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Abstract

Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When
the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that
two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has
little predictive value for the change in a second trait. To characterize such ‘‘tunability’’ in developmental plasticity, we
carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis
thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to
environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide
association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants
in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted
environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of
genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given
environment.
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Introduction

Nitrogen is a limiting nutrient in plant growth that is typically

taken up from the soil by the root system [1]. However, because

the soil environment often varies over space and time, a single

genotype needs to adjust its root architecture in response to

different soil conditions, an example of developmental plasticity.

One imperative in agriculture is to develop crops that can grow

efficiently while reducing expensive and environmentally detri-

mental nitrogen supplements; current high yield crops are typically

optimized for a single environment of high nitrogen. To breed

crops for different or naturally fluctuating nitrogen environments,

mechanisms that mediate traits conditioned on the environment

may be important targets of crop improvement.

In plants, root architecture is a complex phenotype that arises

from adult meristematic activity in primary and lateral roots and

lateral root initiation [2,3]. These traits collectively determine the

root’s three-dimensional body plan, where specific shapes can

provide advantages in certain environments [4]. For example,

deeper primary roots are often associated with plants with a

greater tolerance to drought [5,6]. The dynamic and patchy

nature of the soil environment also appears to make the post-

embryonic adjustment of the body plan a valuable attribute. For

example, a strong association was found between local prolifer-

ation of lateral roots and nitrogen uptake in competition assays in

grasses [7,8]. Collectively, these studies show that different

attributes of root architecture and the ability of individuals to

adjust that architecture can confer advantages in the heteroge-

neous soil environment.

Here, we systematically characterize the way in which root traits

can vary in different environments across accessions in one species,

Arabidopsis thaliana. At one extreme, a set of traits may be correlated

(or anti-correlated) such that trait 1 and 2 may both consistently

increase, decrease or show opposite trends in a new environment

when examined in many different accessions [7]. At the other

extreme, traits may be independent with respect to each other,

such that a change in trait 1 has no predictive value in a change in

trait 2 when examining many genotypes [4].

We expect that specific genes mediate the response to extrinsic

signals to affect intrinsic development programs [2]. For example,

genes that mediate the activation of transient stem cell niches in

the pericycle will influence lateral root density [4]. In previous
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work, plasticity mechanisms active in the pericycle were found to

coordinate the control of root initiation and outgrowth by

nitrogen. It was found that an increase in expression of the

transcription factor Auxin Response Factor 8 in response to high

nitrogen treatment decreased lateral root growth and increased

lateral root initiation [9]. This was an example of trait coupling

that could result in an anti-correlation between traits across many

genotypes. Another study showed that C:N ratio appeared to

specifically control lateral root initiation without strongly influ-

encing other root traits – a potential example of trait independence

[10]. A few other cases of regulatory genes that control root

architecture in response to nitrogen have been identified [11,12].

However, the overall level of customization of phenotype to

environmental variation and the genetic architecture underlying

plasticity are not well understood.

To characterize the tunability of root traits in response to

different environments, we merge concepts from two different

fields. The field of phenotypic integration has documented the

level of correlation vs. independence in traits, typically across

different genetic variants within a species or a set of closely

related species [13]. The field of phenotypic plasticity has

documented the ability of single genotypes to show variable

phenotypes in different environments [13–15]. Here, we

examine the correlation vs. independence of the difference in

root traits in two environments to ask how finely the plant can

manipulate its developmental plasticity. In addition, we also

seek to determine the genetic mechanisms that mediate

plasticity, as there is growing interest in the genes underlying

phenotypic plasticity [13,16,17].

By carrying out comparative phenotypic analysis of key features

of root architecture, we have been able to both analyze the

correlation of individual root traits as well as assess the extent of

plasticity within and between root traits that form root architec-

ture. The use of genomic expression profiling in combination with

high-density genetic marker association analysis enabled identifi-

cation of genes implicated in controlling independent root

parameters. By combining the phenotypic and genomic analyses

we were able to functionally validate a number of new root

regulators that mediate the response to nitrogen levels in discrete

environments.

Results and Discussion

Root traits display a high degree of independence across
nitrogen environments
We characterized the level of correlation vs. independence in

root plasticity by asking how traits vary in two distinct nitrogen

environments among 96 well-characterized natural accessions or

ecotypes of the model species Arabidopsis thaliana [18] (see Materials

and Methods). We define developmental plasticity as the ability of

a single genotype to exhibit different phenotypes in different

environments. If root trait differences in the two environments are

correlated, accessions should exhibit similar suites of changes in

root architecture in distinct nitrogen environments. Alternatively,

if a high level of trait independence exists, genotypes that are

similar in one nitrogen environment could alter a subset of root

traits in a new nitrogen environment.

To address this hypothesis, we first clustered accessions based

on seven root traits capturing root size and architecture (see

Methods) in each of the two environments: high and low nitrogen

(Figure 1). There was a dramatic rearrangement of the tree

topology in the two environments, as shown by the dispersal of

clusters formed in low nitrogen mapped onto the high nitrogen

phenotype tree (Figure 1). To observe trait behaviors, we also

clustered accessions based on their trait differences in the two

nitrogen growth conditions, and mapped average trait differences

in each accession onto the tree as bar graphs (Figure 2A,B) or a

heatmap (Figure S4). In one example, NFA-8 and Sq-8 have

similar architectures on low nitrogen, but exhibit much different

phenotypes in the high nitrogen environment, where Sq-8

outgrows lateral roots much more dramatically (Figure 2C). In

another clade, Kas-2 is a super-responder, dramatically increasing

almost all root traits measured in high nitrogen to the extreme

levels observed (Figure 2C). On the other hand, roots of Bil-7 are

almost completely unresponsive to nitrogen (Figures 1,2A). Over-

all, the cluster analysis indicates that sharing a phenotype in one

nitrogen environment does not predict similarity in root architec-

ture in a second nitrogen environment, arguing that different trait

responses are independent of one another.

Independence of root traits underlies plasticity responses
to nitrogen
We used a Principal Components Analysis (PCA) to investigate

the degree of correlation vs. independence in the root traits. In the

first PC, which accounted for 64% of variation, almost all traits

showed the same magnitude and direction in their contribution

(Figure 2D, blue lines). This trend suggested that the greatest

variation among the difference of traits on high compared to low

nitrogen were correlated changes in traits, meaning overall size

differences (Figure 2D). However, the different traits made highly

varied contributions to the second and third PCs, as shown by the

vectors (blue lines) representing the magnitudes and sign of trait

coefficients in each component (Figure 2E). The second and third

components represented about 17% and 10% of the variance,

respectively, indicating a substantial amount of variation in these

two components. Interestingly, the star-shaped configuration of

the coefficient vectors indicates that traits are highly orthogonal in

the space of the second and third principal components. In other

words, traits show a high degree of independence and lack of

correlation. The same trends were found in a PCA analysis of trait

data from high or low nitrogen conditions or the combined high

plus low nitrogen dataset (Figure S5). The substantial variation in

Author Summary

Plants can dramatically alter their development in order to
cope with new environmental conditions. Such plasticity is
especially evident in the root system since it adopts a
particular architecture under one condition, but can
change architecture by altering the extent of lateral root
branching in a different condition. To explore the extent of
root plasticity to the critical nutrient nitrogen we analyzed
a natural population of the model plant Arabidopsis in
both nitrogen-limiting and nitrogen-rich environments.
This revealed that root architecture plasticity appears to be
the combined effect of many individual root responses to
the environment that are independently modulated. Each
aspect, such as lateral root length, number, or density
seems to be turned on or off separately, giving the whole
system flexibility. We then identified specific genes that
control these individual component responses by explor-
ing the genetic variation across the natural population in
combination with analyzing which genes respond to
nitrogen. Together the results help us gain insights into
how the environment shapes plant development. This
knowledge can be used to better understand how the
growth of our existing crop species might change as the
climate varies, and identify new crop varieties that will be
robust to such variation.

Plasticity of Root Traits
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Figure 1. Clustering of 96 accessions grown on high nitrogen and low nitrogen based on root traits. (A) Clustering based on low N traits
(scaled) forms eight clusters, which are indicated by vertical lines next to the dendrogram. Accessions within correlated groups (clusters) are
highlighted in different colors. (B) Clustering based on high N traits (scaled) forms six clusters. The cluster designations in low N are highlighted in the

Plasticity of Root Traits
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PCs 2 and 3 shows that there is a significant component of

variation in which traits vary freely among accessions in the

transition from one environment to another.

Similarly, a mixed model ANOVA of the trait data showed that

almost all traits have accession-by-treatment interactions (see

Methods). For example, in the ANOVA model, Kas-2 has a high

interaction coefficient in LRtot, in which it changes phenotype

dramatically in the two nitrogen conditions (Figure 2C). In a

different type of trait interaction, Kas-2 also has a high interaction

coefficient in LB/PR (root length between hypocotyl and most

distal lateral root), but it is one of the few accessions to show almost

no phenotypic difference between nitrogen environments (Table

S5). Overall, the analysis shows that individual accessions adjust to

differing nitrogen environments with variable increases in overall

size, which demonstrates trait correlation as in PC1. However,

there is a prominent secondary source of variability in which traits

vary independently among the accessions and between environ-

ments, as demonstrated in PCs 2 and 3. The result shows that

much of the variation observed when growing the 96 accessions in

two environments is comprised of overall size effects, but,

importantly, another large component of variation reflects a high

level of fine tuning of each accession to a particular nitrogen

environment.

Distinct sets of genes associate with specific root traits in
the two environments
To identify mechanisms involved in plasticity, we employed a

genome-wide association study (GWAS) [19]. We associated

known SNPs with root traits from plants grown on low or high

nitrogen environments, or the difference in a trait value between

the two environments (Table S6). In addition, we calculated the

total proportion of trait heritability that the SNPs explain (Tables

S6,S7). We used 96 accessions, as previous work suggested this

number is sufficient to identify associations with relatively strong

effect [19]. In total, we found 53 highly significant SNP hits that

could be grouped, based on proximity, into 17 SNP groups (a SNP

window included all genes within 10 kb on either side of the SNP

and such intervals were joined into ‘‘groups’’ if their windows

overlapped). In total, the 17 SNP groups encompassed 106 genes

(Table S8). Surprisingly, out of 17 SNP groups, only a third of the

groups associated with the same trait in the two nitrogen

environments. This could mean that we either lacked power to

detect SNPs in one environment, or, that there is genetic variation

that specifically influences phenotype in one environment. We

sought to test the hypothesis that specific genes mediate distinct

traits in one nitrogen environment by testing whether mutants in

any of the genes found within intervals showed a phenotype in the

associated trait in the predicted environment. We focused on

lateral root average length because 7 SNP groups encompassing

53 genes showed high significance and because a number of

insertional mutants were available for genes in these windows

(Table S8).

Transcriptional changes to nitrogen influx corroborate
genetic associations
We sought to narrow candidates within genomic intervals that

were implicated by SNPs by focusing on potential plasticity

regulators that showed variable gene expression among accessions

or between conditions or both. Thus, we profiled root gene

expression of seven accessions that represent diverse root

architectures (Col-0, Kas-2, Var2-1, Tamm-27, NFA-8, Sq-8,

Ts-5; Figures 1,2A–C) using ATH1 microarrays in response to a 2-

hour treatment of nitrate vs. control to identify early growth

regulators that respond to new conditions (Methods; Table S9).

ANOVA followed by a model simplification assignment

(FDR,0.1, see Methods and Tables S10, S11) identified 5,043

genes that varied among accessions but with no response to

nitrogen and 279 genes with a range of effects due to nitrogen

(Figure 3). Of these 279 genes, 29 genes responded to nitrogen in

all accessions with no accession-specific variation in the degree of

response or direction of nitrogen-regulation (‘‘nitrogen-only

effect’’). 123 genes responded to nitrogen across all accessions,

with the same direction of response in all accessions but with a

variation in the degree of response (‘‘nitrogen, accession effect’).

The remaining 127 genes had a nitrogen*accession interaction

effect whereby the direction and/or degree of nitrogen regulation

varied over the seven accessions. To validate the expression

analysis for nitrogen responses, we analyzed the 152 genes that

responded across all accessions (29 genes with nitrogen effect only;

123 genes with nitrogen and accession effect; Table S11). These

152 core response genes include two key nitrate response genes

(AtNRT2.1 (nitrate transporter 2.1, At1g08090) and NIR1 (nitrite

reductase, At2g15620)) and there is an overrepresentation of the

GO term ‘response to nitrogen’ (8 genes, P=1.06E-02). In

addition, there is an overrepresentation of a number of metabolic

functional terms including GO term ‘cellular metabolic process’

(78 genes, P=3.88E-04) and GO term ‘small molecule biosyn-

thetic process’ (23 genes, P=6.69E-03), supporting common

nitrogen regulation of cellular and metabolic pathways.

We also defined a more stringent list of regulated genes

following the hypothesis that genes controlling the nitrogen

response of root traits across accessions should have varied

nitrogen-response levels across accessions. To generate such a

‘‘stringent set’’ of candidate genes, we took genes that showed a

significant nitrogen*accession effect in ANOVA (127 genes) and

those in expression clusters that correlated with average lateral

root length in either low or high nitrogen or the difference between

the two levels of nitrogen (321 genes).

We then conducted a reverse genetic screen in Col-0 to ask

whether GWAS refined by expression analysis could identify genes

that mediate specific traits in specific nitrogen environments. As a

proxy for examining the phenotypic effects of natural alleles, we

evaluated T-DNA mutants in 13 genes that fit two criteria for

predicting a specific phenotype: the genes were found within

genomic intervals associated with lateral root average length and

their transcripts demonstrated a significant ANOVA effect

(accession-only, nitrogen or nitrogen*accession effect) among the

seven profiled accessions (13/53; Table S8).

JR1 and UBQ14 mediate nitrogen and root trait specific
regulatory controls
Out of the 13 loci, three genes passed our criteria for

demonstrating root phenotypes with (1) consistent, quantifiable

phenotype in specific root traits for two separate T-DNA mutant

alleles and, (2) absent or reduced gene expression in the mutant

gene (Figure 4; Methods; Table S12; Figure S10). In addition we

carried out crosses of the pairs of allelic mutants and confirmed

same color as used in (A), illustrating the alternate topologies in different environments. (A–B) Adjacent to each dendrogram is a heatmap visualizing
the scaled trait values for each ecotype; see color scale bar for values. Several examples of average seedling root architecture are shown for the seven
accessions chosen for expression analysis (red text) and five additional accessions to illustrate root architecture in each cluster. Scale bars = 1 cm.
doi:10.1371/journal.pgen.1003760.g001
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Figure 2. Changes in root traits among natural variants in two different nitrogen environments. The difference between root trait values
on low and high nitrogen (d highN-lowN) is represented in the form of individual bar charts (A) and trait differences were used to form a dendrogram
of accessions resulting in nine clusters as indicated by horizontal lines (B); the seven accessions chosen for expression analysis are highlighted in red.
(C) Images of low N and high N grown seedlings from representative accessions of a ‘strong N-responder’ Sq-8, a ‘weak N-responder’ NFA-8, and the
‘super N-responder’ Kas-2 with yellow highlighting on their trait difference values on (A); scale bars = 1 cm. (D–E) PCA analysis of the d highN-lowN for
the seven accessions. Red markers indicate position of 96 accessions as determined by their trait values in the given principal components. Blue lines
represent vectors that quantify the magnitude and direction of a trait’s contribution to that axis. For example, in (E), an accession with a high score in
PC3 will have a high LRtot value. PC2 is not informative for LRtot but accessions with a long primary root (PR) will score highly on this axis. The
percent variability explained by PCs 1, 2 and 3 are 64%, 17%, and 10%, respectively.
doi:10.1371/journal.pgen.1003760.g002

Figure 3. Global expression analysis of genes differentially regulated by nitrogen across representative accessions. (A) A heatmap
showing cluster patterns of N responses across accessions ordered by clustering on Euclidean distance; see color scale bar for log2 fold change
magnitude and direction. Among N*Accession genes, the GO terms ‘response to stimulus’ (30 genes, P=8.5E-03), and ‘RNA binding’ (9 genes,
P= 8.1E-03) were both overrepresentated; BioMaps GO term overrepresentation analysis. (B,D,F) Average log2 microarray expression values for three
representative gene response clusters in control and N-treated experiments. (C,E,G) Row mean (per gene)-normalized expression levels of individual
genes are plotted for all genes within the three clusters shown in B,D,F (colored lines), together with the centroid for each cluster (black line); lines are
used to connect expression levels between accession control and N-treated experiments for visualization purposes. (B,C) A N-induced cluster in all
accessions (N,Accession cluster 14, n=28) in which ‘response to nitrate’ is overrepresented (2 genes, P= 2.7E-03). (D,E) A N-repressed cluster in all
accessions (N,Accession cluster 5, n= 8), in which ‘nucleic acid binding transcription factor activity’ is overrepresented (3 genes, P=8.4E-03). (F,G) A N-
regulated cluster with differential induction in accessions (N*Accession cluster 1, n= 14), in which ‘cyclin-dependent protein kinase (CDK) inhibitor
activity’ is overrepresented (1 gene, P= 5.2E-03).
doi:10.1371/journal.pgen.1003760.g003
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trans non-complementation, supporting that the mutant alleles

were responsible for the phenotypes (Table S12). In support of a

model in which genes control traits in specific environments,

mutant phenotypes from two loci precisely matched predictions for

mediating specific traits in specific environments. One GWAS hit

included a block of genes containing JR1 (JASMONATE

RESPONSIVE 1), which was associated with lateral root length

in low nitrogen and the difference between low and high nitrogen

(Figure 4A). In addition, JR1 met stringent expression criteria,

belonging to a cluster that correlated to the difference in lateral

root length between nitrogen environments (Figure S9). The two

mutant alleles tested showed a specific defect in lateral root

average length in low nitrogen but not high nitrogen, as we

predicted from analysis of GWAS and expression data (Figure 4B–

C). In one plausible functional role for JR1 in controlling the

length of lateral roots specifically when there are low levels of

nitrogen in the environment, the jasmonate pathway has been

shown to have a role in lateral root development [20]. A second

gene, PhzC, which was significantly regulated across accessions,

was also consistent with GWAS predictions, having shorter lateral

roots on low nitrogen but not high nitrogen (Figure 4D–F). For a

third gene identified from GWAS analysis, UBQ14 (polyubiquitin),

an association with lateral root length in low nitrogen but not high

nitrogen was tested (Figure 4G). However, phenotypic analysis

showed phenotypes in both nitrogen conditions. In addition,

phenotypes were observed in total lateral root length (LRtot) and

total root length (PR+LRtot), as might be expected with severe

defects in lateral root length (Figure 4H–I). Thus, this mutant

implicates UBQ14 in trait specificity but not environmental

specificity. Nonetheless, for two out of three cases for which we

identified a root trait phenotype (JR1 and PhzC) the combination

of GWAS with expression profiling identified genes that affected

specific traits in specific environments, showing that, with this

combination of techniques, we can map genotype to both trait and

environment.

Within the narrower set of only three candidate genes that met

the dual criteria of belonging to the gene expression ‘‘stringent set’’

and a GWAS ‘‘group,’’ two genes showed mutant phenotypes in

precisely the predicted trait and environment. We cannot rule out

that expression criteria alone could have identified candidates with

mutant phenotypes. However, in a preliminary screen on the same

data, we used expression criteria to examine mutants in 13 genes,

with some showing pleiotropic phenotypes (data not shown) but

none demonstrating specific defects in one or even two traits.

Thus, we believe the combination of genome-wide association and

gene expression greatly assists in identifying genes involved in

specific traits in specific environments with high precision.

Overall, mutations in two out of the three loci that we identified

by GWAS affected root systems in low nitrogen environments,

where the lateral root system was relatively small, but showed

normal root length in high nitrogen environments, where the root

system was more extensive. This suggests that the mutant

phenotypes are not simply due to general defects in lateral root

growth, but rather the gene’s specific role in one environment. We

point out that we do not know the causal polymorphisms for the

phenotypic variation in root traits among natural variants. Even if

causal polymorphisms map to the same loci as the mutations we

identified, the genetic polymorphisms responsible for the trait

variation likely control trait values in a different manner than loss-

of-function mutations. However, the mutant analysis provides

some corroboration that these loci contribute to controlling

plasticity in the traits that we identified. Furthermore, the mutant

analysis suggests that different mechanisms may predominate in

the control of specific traits in specific environments, perhaps

because fewer redundant mechanisms are expressed in one

condition. Genotype x environment effects have traditionally been

seen as a detriment to crop breeding programs, although there is

growing interest in accounting for such effects [17]. Our result

suggests that mechanisms that alter traits in specific environments

may be quite common. Such genes could be exploited to

customize crop phenotypes to a specific environment, such as

low nitrogen, without, for example, changing an optimal

phenotype in high nitrogen environments.

Materials and Methods

Plant material
All seeds were obtained from ABRC (set of 96 ‘Nordborg’ lines,

CS22660) [21] or NASC (SALK or SAIL T-DNA lines:

SAIL_167_A06, SAIL_658_G04, SAIL_448_B08, SALK_

026383(BE), SALK_108492C, SALK_000461C, SALK_026685C,

SALK_011676(A), SALK_030620(AI), SALK_020347C,

SALK_028332 (BO), SALK_112558, SALK_022578C,

SALK_060146, SALK_025883C, SALK_068266(BA), SALK_

104906C, SALK_045666, SALK_057714(CF), SALK_123616(BV),

SALK_047601, SALK_047837(AS), SALK_059126C, SAL-

K_064966(AP), SALK_075567C, SALK_107827C, SALK_

086488C, SALK_121520C, SALK_086554C, SALK_111688C)

[22]; Table S8 lists location for each T-DNA line.

Determining growth conditions
Our overall goal in preliminary growth experiments was to find

conditions that maximized trait differences between high and low

nitrogen environments. To carry out this exploratory phase,

Arabidopsis seedlings were grown on a combination of different

levels of carbon (0, 3, 10, 15, 30, 60 mM sucrose) and nitrogen (0,

0.03, 0.05, 0.1, 0.5, 1, 5, 10, 20 mM KNO3). For each seedling,

primary root length was measured and the number of lateral roots

counted; lateral root density was calculated from these two

parameters (Table S1, Figure S1). Our previous work [9] showed

that high levels of nitrogen induce lateral root primordium

development and repress lateral root emergence, resulting in a

higher pre-emergent:emergent lateral root ratio than on low

nitrate conditions. As a ratio this is also the case here, although

total lateral root numbers on high nitrate are larger (due to the

nutrient effect and longer primary roots; overall size effect).

An increasing concentration of nitrate was found to result in

increased primary root length, particularly with concentrations of

0.5 mM KNO3 or more (Figure S1A). This inductive effect tended

to level off at 5 mM KNO3, with primary root length remaining

Figure 4. Functional validation of root architecture regulators JR1 (A–C), PhzC/PhF (D–F), and UBQ14 (G–I). (A,D,G) Genome-wide P
values from the GWAS magnified around SNP hits; horizontal dashed line corresponds to the 5% FDR threshold that corrects for multiple
simultaneous tests. Genes within the 20 Kb boundary around the SNP hits are represented with bars; red color denotes genes whose expression
changes in response to nitrogen or among accessions (Table S11), asterisks denote mutants with phenotypes, arrow denotes the gene described in
each panel. (B,E,H) Images of four 12 day old seedlings grown on low or high N for two T-DNA alleles in each gene and Col-0; scale bars = 1 cm. (C,F,I)
GWAS prediction on trait phenotypes (yellow) and observed phenotypes from confirmed T-DNA alleles indicated with arrows with P value, where
arrow denotes direction of change in mutant vs. wild type and t-test P value shows significance of the trait difference in mutant vs. wild type
(denoted with first three SALK digits); see Table S12.
doi:10.1371/journal.pgen.1003760.g004
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fairly constant at 10 and 20 mM KNO3. At lower levels of nitrate

the primary root was longer with no or low sucrose in the media,

but as the nitrate concentration increased this effect was reversed

(primary root length was longer on higher sucrose concentrations.

This is likely due to a C:N balance effect [23]. It was also on higher

sucrose concentrations that the nitrate inductive effect was more

pronounced. A similar C/N effect was found on regulation of

lateral root number, and again at more than 0.5 mM KNO3 the N

effect was most pronounced, leveling off at 5 mM (Figure S1B). At

the highest sucrose concentrations (30 and 60 mM sucrose) a

significant increase in lateral root numbers was observed. Lateral

root density was found to be relatively constant over all C:N

conditions, suggesting that in general, increases in lateral root

number were proportional to primary root length (Figure S1C).

However, there was a higher lateral root density for combinations

of the highest C:N levels (30,60 mM sucrose:5,10,20 mM KNO3),

suggesting that at these concentrations there is a developmental

effect that leads to larger numbers of lateral roots developing.

Thus, in order to understand the genetic basis of this develop-

mental effect we decided to use 30 mM sucrose, 5 mM KNO3 as

our ‘high N’ condition; on this combination there also appeared to

be strong and near-maximal induction of primary root length and

lateral root development (as indicated by the leveling off described

above). As a comparative low N condition we decided to use

0.03 mM KNO3 (also at 30 mM sucrose) since root growth and

development was significantly different from seedlings grown on

5 mM, and the plants would be N-depleted/starved but still viable

and growing (compared to 0 mM KNO3, complete N starvation).

To confirm that the root architecture difference that we observed

were due to the effect of different nitrate levels rather than

potassium levels we grew Col-0 seedlings on either 5 mM KNO3,

5 mM CaNO3, or 2.5 mM KNO3, 2.5 mM CaNO3 and found no

major differences between overall root architecture (Table S2,

Figure S2). Finally, we have some evidence that the root

architecture observed in our chosen conditions correlates with

that in field conditions, for example Var2-1 is found in sandy

regions and exhibits a highly elongated primary root with very few

lateral roots as seen in our experiments (see Figure 1).

Plant growth and treatments
For phenotypic analysis, seeds from each of 96 Arabidopsis

thaliana accessions [18] or T-DNA lines were grown on vertical

agar plates containing custom nitrogen and sucrose-free 16

Murashige and Skoog basal medium (GibcoBRL, Gaithersburg,

USA) supplemented with 30 mM sucrose and either low

(0.03 mM) or high (5 mM) KNO3 with 0.8% agar (pH 5.7). To

confirm the effect of nitrate, KNO3 was replaced with CaNO3 for

Col-0. For microarray studies 6,000 seeds (per replicate, in

triplicate) of each accession (Col-0, Kas-2, Var2-1, Tamm-27,

NFA-8, Sq-8, Ts-5) were sterilized and sown on liquid 16

Murashige and Skoog basal medium containing no nitrogen or

sucrose supplemented with 3 mM sucrose and 0.5 mM ammoni-

um succinate for hydroponic growth as previous [9]. Plants were

grown for 12 days in 16 hr light (50 mmol photons m22 s21 light

intensity)/8 hr dark cycles at 22uC in growth chambers. For

determining growth conditions and for phenotyping of the 96

accessions, 10 seedlings were measured for one replicate of each

condition/accession in New York in a Percival growth cabinet

(Percival Scientific Inc., Perry, IA,). For T-DNA allele phenotyp-

ing, an average of 10 seedlings were measured for each of three

independent replicates of each condition/allele: New York, T-

DNA phenotyping Rep 1 in a Percival Scientific Inc; Warwick, T-

DNA phenotyping Reps 2,3 in a Sanyo MLR-351, Panasonic

Biomedical, Loughborough). To confirm presence of T-DNA

insertions and loss-of-expression of candidate genes, roots were

harvested for genotyping of isolated DNA and qPCR of isolated

RNA (see Table S12). For treatments, KNO3 was added to the

media to a final concentration of 5 mM for two hours [9]. Control

plants were mock-treated by adding the same concentration of

KCl. At the end of the two hour treatment, roots were harvested

and flash-frozen in N2(l) for subsequent RNA extraction. To

confirm trans non-complementation among alleles for each gene,

we crossed the pairs of alleles to each other via reciprocal crossing.

As a crossing control, individual alleles were also crossed to Col0.

Root phenotypes in the F1s were compared to selfed Col0 plants

grown in parallel.

Phenotypic analysis and clustering
In each KNO3 environment, parameters relating to root

architecture were measured using ImageJ: primary root length (i,

PR), number of lateral roots (ii, LR#), lengths of all LRs and LR

distribution (number of LRs per cm of PR). From this the

following were calculated: lateral root density (iii, LRdensity), the

proportion of the PR that is the root branching zone (the zone of

the parent root that extends from the most rootward emerged LR

to the shoot base, LB, terminology following Dubrovsky and Forde

(2012) [24]) (iv, LB/PR), total LR length (v, LRtot), total LR plus

PR length (vi, PR+LRtot), average LR length (vii, LRlengthave);

Table S3, Figure S3. Traits designated with roman numerals were

used for GWAS. Shoot area was estimated to calculate shoot area

to primary root length. Data was scaled from 0 to 1 using the

scaling factor (n - low val)/(high val – low val); Table S4.

Clustering of phenotyping values was carried out using hierarchi-

cal clustering with an average linkage and Pearson correlation

using the clustergram function in MATLAB (The MathWorks,

Natick, MA, USA). NA values were considered to have a value of

0. Silhouette widths were plotted in MATLAB using the silhouette

function for each hierarchical tree and used to determine where to

cut the trees and define clusters. A Perl script was written that

produces a line drawing illustrating average seedling PR length,

and lengths and distribution of LRs in each cm of the PR. This

script can be accessed via URL: http://coruzzilab.bio.nyu.edu/

cgi-bin/manpreetkatari/drawplant/drawplant.cgi. A positive hit

in the reverse genetic screen was determined by satisfying the

following criteria: (1) two separate mutant alleles showed the same

phenotype, (2) mutant alleles showed a reduction or complete loss

of expression using qPCR, 3) both mutant alleles showed a

consistent, quantifiable phenotype in three independent screens

including separate trials in New York and Warwick growth

facilities.

Calculation of trait heritabilities
To calculate heritabilities of the within-environment variables,

we used the ‘‘lmer’’ function of the lme4 package [25] in R

v.2.15.1 [26] and fit a restricted maximum likelihood (REML)-

based analysis of variance (ANOVA) model of the form:

Phenotype =Accession+Error, where Accession was treated as a

random effect [27]. Heritabilities were calculated as sG/sP, where

sG is the genetic variance component (the genetic variance

component attributable to variation among accessions) and sP is

the total phenotypic variance. To calculate the heritabilities of the

response variables, we used the same function in R to fit a REML-

based ANOVA model of the form: Phenotype =Accession+Nitro-

gen Level+Accession-by-Nitrogen Level+Error, where Nitrogen

Level (high or low) was treated as a fixed effect, and Accession and

Accession-by-Nitrogen Level were treated as random effects.

Heritabilities were calculated as sGxE/sP, where sGxE is the
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variance component of the Accession-by-Nitrogen Level interac-

tion effect [28].

Genome-wide association study (GWAS)
GWAS was carried out using the EMMA package in R as

described in Atwell et al (2010) [19]. The kinship matrix was

constructed using the full set of ,214k SNPs and SNPs with a

minor allele frequency of 0.1 were mapped (,178k/214k SNPs);

see Figure S7. We opted to avoid what we believe is the overly

stringent criteria of the Bonferroni correction and adjusted for

multiple testing following Moran (2003) and Storey and Tibshirani

(2003) [29,30]. Thus, we calculated Q-values, in which the

distribution of P-values is used to correct for the false positive

rate [30]. Q-values were calculated separately for each trait using

the ‘‘qvalue’’ package [31] in R, a well-established method for

finding significant fold changes in the microarray literature (e.g.

[32]). We note that, because Q-values are based on the distribution

of the raw P-values and because Q-values are calculated separately

for each trait, the raw P-value corresponding to our target

threshold of Q=0.05 (the significance threshold for SNP-trait

associations) varies for different traits (see Figure S7). Compared to

Atwell et al (2010) [19] we used a more stringent location criteria

for selection of genes: for each significant SNP association, a

window of 20 kb (rather than 40 kb) centered on the SNP (using

the SNP-mapped TAIR8 genome version) was used to select genes

predicted to be responsible for the association.

GWAS power analysis
To understand the relationship between minor allele frequency

(MAF), additive genetic effect size, and the power to detect an

additive genetic effect, we performed a power simulation sensu Yu

et al. (2006) [33]. Specifically: (i) the empirical phenotypic values

for each accession were treated as random deviates; (ii) based on

the empirical phenotypic variation, we calculated a genetic effect

equal to 0.1, 0.2, 0.5, 0.7, 0.9, or 1 times the standard deviation of

the phenotypic mean; (iii) x accessions out of the total n accessions

were randomly assigned to one simulated genotype, and the rest of

the individuals were assigned to the other simulated genotype, so

that x/n equaled the minor allele frequency of interest; (iv) the

genetic effect corresponding to an accession’s simulated genotype

was added to the empirical phenotypic value for that accession; (v)

structured association mapping was performed using the real (non-

simulated) kinship matrix; (vi) steps 1 to 4 were repeated 1000

times, and the power to detect the additive genetic effect was the

proportion of times that the P value from the mapping analyses

(see step v) was below the 0.05 significance threshold. We

performed this power simulation for each trait and for MAFs

ranging from 0.1–0.5; see Figure S8. The power simulations show

similar results to Yu et al. (2006) [33], namely that the power to

detect a genetic effect is low at small MAFs and at small genetic

effect sizes; the power to detect a genetic effect increases

dramatically with an increase in the genetic effect size, such that

a genetic effect half as large as the random background variation

will usually be statistically significant even at a low MAFs.

RNA isolation, qPCR and microarray experiments
RNA from the whole root samples for microarray analysis was

extracted with TRIzol (Invitrogen, Carlsbad, CA). Standard

Affymetrix protocols were then used for amplifying, labeling and

hybridizing 1 mg of RNA samples to the ATH1 GeneChip

(Affymetrix, Santa Clara, USA). For qPCR tests, RNA was

extracted with the RNAeasy kit (Qiagen) then first DNAase-

treated using a Precision DNase kit and double stranded cDNA

was synthesized using the nanoscript RT kit (both from Primer

Design Ltd, Southampton, UK) according to manufacturer’s

instructions. qPCR was carried out using the Precision-SY

MasterMix kit using primers designed by Primer Design Ltd

according to manufacturer’s instructions on a Roche 480 Light-

Cycler. The mRNA levels were normalized relative to the UBQ10

housekeeping gene using the geNorm REF gene kit (Primer

Design Ltd) and quantified using standard curves generated for

each primer pair. Expression of At3g16470, At4g02860 and

At4g02890 transcripts were used to confirm loss-of expression in

the SALK lines vs. Col-0 (primers designed by Primer Design Ltd).

SALK lines were PCR-genotyped with primer designed using T-

DNA Primer Design (http://signal.salk.edu/tdnaprimers.2.html);

for all primer sequences see Table S12.

Microarray expression normalization and filtering
Affymetrix GCOS software was used to verify that the arrays

had similar hybridization efficiencies and background intensities

for all accessions. We carried out an analysis to address the use of

the Affymetrix Col-0 chip for other Arabidopsis accessions. Given

the rate of SNPs between accessions and Col-0, we first observed

that mismatches to any of the 11 probes (25mers) for any given

gene were likely to be rare. In addition, we compared only N-

deplete with N-replete Affymetrix signal values within each

accession directly and only focused on genes that showed a

difference between the two. Therefore any genes that cannot be

detected because of sequence-associated probe hybridization

problems do not confound our analysis. However, to ensure that

we account for over/under-estimations of N-regulation signifi-

cance that might result from stronger hybridization of a sequence

in one accession compared to another (due to sequence difference),

we developed an algorithm to rank the signal values of each

element in each probe set across the experiments (7 accessions, 2

conditions (N-treatment and KCl control), 3 replicates). This was

based on the expectation that, while overall signal from the probe

sets of a given gene may change, the relative hybridization to each

probe set for a given should not. The method identifies elements

within probe sets whose expression is indicative of that element not

hybridizing to accession-derived sequences due to the presence of

SNP(s) using Col-0 as a reference. Significant deviation from this

order could indicate sequence divergence altering the binding

strength of a sequence to a probe element. We derived a null

distribution of signal strength orders for Col-0 and then used this

to identify significant probe element outliers in hybridizations from

the other (see Table S9 for lists of all element outliers). These

probe elements were discarded. Microarray data was subsequently

normalized with MAS5 using all but these element values and

implemented in the Affymetrix GCOS software (Table S10). On

average, 10% of all probe sets were analyzed with the complete set

of 11 elements and a further 70% analyzed with 9 or 10 probe

elements (see Table S9 for details for each replicate set). The

reproducibility of replicates was analyzed using the correlation

coefficient and r2 value of replicate pairs in R; r2 values were

typically in the range of 0.92 to 0.98, with the lowest being 0.91.

Probe-gene mapping was made using the latest annotation file

(TAIR10 annotation) (ftp://ftp.arabidopsis.org/home/tair/

Microarrays/Affymetrix/affy_ ATH1_array_elements-2010-12-

20.txt). The following classes of probes were flagged (Table S10):

probes matching non-nuclear Arabidopsis thaliana genes or that had

no gene match (flag #1), probes that had an ambiguous match to

nuclear genes, i.e. matched more than one gene (flag #2), probes

where several probes match a single gene (flag #3), probes whose

average expression level was found to be below the detection cutoff

(flag #4). To identify flag #4 probes we analyzed genes known to
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be expressed or absent in the root to calculate an expression signal

of 100 as a cutoff for detection.

Expression ANOVA, statistical analysis and clustering
All genes were fit to the following ANOVA model: Y= m+

aaccession+atreatment+aaccession* treatment+e, where Y is the normal-

ized signal of a gene, m is the mean of the reference accession and

treatment (intercept), the a coefficients correspond to the effects of

accession, treatment (nitrogen) and the interaction between

accession and treatment, and e represents unexplained variance.

Potential location effects were handled by growing plants together

in a highly controlled environment and randomizing the

placement of accessions and treatments in different shelves and

locations of the growth chamber. The replicate trials were

conducted in rapid succession in identical conditions, where we

have not found significant time-effect variation. Thus, the

ANOVA was modeled without block effects, where potential

confounding effects were handled by randomization. Genes with a

model P value less than a cutoff determined by setting the FDR

[34] to 0.1 were analyzed further using model simplification to test

these genes for significant N*Accession interaction effects,

response to N, and variation across Accession. We did this by

removing terms from the model one by one and then comparing

the models to see if there was a significant difference in

explanatory power between the simplified model and the more

complex model using an FDR of 0.1. Gene expression values were

averaged for each treatment, log2 converted, row normalized and

clustered using hierarchical clustering with an average linkage and

Pearson correlation using the clustergram function in MATLAB.

Silhouette widths were plotted in MATLAB using the silhouette

function for each hierarchical tree and used to determine where to

cut the trees and define clusters. Clustering was carried out

separately for genes that were determined by ANOVA to have a

N,Accession effect, a N*Accession effect, or a N only effect, then

the cluster patterns visualised together in MATLAB using the

clustergram function to create Figure 3A. Two-tailed t-tests

assuming equal variance were used to compare trait values for

wild-type and mutant seedling roots, and trait values for Col-0

grown on different levels of sucrose and nitrate. For analysis of

overrepresentation of GO terms we used the BioMaps function in

VirtualPlant with default settings [35].

Mixed model ANOVA
Root phenotypes for the seven transcriptionally profiled

accessions (Figure S6) were analyzed using a mixed interaction

model ANOVA using MATLAB (anovan function) with the

following model: ROOT_TRAITn=ENVn+GENn+GENn *

ENVn+en where Root Traitn is one of n= 7 root traits measured

(PR, LRtot, PR+LRtot, LRlengthave, LR#, LRdensity, and LB/

PR), ENV is environment, GEN is genotype, and e is error.

Environment was modeled as a fixed effect and genotype was

modeled as a random effect. P values were taken for each trait

separately for the main and interaction effects. Coefficients

generated from the ANOVA were used to determine the specific

traits that contributed most to significant interaction effects (Table

S5). As in the design for expression analysis, placement of plants

was randomized in chambers, and this experiment was conducted

at one time point.

Principal Components Analysis
Principal Components Analysis was performed in MATLAB

using the princomp function with default parameters. Rows were

accessions and traits were columns, where dimensionality reduc-

tion was performed on traits. The biplot function was used to map

accessions in specific treatments (average trait values) in the new

trait space and observe the contribution of original traits to each

new component. We performed separate analyses on the combined

HighN and LowN treatments for each accession, each condition

alone, and d highN-lowN of each accession to changes in nitrogen.

We plotted two components on each biplot (1 vs 2; 2 vs 3) to analyze

the first three principal components. See Figure S5.

Network of expression modules and traits
We created a network of expression modules to traits by first

clustering responses (expression in low nitrogen – expression in

high nitrogen) using Pearson correlation and hierarchical cluster-

ing (average linkage, tree cut at R=0.7). To determine significant

clusters, we randomized the data and used the same clustering

routine. This routine showed that clusters greater than 50 genes

were observed less than 10% of the time by chance. Using that

cutoff to define major clusters, we took the mean response of these

major clusters in all 7 accessions. We then concatenated mean

scaled trait values for d highN-lowN and generated a correlation

matrix, where R.0.7 or ,20.7 resulted in a significant edge.

This resulted in a correlation matrix between gene expression

clusters and traits that was used to generate the network depicted

in Figure S9 using the biograph function in MATLAB.

Supporting Information

Figure S1 Nitrogen and sucrose-regulation of root architecture.

Seedlings were grown for 12 d on different combinations of

varying concentrations of sucrose (from 0 mM to 60 mM) and

KNO3 (from 0 mM to 20 mM). (A) Average primary root; error

bars represent SE, n = 20. (B) the number of lateral roots, and (C)

lateral root density was calculated; n=20.

(TIF)

Figure S2 Comparison of CaNO3 and KNO3 effects on

Arabidopsis root architecture. Col-0 seedlings were grown for 12 d

on basal MS media supplemented with an equal concentration of

NO3 in the form of either (A) 5.0 mM KNO3, (B) 2.5 mM KNO3/

2.5 mM CaNO3, or (C) 5.0 mM CaNO3. Scale bar= 1 cm.

(TIF)

Figure S3 Histograms of the distribution of root trait values over

the 96 accessions. For high N (A) and low N (B) the following trait

distributions are plotted: PR (cm), LRtot (cm), PR+LRtot (cm),

LRlengthave (cm), LR#, LRdensity, and LB/PR.

(TIF)

Figure S4 Changes in root traits among natural variants

between low and high nitrogen environments. The scaled

difference between root trait values on low and high nitrogen (d

highN-lowN) is represented in the form of a heatmap (A); see color

scale bar for scaled trait value. and trait differences were used to

form a dendrogram of accessions resulting in nine clusters as

indicated by horizontal lines (B); the seven accessions chosen for

expression analysis are highlighted in red.

(TIF)

Figure S5 Principal Components Analysis (PCA) of root trait

data. The first three PCs are shown for root traits on low N

capturing 97% of the variation (A–B), high N capturing 96% of the

variation (C–D), and the combined low N and high N data N

capturing 93% of the variation (E–F). Red markers indicate position

of 96 accessions as determined by their trait values in the given

principal components. Blue lines represent vectors that quantify the

magnitude and direction of a trait’s contribution to that axis.

(TIF)
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Figure S6 Average trait values on low or high N for the seven

accessions. PR (cm), LRtot (cm), LB/PR, PR+LRtot (cm), LR#,

LRlengthave (cm) and LRdensity; error bars represent standard

error.

(TIF)

Figure S7 Manhattan plots generated from GWAS analysis for

the root traits across the genome. The five chromosomes are

distinguished by color. The red horizontal dashed line corresponds

to the 5% FDR threshold that corrects for multiple simultaneous

tests; this threshold is different for different traits (see Methods).

(TIF)

Figure S8 Power analyses for the 27 trait/environment

combinations measured for the 96 accessions. Average power is

plotted against genetic effect for traits predicted to have a minor

allele frequency of 0.1, 0.2, 0.3, 0.4 and 0.5.

(TIF)

Figure S9 Network mapping gene expression N responses to

trait d highN-lowN differences. Edges are drawn where there is a

correlation of R.0.7 or ,20.7 between expression N response

clusters and the d highN-lowN of traits across the 7 accessions

transcriptionally profiled. Traits are shown in blue-colored boxes.

Edges between LRlengthave and expression clusters are colored

green and the edge between LRlengthave and the N*Accession

ANOVA affect genes colored orange.

(TIF)

Figure S10 T-DNA locations and effect on gene expression for

JR1, PhC/PhZ and UBQ14. (A) Schematic to scale showing the

location of the two T-DNA alleles for each gene. (B) qPCR

quantification of gene expression for JR1, PhC/PhZ and UBQ14.

For visualization purposes the expression levels of each gene is

scaled relative to the expression in lowN Col0 having a value of 1;

data taken from Table S12.

(TIF)

Table S1 Nitrogen and sucrose-regulation of primary root

length. Seedlings were grown for 12 d on different combinations

of varying sucrose (from 0 mM to 60 mM) and KNO3

concentrations (from 0 mM to 20 mM). Average and SE for (A)

primary root length, (B) the number of lateral roots, and (C)

LRdensity was calculated; n=20.

(XLSX)

Table S2 Comparison of CaNO3 and KNO3 effects on

Arabidopsis root architecture. Col-0 seedlings were grown for 12 d

on basal MS media supplemented with an equal concentration of

nitrate in the form of either (A) 5.0 mM KNO3, (B) 5.0 mM

CaNO3, or (C) 2.5 mM KNO3/2.5 mM CaNO3. (D) T-test P

values for statistical comparison of root trait data between each

combination.

(XLSX)

Table S3 Shoot and root phenotypic trait data for the 96

accessions. Values are shown for growth on high N, low N, and d

highN-lowN. The traits and units where relevant are: estimated

shoot area (SA, cm2), primary root length (PR, cm), proportion of

SA to PR length (SA to PR), total LR length (LRtot, cm), total LR

plus PR length (PR+LRtot, cm), average LR length (LRlengthave,

cm), number of LRs (LR#), LR density (LRdensity, LRs per cm

PR), proportion of the PR that is the root branching zone (LB/

PR).

(XLSX)

Table S4 Root phenotypic trait data after scaling for clustering

analysis. Values are shown for growth on high N, low N, and the d

highN-lowN. Traits are as described for Table S3, excepting the

two shoot-related traits (which were not used for clustering or for

further analysis following GWAS).

(XLSX)

Table S5 Mixed model ANOVA values. (A) Average unscaled

root trait values and standard error values for the 7 transcription-

ally profiled accessions. (B) ANOVA P values. (C) ANOVA

coefficients.

(XLSX)

Table S6 GWAS hits. Marker positions for traits showing a

significant association (cutoff of Q,0.05). For each association the

marker location, the minor allele frequency of the SNP, the R2

value and the Q-value (FDR-corrected P-value) are provided. The

R2 value is from a one-way fixed effect analysis of variance

modeling the trait as a function of the SNP site plus error. The R2

value is calculated as the sum of squares of the model divided by

the total sum of squares (the sum of squares of the model plus the

sum of squares of the error) [36]. In addition a list of gene AGI IDs

for a 20 Kb window around each SNP is listed, with the distance

to the SNP (bp) given underneath each gene; the distance is to the

39 end of the gene for unshaded bp values, and to the 59 end of the

gene for grey-shaded values.

(XLSX)

Table S7 Heritability (H2) of each trait on high N, low N, or d

highN-lowN.

(XLSX)

Table S8 GWAS hits organized by genomic location. The 7

SNP marker groups associated with LRlengthave including 53

genes are tabulated together with information about the trait

association. Genes whose regulation is significantly different across

accessions are marked and T-DNA line numbers given for genes

that were carried forward to functional analysis. The three genes

with validated phenotypes are highlighted yellow.

(XLSX)

Table S9 List of all element outliers for probes in each replicate

set of microarray data.

(XLSX)

Table S10 MAS5-normalised Affymetrix data for all microarray

experiments. The table lists all Affymetrix probe IDs, their

associated TAIR10 Arabidopsis Genome Initiative (AGI) gene

IDs, and flag designations: probes that match non-nuclear-

encoded genes or do not match genes (#1) (754 probes), probes

that match more than one gene (#2) (1,064 probes), probes where

several probes match a single gene (#3) 182 genes; 367 probes),

probes whose expression was determined to be below an

expression cutoff (#4 (6169 probes) (as described in Methods).

Probes that were found to be significantly differentially expressed

in different accessions only, by N only, by N plus accession

(N,Accession), by an interaction between N and accession

background (N*Accession) according to the ANOVA with model

simplification (expression ANOVA effect), and cluster numbers for

these genes (expression ANOVA cluster number; see Table S11

for further details of these genes) are given. Probes with N-

regulated expression levels that were clustered to trait d highN-

lowN values are designated with cluster numbers (trait:expression

cluster number); see Figure S9.

(XLSX)

Table S11 Genes that are significantly differentially expressed

according to accession background and/or nitrogen. Lists of genes

whose expression was found to be either significantly differentially

expressed (using the expression ANOVA followed by model
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simplification to designate what the effects were) in different

accessions only (Accession only), by N only, by N,Accession, by a

N*Accession interaction. Cluster numbers for these genes together

with the P value are provided. Accession and Accession-P, the

expression change and P value for expression change in specific

accession KCl control sample compared to Col-0 KCl control

sample. N:Accession and N:Accession-P, the expression change

and P value for expression change in specific accession KNO3

sample compared to Col-0 KNO3 sample; N and N-P, the sum of

the expression change and P value for expression change for the N

only effect in all accessions; Interaction and Interaction-P, the sum

of the expression change and P value for expression change for the

N main effect in all accessions plus the N:E interaction term; P

value, overall ANOVA P value of significance; R-squared, r 2 value

for ANOVA test.

(XLSX)

Table S12 Functional validation of trait associations. (A)

Expression data from the transcriptionally profiled accessions for

JR1, UBQ14 and PhzC/PhzF. (B) qPCR analysis of the JR1,

UBQ14 and PhzC/PhzF genes in their respective T-DNA mutant

backgrounds compared to wild type; primer sequences for qPCR

and PCR are listed (see also Figure S10). (C) Average and standard

error (SE) root trait values measured from 12 day old seedlings for

each of the two T-DNA mutant alleles for JR1, UBQ14 and PhzC/

PhzF, and for Col-0 wild-type plants; n for each genotype is listed.

(D) T-test P values from analysis of the differences between trait

values in mutant vs. wild type. (E) Trait values dhighN-lowN for all

analyzed genotypes. (F) Trait values for F1 seedlings derived from

crosses between pairs of alleles for each gene, together with

crossing controls (mutant6Col0) and Col0.

(XLSX)
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