning 

effectively “farmed” the intrinsic variability in 
spike dynamics to identify local patterns that could 

be modified slightly to compute particular func-

tions. The heterogeneity of complex variations af-

forded a variety of spike patterns for the learning 

mechanism to exploit. Kello similarly exploited 

variations in critical branching dynamics to com-

pute XOR functions,1 but unlike de Arcangelis and 

Herrmann,77 the functions were not learned by a 

mechanism of synaptic plasticity. Instead, ordinary 

least squares regression was used to map unlearned 

spike dynamics onto XOR functions, a technique 

known as reservoir computing.78,79 Mappings were 

computed for inputs at progressively distant points 

in time to show that fading memory inherent in 

recurrent network dynamics can be exploited as 

well, as demonstrated in previous reservoir-com-

puting studies.80  

XOR functions are useful probes for dem-

onstrating computational properties inherent in 

complex, recurrent dynamics. However, XOR 

functions are not easily relatable to functions like 

perception and memory under more natural con-
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ditions. To go beyond XOR, other reservoir com-

puting studies have demonstrated the usefulness of 

complex dynamics for learning more naturalistic 

tasks, such as speech recognition,81 syntactic pro-

cessing,82 visual object motion tracking,83 motor 

control,84 and navigation.85 In fact, a precursor to 

Kello’s critical branching model1 was applied to 

visual motion processing.86

The reservoir-computing results are useful 

proofs of concept for our purposes, but learning 

mechanisms are not part of the theoretical com-

mitments made by these models. One exception to 

this rule of reservoir computing was reported by 

Sussillo and Abbott.87 They developed a learning 

algorithm specifically designed for echo state net-

works, which represent a particular kind of reser-

voir computing model with feedback from outputs 

back to the reservoir. The authors parameterized 

recurrent connections in the reservoir to generate 

chaotic reservoir dynamics, and they used feed-

back connections to adjust synaptic weights on the 

basis of error between target and output time se-

ries. This method of integrating learning with echo 

state networks was shown to learn complex time 

series from the Lorenz attractor, and from dynam-

ics of human walking and running. Performance 

was best when reservoir dynamics were chaotic 

(i.e., complex).

We have claimed that complex variations 

in spike activity will result in heterogeneous dy-

namics useful for nonlinear functions and input-

output mappings in general. This claim may seem 

overblown if one assumes that specific functions 
require specific network architectures and input 
representations. If this assumption is correct, then 

complex spike dynamics per se would not be suf-

ficient to ensure robust learning. However, Cov-

er’s Theorem shows that, just by projecting inputs 

randomly and nonlinearly into high-dimensional 

spaces, one can increase the likelihood of learning 

arbitrary binary classifications using only linear 
learning mechanisms.88 The likelihood of learning 

increases with dimensionality of the space being 

projected into. This property suggests that robust 

learning can be ensured, as long as networks can 

be sufficiently large. 

A. Reinforcement Learning  
and Generalization

Cover’s Theorem provides a basis for understand-

ing the effectiveness of reservoir computing mod-

els, but it may also serve as a basis for understand-

ing the role of complex spike dynamics in other 

kinds of learning models. A recent study by Rodny 

and Noelle89 provides an excellent case in point. 

They developed a model of reinforcement learn-

ing that took advantage of Cover’s Theorem in its 

use of complex spike dynamics. The goal of re-

inforcement learning is to maximize actual and 

expected rewards by increasing the probabilities 

of behaviors that lead to them.90 Generally speak-

ing, an agent explores actions in an environment to 

find and then exploit those that increase rewards. 
Rodny and Noelle showed that complex variations 

can help a model find good action policies for ob-

taining rewards. 

The challenge addressed by these authors was 

to learn action policies online, in environments 

whose states cannot be exhaustively enumerated 

and explored. Reinforcement learning algorithms 

like the adaptive actor-critic model91 use tempo-

ral difference errors to learn relationships between 

states and reward values, both actual and expected. 

The action policy is based directly on these learned 

relationships. Sutton proved that, when states can 

be fully enumerated and explored, the actor-critic 

algorithm is guaranteed to find an optimal action 
policy.92 The algorithm also has support from neu-

roscience evidence of temporal difference error 

signals in the basal ganglia, in the form of firing 
rates of midbrain dopamine neurons.53,93 Several 

models have also combined reinforcement learn-

ing and spiking networks, with different objectives 

than the work described above. For instance, Rao 

and Sejnowski94 showed that temporal difference 

learning can be expressed in terms of STDP, and 

Florian95 and Izhikevich96 simulated reinforce-

ment learning by modulating STDP using a global 

reward signal. More recently, spiking networks 

have been formulated to simulate the actor-critic 

framework.97 These models are limited, however, 

in that they do not capture the full capacity of ac-
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tor-critic models to extrapolate information from 

experienced to novel states of the environment. 

The issue of extrapolating learning to novel states 

has been addressed by introducing value function 

approximators (VFAs) into reinforcement learning 

models. VFAs serve to generalize learning about 

expected rewards from experienced states in the en-

vironment to novel ones. VFAs have proven useful 

for environmental states that are continuous with 

respect to spatial and/or temporal extents, and for 

speeding up the learning process.98 However, the 

actor-critic model is no longer guaranteed to con-

verge with VFAs, and Boyan and Moore99 provid-

ed a demonstration of failure to learn using VFAs. 

The authors investigated a set of relatively chal-

lenging problems, including navigation of a simu-

lated agent in “puddle world”—a two-dimensional 
grid in which reward was located in the corner of 

a grid, bordered by two elliptical, perpendicular 

puddles that represented punishment (negative re-

ward). Finding an optimal action policy was chal-

lenging because the state space was large, and the 

conjunction of horizontal and vertical dimensions 

was required. The VFA failed to support learning 

of an optimal action policy. 

A number of solutions to this problem with 

VFAs have been explored.99,100 While each has 

strengths and weaknesses, they all sidestep the 

original problem of online learning using VFAs for 

environments with very large numbers of states. 

Rodny and Noelle89 addressed the problem directly 

by using a VFA based in complex spike dynam-

ics. The rationale was that traditional VFAs using 

methods like back-propagation learning are overly 

restricted to interpolating between known states, 

rather than extrapolating beyond the space of ex-

perienced environmental states.101,102 The authors 

reasoned that, if states are represented as spike pat-

terns, then complex variations in spike dynamics 

might serve to expand the representational state 

space, as supported by Cover’s Theorem. This ex-

pansion should facilitate learning and generaliza-

tion because interpolation in the expanded space 

results in extrapolation in the environmental space. 

In fact, previous work using an echo state VFA 

network established that complex variations could 

be used to support online reinforcement learning 

when extrapolating to new environmental states.103

The model by Rodny and Noelle89 used a 

critical branching reservoir1 as the VFA for on-

line actor-critic learning in puddle world (Figure 

2). Their results showed that the model converges 

to a near-optimal action policy, similar to the of-

fline model reported by Boyan and Moore.99 While 

these results call for further analyses and modeling 

to understand the specific role of critical branching 
dynamics, we can tentatively conclude that spike 

patterns in the VFA reservoir captured the types 

of conjunctive feature representations needed to 

support generalization in the service of actor-critic 

learning. 

B. Selectionist Learning via Reinforcement

The heterogeneity of complex spike dynamics is 

central to their usefulness for learning in reservoir 

computing models, and also for generalization in 

reinforcement learning models. In both cases, 

the associated nonlinearities in complex varia-

tions are used to support classifications and in-

put-output mappings. Here we review a different 

possible role for heterogeneity in complex spike 

dynamics, one that is based on selectionist learn-

ing theories.104–107

In evolutionary theory, genotypic variation is 

created by processes of genetic mutation, recom-

bination, drift, and flow. These processes are not 
adaptive in and of themselves, because they pro-

duce variations that may be more or less fit than 
their starting points. Instead, these processes serve 

to instill heterogeneity in the genetic variations 

found in a given population, and natural selection 

preserves only the more fit variations as genera-

tions pass. Evolutionary adaptation is on a longer 

time scale than mechanisms of plasticity, but the 

basic process of selecting from heterogeneous 

variations may be recapitulated at the level of 

spike dynamics. Complex variations in spike activ-

ity may reflect a diverse repertoire of spatiotempo-

ral patterns, and selectionist learning mechanisms 

may increase the probability of certain patterns on 

the basis of fitness, for example, as measured by 
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association with expected or actual rewards. 

Heterogeneity in spike activity can arise by 

virtue of mechanisms of plasticity, as discussed 

previously, but this is not the only source. Het-

erogeneity can also arise from complexity in the 

connectivity patterns of neural networks, and 

complexity in the structures of nervous systems in 

general. Complexity from these structural sources 

may arise early in development through epigenetic 

processes. By analogy, network structures would 

be the genotypes and spike dynamics would be the 

phenotypes. Reward-driven learning would serve 

to select only those network structures and pro-

cesses that increase the probability of “fit” spike 
dynamics. Heterogeneity in spike activity would 

be critical for maximizing chances that more fit 
spike dynamics are expressed and available to be 

selected. 

A potential mechanism of selectionist learning 

was already discussed in the context of reinforce-

ment learning: Reward-modulated STDP108 can se-

lectively amplify or alter patterns of network con-

FIGURE 2: A: Schematic of the actor-critic architecture with the addition of a reservoir-supported VFA intro-

duced by Rodny and Noelle (2012).89 B, C, and D reproduced from Boyan and Moore (1995).99 B: Top-down 

view of the puddle world grid. Reward is located at top right, and negative reward is within the two elliptical 

“puddles”. C: Topology of optimal solution for puddle world value function. Z axis is cost-to-goal (future punish-

ment) starting from each location to reach reward. D: Solution to puddle world from Boyan and Moore, using 

an off-line grow-support learning method. E: Solution to puddle world from Rodny and Noelle (2012), using 

the reservoir-supported VFA. For E, Z axis is the inverse of mean VFA output, and results are aggregated over 

40 simulations.
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nectivity through both LTP and LTD. Izhikevich109 

showed that spiking networks can have intrinsical-

ly diverse, polychronous patterns of spike activity, 

and that STDP could be used to amplify specific 
patterns. A subsequent model96 demonstrated that 

dopamine modulation of STDP is a viable mecha-

nism for selectionist learning, while also shedding 

light on a number of classical and operant condi-

tioning principles. This model demonstrated learn-

ing only for selecting relative patterns of spike 

times between neurons—it is not expected to work 

for selecting more coarse-grained patterns of firing 
rates. 

An excellent example of selectionist learning 

via reinforcement can be found in a recent study 

by Warlaumont,110 who used the Izhikevich mod-

el to simulate selectionist learning of speech-like 

babbling patterns (Figure 3A). Intrinsic, complex 

spike dynamics were generated by the spiking neu-

ral network, and a subset of model neurons were 

chosen as controllers of muscle inputs to a simu-

lated vocal tract. Spikes on muscle neurons were 

summed, smoothed, and then input to the simulat-

ed vocal tract as lip and jaw muscle activations. At 

the start of the simulation, a wide variety of sounds 

were generated by the vocal tract model, reflecting 
the diversity of polychronous patterns produced 

(Figure 3B). Segments of vocal-tract output were 

judged by human listeners as being more or less 

speech-like, and judgments were used to modu-

late the release of dopamine that encoded a reward 

signal. STDP was increased by dopamine, select-

ing for those spike dynamics that resulted in more 

speech-like sounds. 

Warlaumont found that, over the course of 

learning, the model exhibited increasingly ma-

ture syllabicity in its vocalizations compared to 

a yoked control model (Figure 3C).110 In the con-

trol model, dopamine signals were applied at the 

same rate, but at random with respect to vocal-

ization segments. These results demonstrate how 

rewards, be they social or intrinsic, can shape 

behavioral dynamics through selection of spike 

patterns. In this case, the shaping of behavior re-

sulted in the development of canonical-like bab-

bling, which is marked by speech-like timing, 

and is considered to be a critical milestone of 

early speech development.111 Complex variations 

in spike dynamics were a part of the selection-

ist learning process, and related work suggests 

that heterogeneity in spike activity is useful when 

networks must learn in the context of background 

noise.112 Further simulations are needed to test 

whether complex variations are necessary or fa-

cilitative for selectionist learning as implemented 

by reward-modulated STDP, and to test whether 

selectionist learning can promote complex, het-

erogeneous spike dynamics. 

C. Probabilistic Inference

For our last example of how complex spike dy-

namics may play a role in plasticity, we turn to 

the general framework of probabilistic inference. 

Bayes’ rule holds that optimal learning and reason-

ing from uncertainty requires computations over 

conditional probability distributions. That is, infer-

ences require estimations of probabilities for some 

variables, given known or hypothesized states of 

other variables.113 Exhaustive evaluations of these 

distributions quickly become intractable in spik-

ing networks as the numbers of variables and 

states grow (but see Steimer et al.114). To address 

this problem, heuristic methods have been devel-

oped based on efficient sampling from conditional 
probability distributions.115 Sampling in this case 

is typically viewed as a stochastic process,116 but 

deterministic chaos also may serve as a sampling 

method.117 Regardless, nervous systems may have 

learning mechanisms that implement probabilistic 

inference by sampling. If so, complex variations 

may reflect the process of sampling from condi-
tional probability distributions. This is a new, 

promising direction of research in spiking network 

models.

VI. CONCLUSION

We began with the question of whether complex 

spike dynamics might be a hindrance or a benefit 
to neural function, as supported by neural plastic-

ity. We then reviewed a diverse range of studies, 
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FIGURE 3: A: Schematic depiction of Warlaumont’s (2012) model.110 A neural network with complex spike 

dynamics was used to control muscle inputs to a vocalization synthesizer simulating the human vocal tract. 

A human listener selectively rewarded the model’s vocalization. Reward generated a surge of dopamine, 

temporarily increasing STDP. B: Examples of two sounds produced by the model. The sound on the left con-

tains three canonical-like syllables while the one on the right contains none. The top row shows the muscle 

activations as a function of time, the second row shows the sound waveforms, the third row shows the sound 

intensity envelope, and the fourth row shows spectrograms for each sound. C: Across learning, the human-

reinforced model exhibited increased production of canonical-like sounds while a yoked control model did not.

from a diverse range of perspectives, to elucidate 

some possible relationships between neural plas-

ticity and complex variations in spike activity. All 

of these studies support the idea that complexity 

is integral to neural plasticity and therefore is not 

a hindrance for neural function. Instead, complex 

spike dynamics were theorized to be adaptive in 

many cases, especially when expressed as scal-

ing laws. In other cases, complex spike dynamics 

were theorized as byproducts of synaptic plastic-

ity that do not interfere with learning and regula-

tory functions. 

Despite all these studies, it is still possible that 

complex variations in spike activity sometimes 

reflect noise in the detrimental sense of the word, 
at least for certain processes in certain contexts. 

Our perspective is that researchers must always 

consider seriously whether a given observation 

of complexity is just noise. But that said, cogni-

tive science and neuroscience have much more to 

gain from studying cases in which complex spike 

dynamics are shown to reflect integral, adaptive 
aspects of learning and regulatory functions as ex-

pressed in neural plasticity.
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