Plasticity of User Interfaces:
A Revised Reference Framework

'Gaélle Calvary, Joélle Coutaz, David Thevenin
2Quentin Limbourg, Nathalie Souchon, Laurent Bouillon, Murielle Florins, Jean Vanderdonckt

'CLIPS-IMAG
BP 53
F-38041 Grenoble Cedex 9, France
Phone: +33 4 76 51 48 54
{gaelle.calvary,joelle.coutaz,david.thevenin}
@imag.fr

ABSTRACT

Mobility coupled with the development of a wide variety
of access devices has engendered new requirements for
HCI such as the ability of user interfaces (Uls) to adapt to
different contexts of use. We define a context of use as the
set of values of variables that characterize the computa-
tional device(s) used for interacting with the system as
well as the physical and social environment where the in-
teraction takes place. A Ul is plastic if it is able to adapt
to context changes while preserving usability. In this pa-
per we present a reference process for the engineering of
plastic user interfaces. The process revises a previously
published reference framework [3]. The amendment is
twofold: first it refines the design time process and sec-
ondly extends its coverage to the run time.

Keywords
Human computer interaction, plasticity, adaptation, con-
text of use, platform, environment, engineering, reference
framework.

INTRODUCTION

Information technology is an increasingly essential part of
the fabric and activity of our lives. Jini-enabled informa-
tion appliances, XML approaches to information model-
ing [18] and rendering, and gateways between Internet and
wireless network protocols [14] are being developed to
cope with the pregnancy of the technical push. This ex-
ploratory development of novel devices and techniques is
valuable in the short run. The approach, however, is not
replicable and provides poor guidance to sustain future
development of usable interactive technologies. As a re-
sult, there is a risk of a shortfall between technical prom-
ise and effective interaction. Theories and principles de-
veloped so far in HCI must not be lost in the evolution!

Although principles of user-centered design methods and
modeling techniques [19] offer a sound substrate, perva-
sive computing opens the way to new challenging re-
quirements. In particular, people want to have the choice.
They want to be able to choose among a wide range of
software platforms and hardware devices to accommodate

*Institut d’ Administration et de Gestion - BCHI
Université catholique de Louvain
Place des Doyens, 1
B-1348 Louvain-la-Neuve, Belgium
{limbourg, souchon, bouillon,florins,
vanderdonckt} @isys.ucl.ac.be

multiple needs depending on places and spaces across
time. Providing different interfaces specially crafted for
each type of device and modality combination is ex-
tremely costly and could result in users having many dif-
ferent versions of interfaces on different devices. The im-
pact includes massive under-use of interfaces potential
and excessive development costs to maintain versions
consistent across multiple platforms. The notion of plas-
ticity to cope with these problems is introduced [23,24].

PLASTICITY

The term “plasticity” is inspired from the property of ma-
terials that expand and contract under natural constraints
without breaking, thus preserving continuous usage. Ap-
plied to HCI, plasticity is the capacity of an interactive
system to withstand variations of context of use while pre-
serving usability. A context of use for a plastic system
covers two classes of attributes:

e The attributes of the physical and software platform(s)
used for interacting with the system. Typically, screen
size and network bandwidth have an impact on the
amount and modality of information to be rendered and
transferred;

e The environmental attributes that describe the physical
surroundings of the interaction. These include the set of
objects, persons and events that are peripheral to the
current task(s) but that may have an impact on the sys-
tem and/or the user's behavior, either now or in the fu-
ture. Typically, light conditions may influence the ro-
bustness of a computer vision-based tracking system,
noisy environments may eliminate sonic feedback, etc.
At the task level, location in space provides context for
information relevance; tasks that are central in the office
(e.g., writing a paper) may become secondary in a train,
etc.

A plastic user interface preserves usability if the proper-
ties selected at design time to measure its usability are
kept within a range of values as adaptation occurs to con-
textual changes. Although the properties developed so far
in HCI [11] provide a sound basis, they do not cover all

aspects of plasticity. For example, they do not express the
need for continuity [10] when migration occurs between
contexts of use. Thus, we need to extend and refine our
body of properties to cope with the new situations offered
by the technology.

Activity theory takes into account the situation of action
early in the design process. Unfortunately, situation-
dependent information is lost in the development process
due to the lack of appropriate notations of the design and
development tools. As a result, current tools implicitly as-
sume that users are working with a desktop computer lo-
cated at a specific place. A notable exception is the con-
text toolkit [21] developed for encapsulating sensors at the
right level of abstraction and the “literate development”
[5]. Although within the scope of plasticity, context tool-
kits cover low-level technical concerns only, and the liter-
ate development is not precise enough to address our
problem. Therefore a process model that supports the de-
velopment of plastic user interfaces is required. To sup-
port the description of the framework, we first present a
case study provided by EDF, the French Electricity Com-
pany. We then remind the initial version of the framework
and motivate its revision. It gives rise to a new version
that is described in the last part of the paper.

AN EXAMPLE: A HOME HEATING CONTROL SYSTEM
The heating control system envisioned by EDF (The
French Electricity Company) will be controlled by users
situated in diverse contexts of use. These include:

e At home, through a dedicated wall-mounted device or
through a Palm-like device connected to a wireless
home-net.

e In the office, through any Web browser on a PC.

e Anywhere using a WAP-enabled mobile phone.

(a) (b)
[=——————————HH 0= HH
Life rhythm Life rhythm
& & 12 13 e 3 12 18
Bed room [Bed room Bathroom |Living reom |
& [12 18
Bathroom ‘ Okay | | Cancel |
0 [12 18

Living room
@] 12 13

| Okay ‘ | Cancel |

%

Figure 1. Large screen. Temperature of the rooms are available
at a glance. (a) — Small screen. Temperature of one room is dis-
played at a time (b).

A typical user’s task consists of consulting and modifying
the temperature of a particular room. Fig. 1 and 2 show
versions of the same system for the PC browser and the
WAP-enabled phone respectively.

e In Fig. 1a, the system displays the current temperature
for each room of the house. The screen size is comfort-
able enough to make observable the entire system state.

e In Fig. 1b, the system shows the temperature of a single
room at a time. A thumbnail allows users to switch be-
tween rooms. In contrast with Fig. 1a, the system state
is browsable due to limited screen size. As a result, ad-
ditional navigational tasks are required to give access to
the desired information.

a)

=Chauff/salon/Ordres -
[mw] [minutes mm) :

uffage
Selectionnez une zone

chambre

salle deay

Figure 2. Modifying the temperature using a WAP-enabled mo-
bile phone.

Fig. 2 shows the interaction pathway for setting the tem-
perature of a room with a WAP mobile phone. The user
selects the room, (e.g., “le salon” - the living room in Fig.
2a) and the system shows its current temperature (Fig. 2b).
By selecting the editing function (“donner ordre”), one
can modify the temperature (Fig. 2c). When comparing
with the situation depicted in Fig. 1, navigation tasks have
been introduced and a title for every deck (i.e., WML
page) has been added to recall the user with the current
location within the interaction space. All of these alterna-
tives have been produced using the initial reference
framework [3,4].

THE INITIAL REFERENCE FRAMEWORK

Generally speaking the reference framework is intended to
serve as a reference instrument to help designers and de-
velopers to structure the development process of context-
sensitive interactive systems, including plastic Uls. To this
end, we adopted a model-based approach [19,20]:

e We built upon models used in current practice: con-
cepts, tasks, task oriented specification (called Concepts
and Tasks Model in Fig. 3 and 13), abstract and con-
crete user interfaces.

e We improved existing models to accommodate varia-
tions of the context of use: concepts and task oriented
specification.

e We explicitly introduced new models and heuristics that
have been overlooked or ignored so far to convey the
context of use: for example, the platform and environ-
ment models.

Context 2

*(Concepts and
Tasks Model Concepts

%c Abstract

y Tasks

I

% c Concrete
>

P user interface | | Platform

v Environment

c Evolution
SR Final user interface

user interface
Interactors

A 4

CIBJIE

Context 1
s [
—_—
Concepts | Tasks Model
—
—_—
Tasks v
| Abstract C)%
) EE—— :
Platform user interface <
—
—_—

Environment 4
D Concrete x >$
) | user interface <

Interactors
| somon | v
volution
:/ Final user interface DSR
for Context 1

———

for Context 2

* : Reification <4 : Translation

% : Human Intervention : Reference

Figure 3. The initial reference development process for supporting plastic interactive systems.

Fig. 3 shows which models and how they are involved in
the process. The Concepts Model captures information
related to the domain of discourse: in this sense, it is
similar to domain modeling. For example, for the Home
Heating Control System it includes the concepts of life
rhythm, room and temperature. The Task Model describes
how a user is carrying out a task to fulfill the goals of the
task. For example, programming the comfort at home con-
sists in specifying both the user life rhythm and the tem-
perature of the living room, bedroom and bathroom.

The Platform Model and the Environment Model define
the contexts of use intended by the designers. For exam-
ple, the size of the screen would be described in a plat-
form model, whereas the level of noise of a room would
be captured in an environment model. The Interactors
Model describes “resource sensitive multimodal widgets”
[1] available for producing the concrete interface. For ex-
ample the labels, time-bars and buttons that appear on Fig.
1. The Evolution Model specifies the change of state
within a context of use as well as the conditions for en-
tering and leaving a particular context. For example,
switching on the fly from the PDA to the wall-mounted
device when the battery of the PDA gets low.

Each of the above models is referenced along the devel-
opment process from the task specification to the running
interactive system. The process is a combination of verti-
cal reification and horizontal translation. Vertical reifica-
tion covers the derivation process, from top level abstract
models to run time implementation. Horizontal deriva-
tions, such as those performed between HTML and WML
content descriptions, correspond to translations between

models at the same level of reification. Reification and
translation may be performed automatically from specifi-
cations, or manually by human expert designers, depend-
ing on the tools available, or by a combination of both
with a mixed-initiative locus of control.

The richness of the reference framework relies in its capa-
bility to be instantiated in many ways:

(a (

qo0oaao) -

Figure 4. Independent reifications (a) ;
Initial translation before reification (b).

e Fig. 4a represents the most currently found practice:
two running systems are reified in parallel using sepa-
rate input models, each one being specified for separate
contexts of use (C1 and C2 in Fig. 4a). Unfortunately,
there is not necessarily a way to factoring out common
elements across both contexts of use, thus requiring
maintaining some consistency between the multiple ver-
sions at the same time. For example, this approach is
used when three different UI versions for the same task
are developed simultaneously (e.g., in HTML, WML,
and XML), but independently of each other.

e Fig. 4b depicts the highest level approach graphically:
the task-oriented specification valid for one context C1

is translated to fit another context C2 at the task and
concepts level. From there, reifications are performed in
parallel. This approach has been followed for the Home
Heating Control System using a WAP mobile phone
(Fig. 2). Sub trees that correspond to infrequent tasks
have been pruned from the original task tree developed
for the Java-enabled platform. Because ARTStudio
does not yet support Web-based techniques, the reifica-
tion steps have been performed manually by a human
expert. A similar approach is described in [6,7]. An-
other example of translation performed at the highest
level occurs in [8]: domain concepts and task elements
are defined in an ontology editor of the domain of dis-
course. These concepts, along with their attributes and
relationships, are attached with production rules stating
properties depending on the context of use (e.g., type of
user, interaction style). Such rules include translations
from one context C1 to another context C2 stating how
tasks and their related concepts change when the con-
text changes (Fig. 5).

Ein Modds Help

(DD %= &[G % []

Mel Madel InsanceMetaModdl | o, o] Madel

| domamn model |
na:l tas Tz

ek
[—— item
item .
5 + camgosed of

| task model]

(a

C2

the task tree configuration and on temporal operators
between subtasks. Xweb supports cross-modality Uls
for a same task [18]: different concrete Uls are pro-
duced from the same abstraction, but varying depending
on available modalities and devices.

e Fig. 7a depicts the ideal situation: reification is applied
until the very last step. Consistency is here minimally
maintained since any high-level change can be propa-
gated to the lower levels in a straightforward way. For
example, this approach has been used for the Home
Heating Control System for Java-enabled target plat-
forms: Uls shown in Fig. 1 have been automatically
generated using the ARTStudio development environ-
ment (Adaptation by Reification and Translation)
[4,24]. Another example provided by [14] highlights an
approach where HTML web pages are transformed on
the fly into WML decks when a user accesses a non-
WAP enabled web site via her cellular phone. This ap-
proach is mainly transcoding.

(@) (b)

=) S (o | [} N (e

! Il] {0

() ! ()

] |% e S

DJ 0)J||\& =
un ul2 un ul2

Figure 7. Reification before a final translation (a).
Interleaving of reifications/translations (b).

e Fig. 7b shows a mix of interleaving between reification
and translation. Such a combination makes it possible
not to produce some intermediary models for a given
context. Indeed the designer only has to translate to an-
other context, generate them there by reification and
then translate back to the initial context.

0000ag) -

000000

000000

ui2

Figure 6. Translation at abstract (a) and concrete (b) Ul levels.

e Fig. 6 depicts two other possible translations: at the ab-
stract (Fig. 6a) and concrete Ul level (Fig. 6b) respec-
tively. For example, a mechanism is described in [15] to
start from a same task model, but to derive different ab-
stract Uls depending on parameters describing contexts
of use. In a C1 context for instance, an abstract presen-
tation will be derived that encompasses all information
related to any combination of sub-tasks of the main
task. In another C2 context, another abstract presenta-
tion may be generated, for instance with one presenta-
tion unit for each sub-task. The mechanism is based on

@ (b)

=] 5185 ° B
0 -

= =S| =

—; ||| =} I

O) e O

= 0| & (.

Ul [&—— UI2

Figure 8. Interleaving of reifications/translations at highest (a)
and lowest levels (b).

e The mix of interleaving between reification and transla-
tion may occur at any level, including the highest level
(Fig. 8a) and the lowest level (Fig. 8b). For example,
the combination of systems in [8] enables designers to
transform task and domain models from one context to
another and to produce an abstract Ul for both. Lopez
& Szekely [16] can compose different presentations for
the Web and the Palm at the same time by classification
of widgets and page recomposition.

NEEDS FOR REVISING THE FRAMEWORK

As we have seen in the previous section, the reference
framework exhibits the capability of expressing many ap-
proaches for producing multi-target Uls [24]. However,
some existing approaches cannot be easily represented on
this framework, thus leading to some shortcomings:

The reference framework only supports top-down ap-
proaches in a straightforward scheme. Any bottom-up
approach or combination of top-down and bottom up
steps cannot be represented.

The framework mainly assumes that one builds one or
many Uls from initial models to the final Uls via tran-
sient models (forward engineering). It does not support
reverse engineering approaches where a new Ul can be
obtained by transforming an already existing one into a
new one. For example, VAQUITA [2] regenerates a con-
crete UI from a HTML page to transform it for another
context of use by successive translation and reification.
For this purpose, an abstraction activity should be per-
formed before, like a reverse arrow. This abstraction
can be performed at the concrete (Fig. 9a) [2] or at the
abstract Ul level (Fig. 9b). We may even imagine to ab-
stract at the highest level, but this would involve design
recovery from code, which is hard to achieve. In the
above cases, no concept and task models are used, thus
meaning that not all models should be necessarily used.

(a) (b)
[:] (o] Cc2 |:| C] C1 C2 :]
() ||| E23 (|
r:| = O el] =
(! ||| (]
| et e A
() —|I= ()
un ui2

Figure 9. Regenerating a new Ul from another one by abstrac-
tion at the concrete (a) or abstract (b) UI level.

e The framework also assumes that the only starting

points are the models located at the highest or the low-
est levels. This is not always true. For example, Girard
& Baron [9] implemented a system that automatically
generate Uls for different configurations from the defi-
nition of semantic functions contained in the semantic
core. In this case, a concrete Ul model is obtained for
each context from an application model (Fig. 10a).

(a) (b)

O ¢ 2 =@ © 2 (=
() ()

= | |%
= (| -)
e O < O e | i e I A R
() O ||]

Ul unt ui2

Figure 10. Generating concrete Uls from application model (a);

Generating concrete Uls from many models (b).

e Moreover, the starting point may not always be unique:

the application model is the starting model in [9], but it
is the only one. Teallach [12] is a very representative
example of a model-based approach [20] where the de-
signer can start from any model: concept, task, or pres-
entation. Here, multiple starting points can be consid-
ered, thus leading to many configurations (one of them
is presented in Fig. 10b) where top-down and bottom-up
arrows are nested. In particular, a designer may start
with a presentation model, then derive a task model and
link them together, with consistency with a domain
model. Or she starts from a domain model, derives a
task model, and a presentation model respectively.

0z/... M=E3

EREARY
R

AR
M Keyhoard LI Keyhoard

Update | Update |

Figure 11. The numerical input with/out keyboard.

Finally, the framework mainly represents development
situations where the Uls are first analysed, and then de-
signed to produce Uls. In this way, all potential Uls that
can be accommodated by the approach, the develop-
ment environment, and their supporting tools, are prede-
fined. There is no way to express Uls that are known
only at run-time. For example, Digestor [1] produces
different Uls at runtime to display HTML web pages
depending on constraints imposed by a computing plat-
form. Similarly, there is no way to express runtime
plastic Uls where the Uls are computed at runtime. For
example, Grolaux [13] developed two Uls that cannot
be described in terms of the framework: the numerical
input (Fig. 11) automatically switches at run-time to a
new configuration (here a virtual keyboard) when the
keyboard is no longer available, even during task ac-
complishment. Similarly, FlexClock computes an ap-
propriate concrete Ul at run-time depending on the
available screen space (Fig. 12).

[riexcoce—— SSTEY

3:35:20
FlexClock == ﬂ Friday, 17 Hovember 2000

13:37:28
Friday, 17 Movember 2000
o art

Figure 12. The plastic FlexClock.

Mo Tu We Th Fr 3a Su

12345
6 7 8 93101112
131415 16418 19
20021 22 232425 26
27 26 29 30

By generalising what we observed so far, we can draw the
following conclusions: not all models should be involved
all the time, not all arrows should be top-down all the
time, loops should be supported, multiple entry points
should be allowed, multiple entry points can be consid-
ered simultaneously, any combination of multi-directional
arrows should be supported. All of the principles that have
been defined above are kept again in the revised reference
framework. This new version, addressing the identified
needs, is now introduced.

THE REVISED REFERENCE FRAMEWORK

The revised reference framework is a more general proc-
ess that both refines the design time and extends its cover-
age to the run time.

Design time
At design time, the amendments are fourfold (Fig. 13):

e The notion of entry point is introduced. Entry point
marks a level of reification at which the development
process (reification and/or translation) may be began.
Unlike the initial process that contains an entry point
only (the task oriented specification), the revised refer-
ence framework foresees entry points at any level of rei-
fication: for example henceforward the designer may
start at the abstract user interface without having pro-
duced the task oriented specification.

o At the reification level along a bottom-up perspective, a
reverse engineering process make it possible to infer
abstract models from more concrete ones. This amend-
ment takes into account the practice consisting in di-
rectly prototyping the concrete user interface without
having produced the task-oriented specification. From
now on, these abstract specifications may be automati-
cally and/or manually computed from the mockups.

o At the translation level, a cross operator is introduced
to both translate to another context of use and change
the level of reification. The crossing is a short cut that
let possible to avoid the production of intermediary
models.

e To sustain the runtime, a slice-based notation is intro-
duced. It makes observable the life cycle of knowledge
along the reification process: at level /+p, the slice 7 is
mentioned if the knowledge modeled at [is still present
at [+p. This traceability of knowledge may be useful for
adaptation. For example in ARTStudio, as the task ori-
ented specification is already lost at the abstract user
interface, the user interface is not able to accomodate it-
self to another context of use. In consequence, an exte-
rior supervisor has to manage the change of context by
commuting from one pre-computed user interface to an-
other one.

Based on this framework, the designer and/or the system
may produce plastic user interfaces in a pre-computed
way or on the fly at run-time.

Run-time

According to [4], the run-time process is structured as a
three-step process: recognition of the situation, computa-
tion of a reaction, and execution of the reaction.

Situation Recognition

Recognising the situation includes the following steps:

e Sensing the context of use (e.g., current temperature is
22°C) by ad-hoc sensors and/or human skills;

e Detecting context changes (e.g., temperature increased
from 18°C to 22°C) by ad-hoc mechanisms and/or hu-
man skills. Technology such as Aspect Oriented Pro-
gramming or ad-hoc probes [4] can be helpful.

¢ Identifying context changes (e.g., for the heating control
system, transition from the regular context to the com-
fortable context). Probabilistic approaches or fuzzy
logic-based techniques could be applied.

In turn, the identification of context changes may trigger a
reaction. There are two general types of trigger: entering a
context and leaving a context. Schmidt suggests a third
type of trigger [22], not considered in our discussion: be-
ing in a context. Triggers are combined with the AND/OR
logic operators. For example, ‘Leaving(C1) AND Enter-
ing(C2)’ is a trigger that expresses the transition from
Context C1 to Context C2. Having recognised the situa-
tion, the next step consists of computing the appropriate
reaction.

Computation of a Reaction

The reaction is computed in the following way: Identify
candidate reactions, select one of them, and apply the se-
lected reaction.

e Identification of the candidate reactions. So far, we plan
the following generic reactions:

— Switch to another platform and/or to different envi-
ronmental settings (e.g., switch from a portable PC
to a PDA as the battery gets low, or turn the light on
because the room grows dark).

— Use another executable code: the current user inter-
face is unable to cover the new context. It can't
mould itself to the new situation and, in the mean-
time, preserve usability. Another executable code
produced on the fly or in a pre-computed way is
launched.

— Adapt the user interface but keep the same executa-
ble code (e.g., switching from la to 1b when the
screen gets too cluttered). The adaptation may be
also pre-computed or computed on the fly.

— Execute specific tasks such as turning the heat on. In
this case, adaptation does not modify the presenta-
tion of the user interface, but it may impact the dia-
logue sequence.

Some of these reactions may conserve or not the system

state in terms of functional core adaptor and dialog

controller. This persistence criteria may guide the se-
lection among the candidate reactions.

Context 1

Concepts

Tasks

bstract
terface

Platform

Interactors

Evolution

[es]
5
=
5
=S
@
=l

Context 2

tings, resuming of the sus-
pended task).

b Each one of the above steps
\ Concepts is handled by the system, by

the user, or by a co-op-
Tasks eration of both. A step oc-
curs on the fly or off-line.
When a step is performed
off-line, subsequent steps are
also performed off-line.
Transition between steps
means transition between
states. Transition between
states has been analysed
since the early developments
of HCI. Norman's evaluation
gap, Mackinlay's et al. use of
graphical animation for

Platform

Interactors

Evolution

[es]
B
=i
g
=
@
2

Identifying) SR Identifying
Situation recognition context | candidate
changes solutions

Dﬁz Computation of a reaction

transferring cognitive load to
the perceptual level [17], the
notion of visual discontinuity
[11] etc., have all demon-
strated the importance of

])ce(;[relf;;?g R Sczlsgﬁﬁl%ea R transitions. A transition be-
changes solution tween two platforms, be-
4 Run time tween executable codes,
between Uls, etc. is therefore

Sensing the |47 R Exccuting thqa™ R a crucial point that deserves
context prologue specific research. The pro-

N N

epilogue |« reaction

[Executing the?SR [Executing theDSR Execution of the reaction

logue and epilogue are here
to help the designer thinking
to the transitions.

Figure 13. The revised reference framework.

e Selection of a candidate reaction according to an ac-
ceptable migration cost. Every reaction has a migration
cost that expresses the effort the system and/or the user
must put into this particular reaction. The effort is
measured as a combination of criteria selected in the
early phase of the development process.

Execution of the Reaction

The execution of the reaction consists of a prologue, the

execution per se, and an epilogue:

e The prologue prepares the reaction. The current task is
completed, suspended, or aborted; the execution context
is saved (such as the specification of the temperature
under modification); if not ready for use, the new ver-
sion of the user interface is produced on the fly (e.g., a
new presentation, a new dialogue sequence).

e The execution of the reaction corresponds to the com-
mutation to the new version (e.g., the new presentation,
the new dialogue sequence, or the execution of a spe-
cific task).

e The epilogue closes the reaction. It includes the resto-
ration of the execution context (e.g., temperature set-

CONCLUSION

Although the prospective development of interactive sys-
tems may be fun and valuable in the short run, we con-
sider that the principles and theories developed for the
desktop computer should not be put aside. Instead, our re-
ply to the technological push is to use current knowledge
as a sound basis, question current results, improve them,
and invent new principles if necessary. This is the ap-
proach we have adopted for supporting plasticity by con-
sidering model-based techniques from the start. These
techniques have been revised and extended to comply
with a structuring reference framework. This framework
has been put in practice both at design time and run time:
ARTStudio provides a concrete, although incomplete, ap-
plication of the design time aspect of the framework. On
the contrary, the Probe [4] deals with the run time aspect
for the detection of context changes. Now we focus on the
evolution model to formalize the change of context and
exploit it by an Aspect Oriented Programming.

ACKNOWLEDGMENTS
We thank Electricité de France, R&D Dept., for having
supported the work conducted at CLIPS-IMAG.

REFERENCES

1.

10.

11.

12.

Bickmore, T.W., Schilit, B.N., Digestor: Device-
Independent Access To The World Wide Web, in Proc. of 6™
Int. World Wide Web Conf. WWW’6 (Santa Clara, April
1997), accessible at http://www.fxpal.com/PapersAndAbs
tracts/papers/bic97/

Bouillon, L., Vanderdonckt, J., Souchon, N., Recovering
Alternative Presentation Models of a Web Page with VA-
QUITA, Chapter 27, in Proc. of 4™ Int. Conf. on Computer-
Aided Design of User Interfaces CADUI’2002 (Valencien-
nes, May 15-17, 2002), Kluwer Academics Pub., Dordrecht,
2002, pp. 311-322.

Calvary, G., Coutaz, J., Thevenin, D., 4 Unifying Reference
Framework for the Development of Plastic User Interfaces,
Proceedings of 8" IFIP International Conference on Engi-
neering for Human-Computer Interaction EHCI’2001 (To-
ronto, 11-13 May 2001), R. Little and L. Nigay (eds.), Lec-
ture Notes in Computer Science, Vol. 2254, Springer-
Verlag, Berlin, 2001, pp. 173-192.

Calvary, G., Coutaz, J., Thevenin, D., Supporting Context
Changes for Plastic User Interfaces: a Process and a
Mechanism, in “People and Computers XV — Interaction
without Frontiers”, Joint Proceedings of AFIHM-BCS Con-
ference on Human-Computer Interaction IHM-HCI’2001
(Lille, 10-14 September 2001), A. Blandford, J. Vander-
donckt, and Ph. Gray (eds.), Vol. I, Springer-Verlag, Lon-
don, 2001, pp. 349-363.

Cockton, G., Clarke S., Gray, P., Johnson, C., Literate De-
velopment: Weaving Human Context into Design Specifica-
tions, in “Critical Issues in User Interface Engineering”, P.
Palanque & D. Benyon (eds), Springer-Verlag, London,
1995.

Eisenstein, J., Vanderdonckt, J., Puerta, A., Model-Based
User-Interface Development Techniques for Mobile Com-
puting, in Proc. of ACM Int. Conf. on Intelligent User In-
terfaces IUI’2001 (Santa Fe, January 14-17, 2001), J. Lester
(ed.), ACM Press, New York, 2001, pp. 69-76.

Eisenstein, J., Rich, C., Agents and GUIs from Task Models,
in Proc. of ACM Conf. on Intelligent User Interfaces
IUI’2002 (San Francisco, Junary 13-16, 2002), ACM Press,
New York, 2002, accessible at http://www-scf.usc.edu/
~jeisenst/papers/iui02.pdf

Furtado, E., Furtado, J.J., Bezerra Silva, W., William Ta-
vares Rodrigues, D., da Silva Taddeo, L., Limbourg, Q.,
Vanderdonckt, J., An Ontology-Based Method for Designing
Multiple User Interfaces, ongoing submission.

Girard, P., Baron, M., Construction interactive d’applica-
tions a partir du noyau fonctionnel, in Proc. of Conférence
sur I’Interaction Homme-machine et Ergonomie & Informa-
tique ERGO-IHM’2000 (Biarritz, October 3-6, 2000), D.L.
Scapin & E. Vergison (eds.), CRT ILS & ESTIA, Bidart,
2000, pp. 85-93.

Graham, T.C.N., Watts, L., Calvary, G., Coutaz, J., Dubois,
E., Nigay, L., 4 Dimension Space for the Design of Interac-
tive Systems within their Physical Environments, in Proc. of
Conf. on Designing Interactive Systems DIS’2000 (New
York, August 17-19, 2000,), ACM Press, New York, 2000,
pp. 406-416.

Gram, C., Cockton, G. (eds.), Design Principles for Inter-
active Software, Chapman & Hall, London, 1996.

Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Ken-
nedy, J., Gray, P.D., Cooper, R., Goble, C.A., Pinheiro da

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Silva, P., Teallach: a model-based user interface develop-
ment environment for object databases, Interacting with
Computers, Vol. 4, No. 1, December 2001, pp. 31-68.
Grolaux, D., Van Roy, P., Vanderdonckt, J., OQTk: An Inte-
grated Model-Based Approach to Designing Executable
User Interfaces, in PreProc. of 8" Int. Workshop on Design,
Specification, Verification of Interactive Systems DSV-
1S°2001 (Glasgow, June 13-15, 2001), Ch. Johnson (ed.),
GIST Tech. Report G-2001-1, Dept. of Comp. Sci., Univ. of
Glasgow, Scotland, 2001, pp. 77-91. Accessible at http:/
www.dcs.gla.ac.uk/~johnson/papers/dsvis_2001/grolaux.
Kaasinen, E., Aaltonen, M. Kolari, J., Melakoski, S.,
Laakko, T., Two Approaches to Bringing Internet Services
to WAP Devices, in Proc. of 9" Int. World-Wide-Web Con-
ference WWW’9 (Amsterdam, 15-19 May 2000), accessible
at http://www9.org/w9cdrom/228/228.html

Limbourg, Q., Vanderdonckt, J., Souchon, N., The Task-
Dialog and Task-Presentation Mapping Problem: Some
Preliminary Results, in Proc. of 7" Int. Workshop on De-
sign, Specification, Verification of Interactive Systems
DSV-IS°2000 (Limerick, June 5-6, 2000), F. Paterno & Ph.
Palanque (éds.), Lecture Notes in Computer Science, Vol.
1946, Springer-Verlag, Berlin, 2000, pp. 227-246.

Lopez, J.F., Szekely, P., Web page adaptation for Universal
Access, in Proc. of Conf. on Universal Access in HCI UA-
HCI’2001 (New Orleans, August 5-10, 2001), Lawrence
Erlbaum Associates, Mahwah, 2001, pp. 690-694.
Mackinlay, J.D., Robertson, G.G, Card, S.K., The Perspec-
tive Wall: Detail and Context Smoothly Integrated, in Proc.
of ACM Conference on Human Factors in Computing Sys-
tems CHI’91 (New Orleans, April 27 - May 2, 1991), ACM
Press, New York, 1991, pp. 173-179.

Olsen, D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrick-
son, P., Cross-Modal Interaction using Xweb, Proc. of the
ACM Symposium on User Interface Software and Technol-
ogy UIST’2000 (San Diego, 6-8 November 2000), ACM
Press, New York, 2000, pp.191-200.

Paterno, F., Model-based Design and Evaluation of Interac-
tive Applications, Springer Verlag, Berlin, 1999.

Pinheiro da Silva, P., User Interface Declarative Models
and Development Environments: A Survey, in Proc. of 7"
Int. Workshop on Design, Specification, Verification of In-
teractive Systems DSV-IS’2000 (Limerick, June 5-6, 2000),
F. Paterno & Ph. Palanque (éds.), Lecture Notes in Comp.
Sci., Vol. 1946, Springer-Verlag, Berlin, 2000, pp. 207-226.
Salber, D., Dey, A.K., Abowd, G. D., The Context Toolkit:
Aiding the Development of Context-Enabled Applications, in
Proceedings of ACM Conference on Human Factors in
Computing Systems CHI’99 (Pittsburgh, 15-20 May 1999),
ACM Press, New York, 1999, pp. 434-441.

Schmidt, A., Implicit human-computer interaction through
context, Proc. of 2™ Workshop on Human Computer Inter-
action with Mobile Devices MobileHCI’01 (Edinburgh, 31
August 1999).

Thevenin, D., Coutaz, J., Plasticity of User Interfaces:
Framework and Research Agenda, in Proc. of 7th IFIP In-
ternational Conference on Human-Computer Interaction In-
teract'99 (Edinburgh, August 30 - September 3, 1999),
Chapman & Hall, London, pp. 110-117.

Thevenin, D., Adaptation en Interaction Homme-Machine:
Le cas de la Plasticité, Ph.D. thesis, Université Joseph Fou-
rier, Grenoble, 21 December 2001.

	ABSTRACT
	Keywords

	INTRODUCTION
	PLASTICITY
	AN EXAMPLE: A HOME HEATING CONTROL SYSTEM
	THE INITIAL REFERENCE FRAMEWORK
	NEEDS FOR REVISING THE FRAMEWORK
	THE REVISED REFERENCE FRAMEWORK
	Design time
	Run-time
	Situation Recognition
	Computation of a Reaction
	Execution of the Reaction

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

