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SUMMARY

The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagel-

lates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four

membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with

the conserved amino acid sequence motif ‘ASAFAP’. Here we identify the plastid proteomes of two diatoms,

Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind)

that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on

the output of SignalP and the identification of conserved ‘ASAFAP’ motifs and transit peptides. We tested

ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular

localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity

and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we

generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length

proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed

that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and

therefore represent the putative plastid proteomes of these algae.

Keywords: Thalassiosira pseudonana, Phaeodactylum tricornutum, chloroplast, proteome, prediction, tech-

nical advance.

INTRODUCTION

Plastids arose through endosymbiotic processes – a pri-

mary endosymbiosis of a cyanobacterium gave rise to red

and green algae and the subsequent evolution of plants,

and multiple secondary endosymbioses of either a red or a

green alga gave rise to a broad diversity of eukaryotic

microbes. Marine microalgae with secondary plastids from

the red lineage contribute significantly to global biogeo-

chemical cycles and support productive marine food webs

(Cavalier-Smith, 1999). Major groups include diatoms, coc-

colithophores, cryptophytes, dinoflagellates, and apicom-

plexans. Plastids in these organisms have a complex

structure with either three or four membranes, most with

the endoplasmic reticulum (ER) as the outermost mem-

brane (Kroth, 2002). The majority of genes from the origi-

nal endosymbionts were either lost, replaced by genes of

the host or transferred to the nucleus of the host; only a

minority of the genes was retained on the original endo-

symbiont genome (Timmis et al., 2004). Of those organ-

isms with a secondary plastid of the red lineage, only

cryptophytes possess a remnant nucleus from the endo-

symbiont – the nucleomorph, which is located in the peri-

plastidic space between the second and third envelope

membrane (Curtis et al., 2012).

Consequently, the majority of proteins required for plas-

tid function is encoded in the nucleus and subsequently

transported to the plastid. Delivery of nuclear-encoded

plastid proteins across multiple membranes requires an

efficient protein import system (Gruber et al., 2007), which

includes protein transport via the ER. All known nuclear-

encoded plastid-localized proteins in cells with secondary
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plastids of the red lineage possess bipartite N-terminal

pre-sequences that consist of an ER-type signal peptide fol-

lowed immediately by a transit peptide (Kroth, 2002;

Patron and Waller, 2007). The transit peptide is cleaved off

the mature protein upon completion of the import reaction,

likely by a specific stromal processing peptidase (Huesgen

et al., 2013).

The transit peptide domains of bipartite plastid targeting

pre-sequences commonly begin with a phenylalanine resi-

due at the +1 position after the signal peptide cleavage site

(Kroth, 2002; Armbrust et al., 2004; Patron and Waller,

2007), which is crucial for successful plastid protein import

(Apt et al., 2002; Kilian and Kroth, 2005; Gruber et al.,

2007). The transit peptide contains a high proportion of

hydroxylated residues, few negatively charged residues,

and a net positive charge (Patron and Waller, 2007), which

is also necessary for plastid protein import (Felsner et al.,

2010). Other features of the transit peptide, including its

length, are less critical for plastid import (Apt et al., 2002;

Kilian and Kroth, 2005; Gruber et al., 2007). The phenylala-

nine at the +1 position of the transit peptide is part of a

conserved sequence motif (‘ASAFAP’ motif) surrounding

the signal peptide cleavage site in diatoms (Kilian and

Kroth, 2005; Gruber et al., 2007), cryptophytes (Gould

et al., 2006a; Patron and Waller, 2007), and dinoflagellates

(Patron et al., 2005; Patron and Waller, 2007). This distinc-

tive motif is a good marker for identifying nuclear-encoded

plastid proteins based on DNA sequence data (Gruber

et al., 2007; Gruber and Kroth, 2014).

Here we present the results of a genomewide prediction

of nucleus-encoded plastid proteins for the diatoms Tha-

lassiosira pseudonana and Phaeodactylum tricornutum,

based on recognition of ASFAP motifs, combined with a

composition-based evaluation of the transit peptide down-

stream of the cleavage site.

RESULTS AND DISCUSSION

Characterization of the ‘ASAFAP’ motif

The plastid protein prediction was initiated with a set of

putative plastid-targeted proteins from the diatoms Tha-

lassiosira pseudonana and Phaeodactylum tricornutum,

compiled based on the lists of nucleus-encoded and plas-

tid-targeted proteins published by Armbrust et al. (2004)

(for T. pseudonana), Gruber et al. (2007) (for P. tricornu-

tum), and Kroth et al. (2008) (P. tricornutum and

T. pseudonana). These proteins were supplemented with

additional proteins that are most likely plastid-targeted

based on functional annotation. Furthermore, homologues

of proteins from the T. pseudonana lists were searched in

the P. tricornutum genome and vice versa.

For maximum consistency between the sequence sets

for the two species, all sequences found in only one of the

organisms were removed from the set. To avoid potential

overfitting of the data, we reduced the level of homology

within the protein set using an ‘all against all’ BLAST

search of the candidate sequences from T. pseudonana

and P. tricornutum. Only sequences that paired with one

homologue from the other diatom species (instead of a

sequence from the same species) were retained to mini-

mize inclusion of gene duplications present in only one

organism. The highest level of homology present in the

sequence set therefore corresponds to the time of indepen-

dent evolution since the split between the pennate and

centric diatom lineages, which took place approxi-

mately 90 million years ago (Bowler et al., 2008). The final

set consists of 83 orthologous pairs of putative plastid-tar-

geted protein sequences from T. pseudonana and P. tricor-

nutum (Table S1).

Via proteomic amino-termini profiling, Huesgen et al.

(2013) recently identified 1295 unique N-terminus peptides

from 939 nuclear-encoded T. pseudonana proteins. These

N-terminal peptides in many cases represent N-termini of

native functional proteins, after cleavage of N-terminal tar-

geting signals. The peptide list also contains N-termini of

proteins that are not processed in vivo, as well as the prod-

ucts of internally cleaved proteins. Searched against our

T. pseudonana dataset, 44 of the N-terminal peptides iden-

tified by Huesgen et al. (2013) match 36 of the 83

T. pseudonana sequences (Table S1). For 31 of the

matches the position of our manually identified signal pep-

tide cleavage site lies between 14 and 95 amino acid resi-

dues upstream of the N-terminal peptide, and therefore

supports the presence of a transit peptide-like domain that

is actually cleaved off. Three of the peptides match the

transit peptide domain itself with the peptide starting with

the +1 position of the predicted cleavage site or one posi-

tion further downstream, which supports that the signal

peptides as well as transit peptides are cleaved off inde-

pendently from each other. It should be noted that in one

case (T. pseudonana protein ID 270231) there is N-terminal

peptide support for both the N-terminus of the transit pep-

tide-like domain with the signal peptide cleaved off as well

as for the N-terminus of the putative mature protein after

cleavage of a 12-residue transit peptide. Ten of the pep-

tides correspond to N-termini derived from internal cleav-

age of the protein after 133–1242 residues (Table S1).

Despite the overall divergence between T. pseudonana

and P. tricornutum (Bowler et al., 2008), the plastid target-

ing motifs are similar in both organisms, and also similar

to the N-terminal signal found in the list of 63 T. pseudo-

nana transit peptides published by Huesgen et al. (2013)

(Figure S1). We therefore combined the sequence sets

from T. pseudonana and P. tricornutum to generate a scor-

ing matrix (Table S2) based on the frequency of occurrence

of each amino acid weighted by the amount of information

at each position in the sequence logo (Figure 1). This was

used to develop a single plastid protein prediction method.
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Prediction of signal peptides and cleavage sites

The signal peptide of plastid-targeted proteins in diatoms

and other organisms with secondary plastids can be identi-

fied via the prediction program SignalP (Nielsen et al.,

1997; Emanuelsson et al., 2007) that has been developed

through a number of versions. The most current versions

are SignalP 3.0 (Bendtsen et al., 2004) and SignalP 4.1 (Pet-

ersen et al., 2011). SignalP 3.0 employs either a neuronal

network (NN) or a hidden Markov (HMM) model to identify

the signal peptide (Nielsen and Krogh, 1998; Bendtsen

et al., 2004), SignalP 4.1 exclusively uses a NN, but can be

adjusted to two levels of sensitivity (Petersen et al., 2011).

SignalP 3.0 NN recognized a signal peptide in 163 of the

166 test proteins (83 sequences from T. pseudonana and

P. tricornutum each, see Table S1) whereas SignalP 3.0

HMM recognized 165 signal peptides (Table S1). SignalP

4.1 identified signal peptides in 141 or 161 of the

166 sequences, depending on the choice of sensitivity

(Table S1).

In diatoms, the signal peptide cleavage site is spanned

by the ‘ASAFAP’ motif (Kilian and Kroth, 2005; Gruber

et al., 2007). In a comparison between manually identified

cleavage site motifs with the predictions of the different

SignalP variants, we found that the SignalP 3.0 NN

prediction identified the ‘ASAFAP’ motif in 150 out of the

166 proteins, whereas the SignalP 3.0 HMM prediction

identified the motif in 139 of the 166 proteins. SignalP 4.1,

identified 148 of the cleavage site motifs (Table S1), the

cleavage site predictions are identical for both sensitivity

settings. For most of the tested sequences, cleavage site

predictions are identical between the different SignalP ver-

sions; deviant predictions are found for all versions, with

no particular overlap that would allow conclusions on the

presence of non-canonical sequences in our set (Figure

S2). Based on the highest level of congruency with the

manual motif identifications, we decided to use the NN

prediction of SignalP 3.0 for all subsequent analyses, and

to additionally evaluate methods to increase the accuracy

of the cleavage site predictions via the direct detection of

‘ASAFAP’ motifs.

For this, we used the information in the sequence logo

to evaluate potential alternate cleavage sites. Because the

highest bit scores within the sequence logo, and thus the

greatest discriminating potential, were found on either side

of the signal peptide cleavage site (Figure 1), proteins were

first scored over a 25 amino acid sequence window from

�5 to +20 around the SignalP 3.0 NN-predicted signal pep-

tide cleavage site, using the scoring matrix (Table S2) gen-

erated from the 166 putative plastid-targeted proteins

(Table S1). Next, proteins were scored over a sliding win-

dow of five residues, including two positions upstream

and downstream of the SignalP predicted cleavage site

(Figure 2). The ASAFind predicted cleavage site corre-

sponds to the cleavage site position with the highest

score.

A signal peptide cleavage site is common to all ER-tar-

geted proteins, including those that are targeted to the ER

but not to the plastid. To discriminate between plastid pro-

teins and other secretory proteins, we calculated a transit

peptide score, again via the weighted scoring matrix,

based on the 20 residues downstream of the signal peptide

cleavage site. Thus, this transit peptide score does not

evaluate the ER cleavage site itself.

Plastid protein prediction

Because of the general trade-off between sensitivity (the

ability to recognize true positives) and specificity (the abil-

ity to recognize true negatives), we opted to develop a plas-

tid protein prediction protocol at two confidence levels,

tuned for either high sensitivity or high specificity. For the

statistical evaluation of our prediction method we compiled

a set of reference proteins based on available experimental

protein location data (e.g. fusion of reporter genes, proteo-

mic studies or immuno-electron microscopy) for P. tricor-

nutum proteins (Table S3). This dataset included plastid-

targeted protein sequences, as well as proteins targeted to

other compartments such as the ER and mitochondria. It

consisted of 132 proteins, 19 of which were, by coinci-

dence, also included in the sequence set used to calculate

the initial sequence logos. The use of largely separate

sequence sets for generating the scoring matrix and
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Figure 1. Conserved cleavage site motif.

Conserved sequence motif surrounding the signal peptide cleavage site for

166 putative plastid-targeted protein sequences from T. pseudonana and

P. tricornutum (see Table S1). Sequence logos represent the scoring matrix

used to calculate cleavage site and transit peptide scores for SignalP posi-

tive sequences. Sequence logos and frequency plots (Schneider and Ste-

phens, 1990) were created with WebLogo (Crooks et al., 2004; http://

weblogo.berkeley.edu/).
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evaluating the prediction ensures that the reference data are

not overfit. Sequences in the reference set were classified as

positive if they were experimentally shown to be plastid

targeted or as negative if they were experimentally shown

to be targeted to another compartment (Table S3).

Plastid-targeted reference proteins were best distin-

guished from non-plastid-targeted reference proteins by

the following protocol (Figure 3). If the SignalP 3.0 NN pre-

diction was negative, the sequence was defined as ‘not

plastid, SignalP negative.’ If the SignalP 3.0 NN prediction

was positive, the window spanning two positions each

upstream and downstream of the SignalP NN-identified

cleavage site was further evaluated to identify the position

with the highest cleavage site score. This position was

deemed the ASAFind predicted cleavage site. If the first

amino acid of the ASAFind predicted transit peptide was

an amino acid other than ‘F’, ‘W’, ‘Y’ or ‘L’, the sequence

was defined as ‘not plastid, SignalP positive’. These pro-

teins are candidates for retention in the ER or for other tar-

geting via the secretory system. If an ‘F’, ‘W’, ‘Y’ or ‘L’

Figure 2. Sliding window and cleavage site score calculation.

Conserved cleavage site motifs that differ from the SignalP predicted cleavage site are identified by calculating cleavage site scores for 25-position sequence

windows surrounding the SignalP predicted cleavage site as shown on the example of the Phaeodactylum tricornutum oxygen evolving enhancer 1 (PtOEE1,

GenBank AY191862, Protein ID 20331). See also Gruber et al. (2007) and Kilian and Kroth (2005) for detailed mutational analyses of this sequence.

Input sequences

SignalP 3.0 NN prediction

Not plastid, 
SignalP negative

positive? no

eys

Results of
prediction

1. Score 25aa sequence around 
SignalP predicted cleavage site 
over a 5 aa sliding window, 
highest scoring window is 
ASAFind predicted cleavage site

2. Score 20aa sequence after 
ASAFind predicted cleavage site 
for transit peptide score

Not plastid, 
SignalP positive

+1 position of ASAFind predicted 
cleavage site is F,W,Y, or L? no

eys

Plastid, 
Low confidence

Plastid, 
High confidenceyes

no
ASAFind predicted cleavage site 
is same as 
SignalP predicted cleavage site

transit peptide score is > 2?

AND

ASAFind plastid protein prediction

Figure 3. Plastid protein prediction.

Decision making steps for the prediction of

plastid proteins, the ASAFind prediction is

based on the results of the signal peptide pre-

diction via SignalP 3.0 neuronal networks (Niel-

sen and Krogh, 1998; Bendtsen et al., 2004;

Emanuelsson et al., 2007).
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residue was present at the first position of the ASAFind

predicted transit peptide, the sequence was classified as

potentially plastid targeted and evaluated further. If the

ASAFind predicted cleavage site coincided with the Sig-

nalP prediction and the transit peptide score was higher

than 2, the sequence was defined as ‘plastid, high confi-

dence’, otherwise the sequence was defined as ‘plastid,

low confidence’ (Figure 3).

This protocol was optimized with our reference set as

the gold standard. We empirically tested the performance

of different prediction approaches and parameters (such as

sliding window ranges or score cut-offs) by calculating

sensitivity, specificity and Matthews correlation coeffi-

cients (MCC) or by receiver operating characteristics (ROC)

plot analyses (Baldi et al., 2000; Brown and Davis, 2006;

Fawcett, 2006).

Based on these analyses, the ‘plastid, low confidence’

prediction is highly sensitive, while the ‘plastid, high confi-

dence’ prediction is extremely specific (Figure 4). The MCC

for our method is higher (Table 1) than for the specialized

prediction server HECTAR (Gschloessl et al., 2008) which

combines a number of publically available subcellular

localization methods using a Support Vector Machine to

produce a prediction. The increase in prediction perfor-

mance of ASAFind is mainly driven by the enhanced sensi-

tivity of our approach; as a consequence, HECTAR should

be used with care when a high sensitivity is desired.

In addition to the reference protein set, we also collected

49 sequences that were mutated in previous studies to pin-

point the crucial components of the targeting signal (Kilian

and Kroth, 2005; Gruber et al., 2007; Felsner et al., 2010)

(Table S5). As expected, the prediction methods performed

considerably worse with this mutated protein test set (Fig-

ure 4 and Tables S4–S6), emphasizing that native targeting

pre-sequences are under strong selection pressures to

maintain their functionality. This result shows that experi-

mentally engineered pre-sequences are useful for the char-

acterization of the exact requirements for the targeting

signal as performed by Apt et al. (2002), Felsner et al.

(2010), Gruber et al. (2007) or Kilian and Kroth (2005), how-

ever, due to the artificial nature of these sequences, they

are of limited use as templates for the development of pre-

diction algorithms.

The efficiency of our method depends on the presence

of the conserved ‘ASAFAP’ motif. Mernberger et al. (2014)

recently developed a motif-independent method for sub-

cellular localization of proteins, with the stated goal of

predicting plastid proteins in organisms with limited infor-

mation on potential protein localization signals. Although

their methods were tested with the diatom P. tricornutum,

we were unable to compare the performance of their meth-

ods with ours because neither the sequences used in their

reference set nor the performance metrics are specified in

the manuscript and the method is not available for public

use. Mernberger et al. (2014) do not compare the perfor-

mance of their prediction methods to the performance of

the dedicated prediction tool HECTAR (Gschloessl et al.,

2008), but do compare to other established methods

including TargetP (Emanuelsson et al., 2000), WoLF PSORT

Table 1 Plastid protein prediction statistics. Performance of the
plastid protein prediction methods evaluated with Phaeodactylum
tricornutum sequences of proteins with experimentally deter-
mined intracellular location (see Table S3). See Table S6 for for-
mulas and additional counts/scores, MCC: Matthews correlation
coefficient

High confidence
only

High or low
confidence HECTARa

Sensitivity 0.80 0.93 0.71
Specificity 0.99 0.82 0.94
MCC 0.82 0.74 0.67

aSee Gschloessl et al. (2008).
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Figure 4. Receiver operating characteristics.

Receiver operating characteristics (ROC) plot of plastid protein prediction

methods evaluated with sets of native (Tables S3 and S4) or mutated (Table

S5) reference sequences, see Table S6 for additional counts/scores. ‘High

conf only, native’ are high confidence only predictions tested with the

native experimental reference set; ‘high or low conf, native’ are high or low

confidence predictions tested with the native experimental reference set;

‘HECTAR, native’ are predictions by HECTAR (Gschloessl et al., 2008) tested

with the native experimental reference set (Tables S3 and S4); ‘high conf

only, mutated’ are high confidence only predictions tested with the mutated

sequences reference set (Table S5); ‘high or low conf, mutated’ are high or

low confidence predictions tested with the mutated sequences reference

set; ‘HECTAR, mutated’ are predictions by HECTAR (Gschloessl et al., 2008)

tested with the mutated sequences reference set. Hypothetical ‘perfect’

(green dot with red ring) and ‘perfect inverse’ (red dot with green ring) pre-

dictions are included on the diagram; the dashed line corresponds to ran-

dom guesses.
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(Horton et al., 2007) and MultiLoc2 (Blum et al., 2009),

none of which was developed to predict protein localiza-

tion in secondary plastids. Therefore it remains unclear

whether the apparent advantage of Mernberger et al.’s

(2014) approach over the other tested prediction tools

comes from a methodological improvement or from use of

specific training sets for the tested organisms.

The performance of our method was also evaluated in

the cryptophyte Guillardia theta with 54 homologues of

proteins from the P. tricornutum reference set (Curtis et al.,

2012). For G. theta, the ‘plastid, low confidence’ prediction

has a sensitivity of 0.85 and a specificity of 0.88

(MCC: 0,73), while the ‘plastid, high confidence’ prediction

has a sensitivity of 0.70 and a specificity of 0.97 (MCC:

0.72) (Curtis et al., 2012). Use of our diatom-optimized pre-

diction method for other organisms with secondary plast-

ids of the red algal lineage, such as cryptophytes, appears

to come with a loss of sensitivity, at similar levels of speci-

ficity (compare to Table 1).

Gene catalog optimization

The predicted complete proteomes of T. pseudonana and

P. tricornutum were optimized to ensure that the datasets

used for plastid localization predictions were composed

primarily of full-length proteins (Figure 5). This was neces-

sary because of the challenges involved in complete gene

annotation, especially in non-model organisms, where

identification of 50 exons can be particularly problematic

(Yandell and Ence, 2012; Gruber and Kroth, 2014). Indeed,

many studies involving diatom protein annotation have

resorted to manual extension of original gene models

(Kroth et al., 2008; Huesgen et al., 2013). For our optimiza-

tion, all protein predictions for the two diatoms available

through the Joint Genome Institute genome portal

(www.jgi.doe.gov) were considered (over 50 000 gene

models for each genome), including user-defined gene

models. The T. pseudonana models were extended in both

directions–upstream to the first ‘ATG’ codon and down-

stream to the first stop codon in the same reading frame.

For both diatoms, models over 10 kb in length were

assumed to be incorrect and were excluded from the data-

set. The resulting protein set for each diatom was further

optimized by identifying the longest gene model for a

given position on the genome with an N-terminal ATG (ini-

tiator methionine codon), with no internal stop codons,

with EST support, and with a C-terminal stop codon. The

so-called Joint Genome Institute (JGI) ‘filtered’ gene model

was selected in cases in which multiple gene models with

identical sequences fulfilled these criteria. Identical

sequences were removed from the optimized set of gene

models. As a final step, gene models derived from

unknown chromosome locations were evaluated for inclu-

sion in the optimized set. Proteins that were <95% identical

to a protein derived from a known chromosome location

were added to the optimized protein datasets for both dia-

toms (Datasets S1 and S2).

The resulting optimized datasets were composed of a

larger set of predicted proteins than is currently available

for download through the JGI genome portal (Table 2 and

Datasets S1 and S2). The percentage of gene models

beginning with an ATG increased substantially in both

genomes (from 83 to 96% in T. pseudonana and from 89 to

98% in P. tricornutum, see Table 2). The entire dataset was

analyzed via SignalP 3.0 NN. The number of predicted pro-

teins with signal peptides also increased, from 12 to 22%

of the total proteins in T. pseudonana and from 14 to 24%

in P. tricornutum (Table 2). Signal peptides, although not

conserved directly on the sequence level, nevertheless

have to fulfill structural requirements that are a function of

their primary sequence (Patron and Waller, 2007). The

increased number of predicted signal peptides in our

improved gene catalog therefore indicates that the addi-

tional sequence regions represent coding sequence under

actual selection pressure, as opposed to untranslated

regions, that are not under selection pressure to maintain

signal peptide features. We also compared the experimen-

tally verified sequences of our reference proteins with

either the optimized dataset or the original JGI dataset. In

the JGI dataset, gene model translation start sites were

identical to those of 77 of the 131 experimentally verified

proteins used as our reference sequences. With our opti-

mized dataset, gene model translation start sites were

identical to those of 121 of the 132 reference proteins

(Table S3). Together, these findings emphasize the

enhanced quality of our optimized datasets and reiterate

the difficulty of predicted targeting pre-sequences based

solely on homology to proteins from closely related

organisms.

Plastid proteome prediction

The optimized gene catalogs were used to identify nuclear-

encoded plastid proteins in T. pseudonana (Table S7) and

P. tricornutum (Table S8). The distribution of transit pep-

tide scores is similar between T. pseudonana and P. tricor-

nutum (Figure 6). Both curves are characterized by a

sudden decrease in the transit peptide score coinciding

with the absence of a phenylalanine residue at the first

position of the scored transit peptide. Our transit peptide

score cut-off of two was empirically optimized for predic-

tion performance. Analysis of this larger dataset indicates

that proteins exceeding this cut-off may lack a phenylala-

nine residue at the first position of the transit peptide. In

these instances, the other amino acids within the scoring

matrix window have to contribute much more to the over-

all score. The scores attained by sequences from the refer-

ence set show that a cut-off of two is sufficient to separate

plastid-targeted sequences from sequences targeted to

other compartments (Figure 6).
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The T. pseudonana optimized gene catalog contains

2915 proteins with predicted signal peptides and the P. tri-

cornutum optimized gene catalog contains 2648 proteins

with predicted signal peptides (Table 2). In T. pseudonana

996 proteins are predicted to localize to the plastid with

high confidence and 895 proteins are predicted to localize

to the plastid in P. tricornutum with high confidence. The

higher total number of genes in the T. pseudonana gen-

ome (13 344) compared with P. tricornutum (10 814) there-

fore is largely driven by proteins that are not targeted to

the plastid (Table 3). Using the ‘plastid, high confidence’

criteria, the G. theta genome contains 755 plastid proteins,

at a much higher total number of genes (24 840) (Curtis

et al., 2012), so also in this case the genome expansion is

mainly driven by genes encoding non-plastid proteins.

CONCLUSION

ASAFind combines high sensitivity with high specificity

compared to previously published prediction tools

(Gschloessl et al., 2008; Mernberger et al., 2014), and pro-

vides a powerful method for in silico prediction of plastid

proteins in algae with secondary plastids of the red line-

age. Furthermore, it allows the user to adjust predictions

either in favour of sensitivity or specificity in order to

enable the discovery of new plastid proteins (high sensitiv-

ity) or to validate sequences (high specificity) predicted by

other approaches. We provide here the approximately 8%

of proteins encoded in the nuclear genomes of diatoms

(T. pseudonana and P. tricorntum) that are predicted to be

plastid localized with high specificity and high confidence.

only for Thaps

Extend CDS to upstream-
most “ATG” that still results in 
uninterrupted reading frame
Extend CDS in downstream 
direction until it ends with an 
in-frame stop codon

Regular genome assembly, 
filtered models

Thaps: 11 390

Extended gene models

Thaps: 4254

Remove gene models with lenght >10 kb
Group models by genomic coordinates
Choose best model for each model group with the following criteria:

1) starts with “ATG”
2) has the longest total length
3) has EST support
4) no internal stop codons
5) ends with stop codon

Dereplicate the resulting list at 100% identity level

Dereplicate at 100% 
identity level
Remove sequences with 
95% or greater identity to 
any of the regular assembly 
models

Gathering of input 
gene models

Quality filtering and 
removal of redundancy

Unmapped sequences, all 
gene models

Thaps: 386, Phatr: 377

Regular genome assembly, 
user models

Thaps: 171; Phatr: 285

Regular genome assembly, 
all gene models

Thaps: 58 235; Phatr: 56 474

Optimized gene catalog

Thaps: 13 344; Phatr: 10 814

Figure 5. Gene catalog optimization.

Source gene catalogs and procedures applied to obtain the optimized gene catalogs for Thalassiosira pseudonana (Thaps) and Phaeodactylum tricornutum

(Phatr), see Datasets S1 and S2.
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This percentage is similar to predictions for the green alga

Chlamydomonas reinhardtii (7% nuclear-encoded plastid

proteins; Terashima et al., 2011).

EXPERIMENTAL PROCEDURES

Annotation of scoring matrix and reference sets

Experimental data were compiled from published studies (Liaud
et al., 2000; Apt et al., 2002; Domergue et al., 2003; Kilian and
Kroth, 2004, 2005; Kroth et al., 2005; Tanaka et al., 2005; Gould
et al., 2006b; Gruber et al., 2007, 2009; Lepetit et al., 2007; Siaut
et al., 2007; Sommer et al., 2007; Kitao et al., 2008; Ast et al., 2009;
Hempel et al., 2009, 2010; Kitao and Matsuda, 2009; Weber et al.,
2009; Bullmann et al., 2010; Felsner et al., 2010; Joshi-Deo et al.,
2010; Allen et al., 2011, 2012; Bruckner et al., 2011; Grouneva
et al., 2011; Moog et al., 2011; Tachibana et al., 2011; Vugrinec
et al., 2011; Sturm et al., 2013). The gene models for the experi-

mentally tested proteins were manually verified (Table S3). The
Thalassiosira pseudonana v3.0 (Armbrust et al., 2004; Bowler
et al., 2008) and Phaeodactylum tricornutum v2.0 (Bowler et al.,
2008) genome databases were accessed online via the United
States Department of Energy Joint Genome Institute (JGI) genome
portal (http://genome.jgi-psf.org/) (Grigoriev et al., 2012) using
TBLASTN and BLASTP (Altschul et al., 1997). If none of the auto-
matically created gene models was complete, gene models were
manually edited with the editing function of the JGI genome portal
(Grigoriev et al., 2012). Local BLAST (Altschul et al., 1997)
searches were performed using the program BioEdit (Hall, 1999).

Software and scripting techniques

For the prediction of signal peptides SignalP v3.0b (Bendtsen
et al., 2004) and SignalP4.0 (Petersen et al., 2011) were installed
locally on a Linux system running Ubuntu. SignalP was invoked
using the ‘euk’ option and proteins were judged SignalP positive
based on the NN criterion.

For statistical analyses and formatting, data were processed
using Perl scripts (Strawberry Perl for Windows – 5.12.3.0, http://
strawberryperl.com/). Statistical figures and the ROC plot were
prepared following the methods described in (Baldi et al., 2000;
Brown and Davis, 2006; Fawcett, 2006). Sequence logos (Schnei-
der and Stephens, 1990) were prepared using the WebLogo
(Crooks et al., 2004) server (http://weblogo.berkeley.edu/).

ASAFind was implemented in Python 2.7 (https://www.python.
org/) using Biopython v1.63 (Cock et al. 2009) and is available as a

Table 2 Gene catalog optimization. Results of the gene catalog optimization procedure in comparison with Thalassiosira pseudonana
(Thaps) and Phaeodactylum tricornutum (Phatr) genome assemblies

Gene models total Gene models beginning with ‘ATG’ (%) Gene models with signal peptides (%)

Thaps v3.0 initial releasea 11 776 – 1384 (12)
Thaps v3.0 filtered modelsb 11 390 9477 (83.2) 2077 (18.24)
Thaps optimized catalogc 13 344d 12 756 (95.59) 2915e (21.85)
Phatr v2.0 initial releasea 10 402 – 1479 (14)
Phatr v2.0 filtered modelsb 10 025 8917 (88.94) 2070 (20.65)
Phatr optimized catalogc 10 814f 10 611 (98.12) 2648g (24.49)

aSee Bowler et al. (2008).
bDownloaded via the JGI genome portals on 8 August 2011.
cSee Figure 5 and text for details.
dAll sequences in Dataset S1.
eSignalP positive sequences in Table S7.
fAll sequences in Dataset S2.
gSignalP positive sequences in Table S8.
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Figure 6. Transit peptide score distribution.

Distribution of transit peptide scores for the sequence window with the

highest cleavage site score of each SignalP positive sequence in the opti-

mized gene catalogs, sequences from the native experimental reference set

(Tables S3 and S4) are highlighted in the diagram for Phaeodactylum

tricornutum, see Tables S7 and S8 for raw data. BLS, ‘blob’-like structure

(Kilian and Kroth, 2005); ER, endoplasmic reticulum.

Table 3 Plastid protein prediction results. Predicted plastid pro-
teins in the optimized gene catalogs for Thalassiosira pseudonana
and Phaeodactylum tricornutum, numbers in parentheses are per-
centages of total number of sequences in the optimized gene cata-
logs, for complete prediction results see Tables S7 and S8

Thalassiosira
pseudonana

Phaeodactylum
tricornutum

Plastid, high confidence only 996 (7.46) 895 (8.28)
Plastid, high or low confidence 1568 (11.75) 1608 (14.87)
Not plastid, SignalP positive 1347 (10.09) 1040 (9.62)
Not plastid, SignalP negative 10 429 (78.15) 8166 (75.51)
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web server at http://rocaplab.ocean.washington.edu/tools/asafind.
A standalone version, which offers the option of a custom weight
matrix based on sequences of user interest is also available at the
same location and as Appendix S1.

Input data

Protein sequences were downloaded from the JGI genome portals
for Thalassiosira pseudonana v3.0 (Armbrust et al., 2004; Bowler
et al., 2008) and Phaeodactylum tricornutum v2.0 (Bowler et al.,
2008) on Aug. 8, 2011 (All Models and User Models) and 5 October
2012 (unmapped models) and processed as described in the
results section.
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