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Abstract

Background: Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but

phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full

understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has

been the most important molecular data source for plant phylogeny reconstruction for decades.

Results: Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792

plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA

II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater

clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level

were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and

interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales,

Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales,

Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids,

although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies

inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable

despite increased sampling, probably due to an ancient rapid radiation.

Conclusions: We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic

tree, which together provide a strong foundation for future evolutionary studies of flowering plants.
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Background
Angiosperms, or flowering plants, are by far the largest,

most diverse, and most species-rich clade of green

plants, with estimates of the number of species ranging

from ~295,000 [1] to ~370,000 [2]. Traditionally,

angiosperms were divided into two fundamental groups

on the basis of cotyledon numbers, i.e., monocotyledons

(monocots or Monocotyledoneae) and dicotyledons (di-

cots or Dicotyledoneae). Toward the end of the twenti-

eth century, in several morphologically based cladistic

analyses (e.g., [3, 4]), the monocots remained as a well-

defined group with uniaperturate or uniaperturate-

derived pollen, but the traditionally defined dicots were

recovered as non-monophyletic. The majority of “dicots”

formed a well-supported clade termed the tricolpates or
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eudicots [5] based on their triaperturate or triaperturate-

derived pollen. These findings were corroborated in sub-

sequent DNA-based phylogenetic studies, and the com-

position and placement of many of the remaining highly

heterogeneous non-eudicots were clarified [6–11].

Among extant angiosperms, three small clades, Ambor-

ellales (1 species), Nymphaeales (88 species), and Aus-

trobaileyales (94 species), collectively referred to as the

ANA grade, represent the first-branching clades [8, 9].

The remainder belongs to a highly supported clade re-

ferred to as core angiosperms or Mesangiospermae ([12],

comprising over 99.9% of extant angiosperm species),

which was resolved into five clades (e.g., [13–17]): eudi-

cots (~210,600 species), monocots (~74,300 species),

magnoliids (Magnoliidae of [12]; ~10,800 species),

Chloranthales (77 species), and Ceratophyllales (four

species) [1, 12, 13]. These findings provide a firm under-

standing of the major clades of angiosperms, reflected in

the widely accepted classification of the Angiosperm

Phylogeny Group (APG; most recently, APG IV [18]).

During the past three decades, many molecular phylo-

genetic studies have achieved great progress in clarifying

the backbone relationships of angiosperms [7, 9–11, 13,

14, 19–27]. However, the phylogenetic relationships

among the eight major clades have remained controver-

sial, hindering our understanding of the origin and early

diversification of angiosperms. The debate on whether

Amborellales alone or Amborellales + Nymphaeales are

sisters to all other extant angiosperms is resolved, with

all recent studies supporting Amborellales alone as a sis-

ter (e.g., [13, 28–30]). In contrast, the relationships

among the five clades of Mesangiospermae are far more

uncertain, and many contrasting topologies have been

recovered from different datasets (nuclear, plastid, or

mitochondrial), analytical methods (e.g., concatenation

vs. coalescent), and taxon sampling [15, 21, 27, 31–33].

Furthermore, recent phylogenetic analyses with broad

taxon sampling but genes from different genomes (2351

angiosperm plastomes in [13]; 682 angiosperm transcrip-

tomes in [28] and 3099 angiosperm samples with target

sequence capture data in [34]) yield conflicting topolo-

gies. Analyses based on recently sequenced genomes

from key major clades of Ceratophyllales, magnoliids,

and Nymphaeales [29, 35–39], with their limited taxon

sampling, highlight this phylogenetic complexity with

major highly conflicting signal.

Through a series of phylogenetic studies that applied

broad taxon sampling with a small number of genes [9,

19, 24, 40], more limited taxon sampling with a large

number of genes [15, 20–22], or both extensive taxon

sampling and many genes [13, 28, 34, 41], great progress

has been realized in resolving relationships among the

eudicot clades, long recognized taxonomically as angio-

sperm orders and families (APG IV, which we will use

here for discussion). Hereafter, these clades are also re-

ferred to as orders and families following APG IV for

clarity and simplicity. However, these analyses either

could not resolve or did not produce congruent results

for certain parts of the angiosperm tree: (1) the place-

ments of Dilleniales, Saxifragales, Vitales, Santalales, Ber-

beridopsidales, and Caryophyllales in the core eudicots;

(2) the interordinal relationships within asterids; and (3)

the phylogenetic position and inter ordinal relation-

ships of the Celastrales-Oxalidales-Malpighiales (COM)

clade. Moreover, some interfamilial relationships within

orders such as Malpighiales, Saxifragales, Commelinales,

and Rosales were also not fully resolved.

Phylogenetic analyses based on plastid genes, and

more recently complete or nearly complete plastomes,

have led the way in reconstructing the phylogenetic

backbone for angiosperms over the past three decades

[6, 19, 23–25, 27, 42]. Plastomes, usually mapped as cir-

cular genomes, have numerous advantages for phylogen-

etic reconstruction, including mostly uniparental

inheritance and a relatively conserved rate of evolution

[41]. Recent advances in sequencing technology have

made the acquisition of complete plastomes both prac-

tical and cost-effective, and an explosion of plastid phy-

logenomic studies has provided critical insights into

historically difficult relationships of the major angio-

sperm subclades [22, 26, 43–45]. Our previous work

[13], the then-largest plastid phylogenomic angiosperm

(PPA) tree comprising 2351 angiosperm species repre-

senting 353 families and all 64 then-recognized orders,

provided a significant advance towards a robust familial-

level tree for angiosperms. However, 63 angiosperm

families recognized by APG IV [18] and other 10 of 17

newly recognized families recorded by the Angiosperm

Phylogeny Website (hereafter abbreviated as APW, last

accessed May 23, 2019, [46]) but not recognized by APG

IV were missing from the PPA tree, the remaining seven

newly recognized families by APW were previously sam-

pled in the PPA tree as genera of other families. These

73 omissions have precluded a full assessment of phylo-

genetic relationships among all angiosperm families.

In this study, we aim to better resolve evolutionary re-

lationships of angiosperms at the familial level and above

by analyzing the largest plastome dataset ever assembled

for this purpose. Compared to our previous PPA project

[13], the number of angiosperm plastomes has greatly

increased from 2694 (1390 genera) to 4627 (2024 gen-

era), a 66.3% increase in samples and a 45.6% increase in

generic coverage, and all 433 recognized angiosperm

families in APW [46], which provides narrower family

circumscriptions than those of the APG system based on

recent publications, were sampled accordingly. Our goals

are to consolidate plastome-based phylogenetic relation-

ships of the major clades recognized as families, orders,
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or more inclusive clades, provide additional perspectives

on the early evolutionary history of angiosperms, and

provide a robust plastome-based topology for compari-

son with studies based on the nuclear genome.

Results
Characteristics of the dataset

Our dataset comprised 4792 samples for initial analysis,

including 4627 samples representing 4498 angiosperm

species from all currently recognized families and orders

of angiosperms and 165 samples representing 162

gymnosperm species as the outgroup (Additional file 1:

Table S1). The taxonomic circumscription within seed

plants followed APW [46]. Using our 86 newly se-

quenced plastomes representing 57 angiosperm families

along with the recently issued plastomes from GenBank,

we completed the representatives of 73 families absent

from previous work [13] in the current analysis. The

alignment of 80 genes from 4792 taxa had < 10% gaps/

missing data. To our knowledge, this is the first phyloge-

nomic study to include all currently recognized angio-

sperm families in APW [46] with plastome data. Overall,

plastid phylogenomic analyses resulted in a tree referred

to herein as the “PPA II tree” (Figs. 1 and 2; Add-

itional files 2, 3, 4, 5, 6: Figs. S1–S5) with 75% of angio-

sperm nodes at or above the ordinal level and 78% at or

above the familial level receiving bootstrap percentages

(BP) ≥ 90.

The impact of heterotrophic taxa on phylogenetic

inferences

Five heterotrophic families lacked clear phylogenetic po-

sitions in our analyses (Additional files 6, 7, 8: Figs. S5–

S7). One of these, Rafflesiaceae, was nested within its

host family Vitaceae of Vitales with moderate support

(BP = 83); similar relationships were also recovered by

Molina et al. [47], which suggests that these plastid gene

sequences are from the host plant. Thus, Rafflesiaceae

were excluded from subsequent analyses. Four other

heterotrophic families, Apodanthaceae, Balanophoraceae,

Mitrastemonaceae, and Thismiaceae, with long branches,

formed a strongly supported “clade” (BP = 100) within

Saxifragales, as sister to another holoparasitic family,

Cynomoriaceae, with moderate support (BP = 73) (Add-

itional file 8: Fig. S7). Upon removal of Cynomoriaceae,

this “clade” was sister to fully mycoheterotrophic Epipo-

gium (Orchidaceae), again with a long branch (Add-

itional file 9: Fig. S8a). However, when both

Cynomoriaceae and Epipogium were removed (Add-

itional file 9: Fig. S8b), these four families formed a

“clade” with long-branched Sarracenia (Sarraceniaceae)

and the long branch persisted upon the successive dele-

tion of its sister in one earlier analysis (Additional file 9:

Figs. S8c to S8i). The extremely long branch lengths

involving these taxa suggest a typical case of long-

branch attraction, which has been used to explain un-

usual phylogenetic positions of some heterotrophic

plants [48]. Phylogenetic analysis excluding the other

four families (Apodanthaceae, Balanophoraceae, Mitras-

temonaceae, and Thismiaceae) produced trees that were

largely congruent with previous analyses. Moreover, re-

moving these four families plus Cynomoriaceae signifi-

cantly increased support for many nodes, especially

deeper nodes in both monocots and asterids (Figs. 1 and

2 and Additional files 2, 3, 4, 5: Figs. S1–S4).

Other fully heterotrophic families seem to have con-

sistent phylogenetic positions as resolved in previous

studies. For example, Triuridaceae were supported as a

member of Pandanales, Corsiaceae, and Campynemata-

ceae formed a strongly supported (BP = 100) clade sister

to all other Liliales, and Cytinaceae and Muntingiaceae

formed a clade in Malvales. Phylogenetic positions of

partially heterotrophic families such as Burmanniaceae

(with both partially and fully mycoheterotrophic plants)

and Krameriaceae (hemiparasites) that have retained a

larger number of putatively functional plastid genes were

resolved with high support.

Phylogenetic relationships at the ordinal level and above

In PPA II, the angiosperm clade received 100 bootstrap

support (Figs. 1 and 2, Additional files 2, 3, 4, 5: Figs.

S1–S4). Amborellales, Nymphaeales, and Austrobai-

leyales were supported as successive sisters to Mesan-

giospermae (BP = 100 for all). Although

Mesangiospermae were strongly supported (BP =100),

relationships among its five major clades (Chloranthales,

magnoliids, monocots, Ceratophyllales, and eudicots)

were not fully resolved. Chloranthales, magnoliids,

monocots, and Ceratophyllales were successive sisters of

eudicots with BP of 100, 40, 94, and 86, respectively.

Our results provided strong support (BP = 100) for the

monophyly of magnoliids and their four orders, which

were further resolved into strongly supported Canellales

+ Piperales and Laurales + Magnoliales (both pairs BP =

100). However, two interfamilial relationships within

Magnoliales were only weakly supported.

Acorales, followed by Alismatales, Petrosaviales, Dios-

coreales + Pandanales, Liliales, and Asparagales were

strongly supported as successive sisters to the commeli-

nid clade (support at each node; BP = 97, 98, 97, 97, 98,

98, respectively). Within the commelinid clade (BP =

100), the weakly supported (BP = 62) clade of Dasypogo-

naceae + Arecales was sister (BP = 98) to a strongly sup-

ported (BP = 100) clade, within which a clade (BP = 87)

comprising Poales was sister to a strongly supported (BP

= 100) clade comprising Commelinales and Zingiberales.

However, some interfamilial relationships within Zingi-

berales and Poales received low support.
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The monophyly of eudicots received strong support

(BP = 97), with Ranunculales sister to all other eudicots,

followed by Proteales + Sabiaceae, Trochodendrales, and

Buxales with strong to moderate support as successive

sisters to the core eudicots (support at each node; BP =

96, 96, 71, respectively). Core eudicots were strongly

supported (BP = 96), among which Gunnerales were sis-

ter to a highly supported (BP = 96) Pentapetalae, which

comprised a moderately supported (BP = 89) Dilleniales

+ superrosids clade and strongly supported (BP = 99)

superasterids.

Within Dilleniales + superrosids, Dilleniales, Saxifra-

gales, and Vitales were weakly to strongly supported as

successive sisters to the remaining rosids (support at

each node; BP = 89, 95, 66, respectively). The strongly

supported (BP = 92) rosids, excluding Vitales, were fur-

ther divided into malvids (BP = 91) and fabids (BP =

100). Within malvids, Geraniales + Myrtales were sup-

ported as sister to the rest (BP = 91), and then Crossoso-

matales, Picramniales, Sapindales, and Huerteales were

strongly supported (support at each node; BP = 91, 91,

91, 91, respectively) as successive sisters to Malvales +

Fig. 1 Relationships of 68 angiosperm orders in PPA II, based on maximum likelihood analysis of 80 plastid genes and 4782 samples. Bootstrap

percentages less than 100 are shown. Twenty clades (labeled with roman numerals) are listed in Additional file 15: Table S2. Eight gymnosperm

orders are included
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Brassicales (BS = 90). Zygophyllales were sister to the

remaining fabid clade, which was further divided into a

strongly supported (BP = 100) nitrogen-fixing clade and

a strongly supported (BP = 100) COM clade. Within the

nitrogen-fixing clade, Fabales, Rosales, and Cucurbitales

were successive sisters to Fagales (all BP = 100). Interor-

dinal relationships of the COM clade were poorly re-

solved, with Huales falling in an isolated position away

from Oxalidales.

Within the superasterids, Santalales were sister to the

rest, and Berberidopsidales and Caryophyllales were

strongly supported (support at each node; BP = 98, 99,

respectively) as successive sisters of asterids, within

which Cornales were sister (BP = 99) to Ericales +

remaining asterids (BP = 99). The remaining asterids

(BP = 100) were resolved into two strongly supported

clades, campanulids and lamiids (each BP = 100). Within

campanulids, Aquifoliales, Escalloniales + Asterales,

Fig. 2 Relationships of 428 angiosperm families in PPA II, based on ML analysis of 80 plastid genes and 4782 samples. Bootstrap percentages less

than 100 are shown. Five problematic families (Rafflesiaceae, Apodanthaceae, Balanophoraceae, Mitrastemonaceae, and Thismiaceae) are shown

in dashed lines (see the “Results” section for details). Twenty clades (labeled with roman numerals) are listed in Additional file 15: Table S2
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Bruniales, Apiales, and Dipsacales were successive sisters

to Paracryphiales, and all interordinal campanulid rela-

tionships were well supported (BP > 85), whereas most

interordinal lamiid relationships were weakly supported.

Major phylogenetic relationships at the familial level

All families with more than one sample included except

Aristolochiaceae were resolved as monophyletic, and all

families except Hamamelidaceae (BP = 67) were strongly

supported (BP ≥ 98). To compare relationships at the in-

terfamilial level from the current PPA II to those of pre-

vious studies, we refer to APW [46], which represents

the most comprehensive current overview of interfamil-

ial relationships based on previous studies. Our tree was

largely consistent with the tree summarized in APW

[46], but some incongruence was present (see Add-

itional file 9: Fig. S8 and discussion in Additional file 14:

Additional Text). Our analyses clarified some previously

unresolved polytomies noted in APW (Additional file 4:

Fig. S3), such as relationships among Rhamnaceae,

Elaeagnaceae, Barbeyaceae, and Dirachmaceae in Rosales

(Fig. 3a) [49–51], relationships among Pentadiplandra-

ceae, Resedaceae + Gyrostemonaceae, Tovariaceae, and

[Capparaceae [Cleomaceae + Brassicaceae]] in Brassi-

cales (Fig. 3b) [50, 52–54], relationships among Melia-

ceae, Simaroubaceae, and Rutaceae in Sapindales [27, 50,

55, 56], relationships among Campynemataceae, Corsia-

ceae, and Melanthiaceae in Liliales [57–60], as well as

some relationships within Malvales [50, 61, 62] and

others in Cornales [63–65] (see Additional file 9: Fig. S8

and discussion in Additional file 14: Additional Text).

Our study also greatly improved support for the posi-

tions of many families, with all interfamilial relationships

of 27 orders (over half of the 49 non-monofamilial or-

ders of extant angiosperms), such as Asparagales,

Asterales, Commelinales, Crossosomatales, Fagales, Myr-

tales, and Rosales, being strongly supported (BP ≥ 85;

Fig. 3c, d for examples, also see Fig. 2, Additional files 3,

4: Figs. S2, S3). Additionally, phylogenetic relationships

of the 73 families unsampled in [13] were generally clari-

fied (see Additional file 4: Fig. S3 for details), usually

with strong support, such as Corsiaceae sister to Campy-

nemataceae (Liliales, BP = 100), Ixioliriaceae sister to

Tecophilaeaceae (Asparagales, BP = 100), Circaeastera-

ceae sister to Lardizabalaceae (Ranunculales, BP = 100),

Anisophylleaceae sister to Cucurbitaceae (Cucurbitales,

BP = 76), Stachyuraceae sister to Guamatelaceae +

Crossosomataceae (Crossosomatales, BP = 100), Pete-

naeaceae sister to Tapisciaceae + Dipentodontaceae

(Huerteales, BP = 100), Pentadiplandraceae sister to

Gyrostemonaceae + Resedaceae (Brassicales, BP = 100),

Tovariaceae sister to Capparaceae plus Cleomaceae +

Brassicaceae (Brassicales, BP = 100), Macarthuriaceae

sister to Caryophyllaceae + Achatocarpaceae + Amar-

anthaceae (Caryophyllales, BP = 86), Loasaceae sister to

Hydrostachyaceae (Cornales, BP = 100), and Namaceae

sister to [Ehretiaceae [Cordiaceae + Heliotropiaceae]]

(Boraginales, BP = 100). However, intractable interfamil-

ial relationships remained in Poales [45, 66], Saxifragales

[67, 68], Cucurbitales [49, 50], Oxalidales [27, 50], Mal-

pighiales [69, 70], Santalales [71, 72], Ericales [73, 74],

and Lamiales [75, 76] (see Fig. 2, Additional file 3: Fig.

S2 and discussion for details in Additional file 14: Add-

itional Text).

Phylogenetic evaluation and comparison of angiosperm

family trees

Maximum likelihood (ML) and ASTRAL trees of 428

families (i.e., with five heterotrophic families removed)

included in the subdataset generally showed consistent

Fig. 3 Familial phylogenetic relationships in PPA II (left) versus APW (right) of Rosales (a), partial Brassicales (b), Commelinales (c), and

Crossosomatales (d). All nodes in PPA II have 100 bootstrap percentages. Asterisks (*) represent the nodes with low BP in APW. The blue lines

show different phylogenetic positions between PPA II and APW, and the green lines show increased support in PPA II
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relationships with strong support, only slightly different

at some nodes with weak or moderate support (Add-

itional file 10: Fig. S9). Under Quartet Sampling (QS)

evaluation, analyses of a pruned plastome dataset indi-

cated strong support for monophyly of the majority of

orders (Additional file 11: Fig. S10), but with some alter-

native relationships among some orders or families. Our

results showed that bootstrap values and concordance

factors could provide some different information about

each branch in the tree, but they tended to display a

similar pattern (Additional file 12: Fig. S11). Meanwhile,

estimates of gene and site concordance factors (gCF and

sCF) were generally correlated across the ML tree of an-

giosperms, but we note that both measures fell well

below standard measures of bootstrap support (Add-

itional file 13: Fig. S12).

Discussion
A plastid phylogenomic analysis including all recognized

families provides an unparalleled opportunity to address

interfamilial relationships of angiosperms and their asso-

ciated patterns of phenotypic evolution. Our results are

largely congruent with previous analyses [27] but pro-

vide higher support for many relationships among major

clades, including those recognized as orders and families,

and a complete phylogenetic framework of angiosperms

at the familial level. Overall, our study represents the

first phylogenetic analysis using complete plastomes and

a large sampling of all recognized angiosperm families

(except Rafflesiaceae and four other heterotrophic

families due to the complete or large number of gene

losses in their plastomes), from which the phylogenetic

relationships among angiosperm families, orders, and

high-level clades could be addressed in a single phylo-

genetic tree. The higher support for many nodes may be

attributed to the much better sampling of representative

clades. The monophyly of the angiosperms and their div-

ision into eight major clades was supported. Amborel-

lales, Nymphaeales, and Austrobaileyales were resolved

as successive sisters to the remaining angiosperms, con-

sistent with current understanding [13, 28–30]. The

monophyly of Mesangiospermae received 100 BP, and a

topology of [Chloranthales [magnoliids [monocots [Cer-

atophyllales + eudicots]]]] was well supported except for

the weakly supported position of magnoliids.

This backbone plastid topology reviewed above has

been consistently recovered in previous plastid phyloge-

nomic studies [13, 21, 22]. Recent nuclear phylogenetic

analyses have produced multiple topologies [13, 28–30,

34–39]. Notably, for the three clades with the highest

species diversity, monocots are more closely related to

eudicots than to magnoliids in the plastid tree, whereas

magnoliids and eudicots are more closely related in re-

cent nuclear trees (Fig. 4). A recent study [32] using 38

mitochondrial genes of 91 angiosperm taxa representing

seven of eight major angiosperm clades (except Cerato-

phyllales) found that relationships among these major

clades were congruent with those of the plastid tree.

Nuclear-organellar discordance regarding relationships

among the five major Mesangiospermae clades,

Fig. 4 Two contrasting topologies for the eight major lineages of angiosperms (Amborellales, Nymphaeales, Austrobaileyales, Ceratophyllales,

Chloranthales, magnoliids, monocots, and eudicots) based on the plastid (left, light brown) [13] and nuclear (right) [28–30, 34, 39] genome-scale

datasets. Four recent studies with new nuclear genomes sequenced from different species of magnoliids (left, dark brown) [35–38] also resolved

the same topology as that of the plastid phylogeny. The asterisk indicates that this node was weakly supported
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particularly those among monocots, magnoliids, and

eudicots, may imply both rapid radiation as well as re-

ticulate evolution in the early history of angiosperms

[13, 28, 39]. More genomic data, particularly those of

Chloranthales and Austrobaileyales, should be explored

to address this question.

Most angiosperm interordinal relationships have been

clarified on the basis of plastome analyses. For the long-

controversial phylogenetic positions of a few early-

diverging orders in Pentapetalae, our study and most

recent plastid phylogenomic studies [13, 28] have sup-

ported Dilleniales, Saxifragales, or Vitales as successive

sisters of the remaining rosids, and Santalales, Berberi-

dopsidales, and Caryophyllales as successive sisters to

the asterids. However, phylogenetic analyses of nuclear

data showed substantial discordance regarding the

phylogenetic positions of these orders [28, 30, 34, 77].

Dilleniales have been supported as sister to superrosids,

superasterids, the remaining Pentapetalae, Gunnerales,

or Caryophyllales in recent studies using nuclear gene

sequence data [26, 28, 30, 78]. The uncertain position of

Dilleniales hampers an accurate understanding of the

origin of key trait innovations, such as pentamerous

flowers and the distinction between sepals and petals in

eudicots. The rapid diversification of core eudicots fol-

lowing two rounds of whole-genome duplication (WGD)

currently hinders the confident resolution of relation-

ships [28, 30, 79, 80].

Our study and most recent plastid phylogenomic ana-

lyses [13, 45] support the placement of the COM clade

(Celastrales, Huales, Oxalidales, Malpighiales) within the

fabids, but other analyses based on mitochondrial and

nuclear data [15, 28, 31, 33, 81, 82] supported the COM

clade within the malvids. Incomplete lineage sorting

and/or ancient introgressive hybridization may be the

cause of the conflicting positions for this clade [83]. All

three topologies among the three large orders (Celas-

trales, Oxalidales, Malpighiales) within the COM clade

were reported in previous studies [83], and our study

also failed to resolve relationships among these three or-

ders relative to unplaced Huales (consisting only of Hua-

ceae). Our study provided good support for the

phylogenetic positions of Escalloniales, Asterales, Boragi-

nales, Gentianales, Vahliales, Solanales, and Lamiales

within asterids. Nevertheless, our analysis did not confi-

dently resolve some interordinal relationships, especially

those within lamiids.

Our study did clarify some long-controversial interfa-

milial relationships within Poales, Saxifragales, Brassi-

cales, Caryophyllales, etc. (please refer to

Additional file 14: additional text for more detailed dis-

cussion). However, some previously unresolved interfa-

milial relationships within Saxifragales, Malpighiales,

Ericales, and Lamiales [50, 68, 70, 84, 85] remain

unresolved in the current study. Families of these orders

may have experienced rapid radiations, which may not

be resolved by plastome data. Whereas plastome data

have generally been considered to represent uniparental

phylogenetic history [86, 87], more complex plastome

evolution has been found in Fabaceae [86]. Previous em-

pirical and simulated analyses have suggested that reli-

able inference of species trees requires the use of large

numbers of nuclear loci [87–89]. Increased sampling

with hundreds of single-copy nuclear genes may be

needed to fully resolve these recalcitrant familial

relationships.

Huaceae were placed as sister to the remaining mem-

bers of Oxalidales in several previous studies, sometimes

with relatively high support (BP > 80) [69, 81, 88], so

that APG III [89] tentatively included Huaceae in Oxali-

dales. However, both our previous work [13] and current

study strongly supported (BP = 100) the monophyly of

Oxalidales (excluding Huaceae), and Huaceae were

placed as sister to Celastrales + Malpighiales with weak

support in this study (BP = 34) here. In APG IV [18],

Dasypogonaceae, Sabiaceae, and Oncothecaceae were

placed in Arecales, Proteales, and Icacinales, respectively,

according to the plastid phylogenomic studies of Barrett

et al. [90], Sun et al. [44], and Stull et al. [43]. Neverthe-

less, in recent studies [45] and our study with denser

taxon sampling, support for the monophyly of Arecales

and Proteales was relatively low (BP < 80). In addition, a

poor resolution was also apparent in the weakly sup-

ported assemblage of Icacinales, Oncothecaceae, and

Metteniusales (BP < 25). These residual issues in angio-

sperm phylogeny need to be settled. Thus, we suggest

separating Dasypogonales from Arecales, Sabiales from

Proteales, Huales from Oxalidales, and Oncothecales

from Icacinales, as the monophyly of all other orders in

our tree received strong support (BP≥90).

All recognized families in our study received > 95 BP

support, with the exception of Aristolochiaceae and

Hamamelidaceae. Aristolochiaceae were found to be

paraphyletic in the current study with Aristolochia sister

to [Saururaceae + Piperaceae] and [Saruma + Asarum]

sister to that clade (Additional file 5:Fig. S4). However,

we did not sample Hydnoraceae and Lactoridaceae, both

recognized previously by APG III [89] but not APG IV

[18]. The monophyly of Hamamelidaceae was weakly

supported (BP = 67). These two cases should be the

focus of further studies.

Conclusions
Our plastid phylogenomic analysis, which included rep-

resentatives of all recognized angiosperm families [46],

greatly clarified many deep phylogenetic relationships,

particularly those at and above the familial level. The ro-

bust phylogenetic backbone presented here will provide
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a firm basis for future evolutionary studies of flowering

plants. Our analyses further indicate that recalcitrant re-

lationships among the five major clades of Mesangiosper-

mae and interfamilial relationships such as those of

Malpighiales and a few other orders could not be re-

solved exclusively through increased taxonomic sam-

pling and greater amounts of plastid data but must

include the analyses of large numbers of single-copy nu-

clear genes.

Methods
Taxon sampling

To reconstruct the phylogenetic relationships of angio-

sperms at the family level, 4627 samples representing

4498 species, 2024 genera, 416 families, and 64 orders

recognized by APG IV [18], and 17 additional families

recognized by APW [46], were included in the analyses.

In addition, 165 samples from 162 species, 77 genera, 12

families, and eight orders of gymnosperms comprised

the outgroup. The dataset consisted of 86 newly se-

quenced plastomes with Illumina HiSeq2500, 2425 sam-

ples from our previous work [13, 91], and an additional

2281 plastomes from GenBank (released from January 1,

2017, to April 30, 2019) (Additional file 1: Table S1).

The final sampling of 4792 taxa includes representatives

of all 72 orders and 445 families of seed plants (Add-

itional file 1: Tables S1 and Additional file 15: Table S2).

Order and family circumscriptions of seed plants are as

in APW [46].

Molecular techniques

Total genomic DNA was extracted using a modified

CTAB protocol [92] from leaf tissue of herbarium speci-

mens and silica-dried materials. The DNA samples were

sheared into fragments and used to construct short-

insert (500 bp) libraries in accordance with the

manufacturer’s manual (Illumina, San Diego, CA, USA).

Paired-end sequencing of 150 bp was conducted on an

Illumina HiSeq 2500. High-quality Illumina sequencing

reads were assembled using the GetOrganelle toolkit

[93]. The assembled plastomes were annotated using

PGA [94] and manually adjusted in Geneious v9.1.8 [95].

Data from complete plastid genomes in GenBank as of

April 30, 2019, were downloaded and re-annotated using

PGA. For some incomplete plastomes, we used scripts to

obtain assembled sequences by mapping contigs to a ref-

erence and then extracting the annotated gene

fragments.

Phylogenetic inference

All alignments of protein-coding exons and rRNA genes

were performed using PASTA [96] before being further

locally re-aligned in Geneious v9.1.8 using MAFFT

v7.394 [97] and MUSCLE v3.8.425 [98]. Three genes,

infA, ycf1, and ycf2, were difficult to align and were thus

excluded from the phylogenetic analysis. We conducted

analyses with and without the inclusion of five hetero-

trophic families, i.e., Apodanthaceae, Balanophoraceae,

Mitrastemonaceae, Rafflesiaceae, and Thismiaceae, given

that their plastome sequences are highly reduced and

that the retained sequences have unusually high substi-

tution rates that strongly hamper proper alignment and

may cause long-branch attraction artifacts in many focal

clades. However, for the completeness of the PPA tree,

these families were included in the figures following

their placement in APW. All aligned genes were

concatenated into a supermatrix with a length of 89,357

bp. Maximum likelihood (ML) analyses were performed

with RAxML v8.2.12 [99] under the GTRGAMMA

model for a partitioned supermatrix. Searches for the

best trees were conducted by starting from random

trees, and bootstrap percentages were obtained with

1000 non-parametric bootstrap replicates.

To further evaluate the phylogenetic relationships of

the backbone tree of angiosperm families, we generated

a subdataset of 431 species representing 428 angiosperm

families and two outgroup taxa using the Python pack-

age ete3 v3.1.2 [100] and pxrms from the phyx package

[101]. Maximum likelihood analyses were conducted

with RAxML v.8.1.2 [99] including 500 rapid bootstraps

and a search for the best-scoring tree, employing the

GTRGAMMA model. We evaluated clade/branch sup-

port under various metrics of branch support including

Quartet Sampling [102] with 1000 replicates, gene con-

cordance factors (gCF) [103] and site concordance fac-

tors (sCF) [104] from IQtree v2.0 [105], and internode

certainty all (ICA) [106] from RAxML v.8.1.2 [99]. We

compared the angiosperm phylogeny estimated with the

concatenated approach and that resulted from the multi-

species coalescent-based approach [107, 108] based on

80 single-gene trees from RAxML with local posterior

probabilities (LPP) [109] to assess clade/branch support.

Two multispecies coalescent-based analyses were exe-

cuted in which all bipartitions were included and biparti-

tions with <10 bootstrap support were collapsed prior to

the analyses.

Supplementary Information
The online version contains supplementary material available at https://doi.

org/10.1186/s12915-021-01166-2.

Additional file 1: Table S1. Species sampled in this study. The 4792

individuals sampled including 86 newly sequenced plastomes, involving

4498 angiosperm species and 162 gymnosperm species.

Additional file 2: Figure S1. Phylogenetic tree of 4782 plastomes of 68

orders of angiosperms.

Additional file 3: Figure S2. Phylogenetic tree of 4782 plastomes of

445 families (including 12 gymnosperm families) of seed plants. Five

problematic families (Rafflesiaceae, Apodanthaceae, Balanophoraceae,
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Mitrastemonaceae, and Thismiaceae) were added manually (see Results

for details).

Additional file 4: Figure S3. Angiosperm family-level phylogenetic rela-

tionships in PPA II versus APW. Red: different phylogenetic positions be-

tween PPA II and APW; green: resolved nodes in PPA II relative to APW.

Different phylogenetic positions between PPA II and APW with bootstrap

values < 50 in PPA are not shown.

Additional file 5: Figure S4. Phylogenetic tree of 4782 plastomes (with

ten plastomes of five problematic families excluded) of 4650 species of

seed plants. Bootstrap values are shown.

Additional file 6: Figure S5. Phylogenetic tree of 4792 plastomes of 76

orders (including eight gymnosperm orders) of seed plants.

Additional file 7: Figure S6. Phylogenetic tree of 4792 plastomes of

445 families (including 12 gymnosperm families) of seed plants.

Additional file 8: Figure S7. Phylogenetic tree of 4792 plastomes of

4660 species of seed plants. All bootstrap values are shown.

Additional file 9: Figure S8. Phylogenetic tree of 4792 plastomes with

successive removal of the long branch forming a sister relationship with

a ‘clade’ of Mitrastemonaceae, Thismiaceae, Apodanthaceae, and

Balanophoraceae.

Additional file 10: Figure S9. Topologies of a pruned Maximum

Likelihood phylogeny of 431 representative species (“ML431_pruned”)

and ASTRAL analysis (“astral431_BS10”) of a 43-species subdataset of an-

giosperms using 80 plastid genes. The ML bootstrap percentages and AS-

TRAL local posterior probabilities are shown, respectively.

Additional file 11: Figure S10. Family relationships within the pruned

angiosperm phylogeny: nodes by Quartet Concordance (QC) scores for

internal branches: green (QC > 0.2), blue (0.2 ≥ QC > 0), orange (0 ≥ QC

≥ −0.05, or red (QC < −0.05). QC/Quartet Differential (QD)/Quartet

Informativeness (QI) scores are shown for all internal branches.

Additional file 12: Figure S11. Plot showing the relationship between

gene and site concordance factors (gCF and sCF) relative to bootstrap

support from the pruned angiosperm phylogeny.

Additional file 13: Figure S12. Family relationships within the pruned

angiosperm subdataset. In this tree, bootstrap/gCF/sCF scores are shown

for each branch.

Additional file 14: Additional Text. Overview of angiosperm

phylogeny at the familial level.

Additional file 15: Table S2. Summary of all recognized 433 families,

68 orders, and more inclusive clades for flowering plants, with numbers

of known genera and species.
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