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Abstract

For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, 
involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a 
highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the 
X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed 
X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, 
PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer 
and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone 
fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, 
it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract 
reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. 
In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 
in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 
among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmis-
sion, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
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Abbreviations

ABD1  Actin-binding domain 1
ABD2  Actin-binding domain 2
ALS  Amyotrophic lateral sclerosis
AML  Acute myeloid leukemia

Arp2/3  Actin related protein 2/3 complex
BMD  Bone mineral density
CBM  Calmodulin-binding motif
CH  Calponin-homology
CHP1  Calcineurin EF-hand protein 1
CMT  Charcot–Marie–Tooth
CORO1C  Coronin-1C
CTC   Circulating tumor cell
CTCL  Cutaneous T-cell lymphoma
EMT  Epithelial–mesenchymal transition
F-actin  Filamentous actin
G-actin  Globular actin
HCV  Hepatitis C virus
iPSC  Induced pluripotent stem cell
MAPK  P38 mitogen-activated protein kinase
MN  Motor neuron
NCALD  Neurocalcin delta
NFATC1  Nuclear factor-activated T cells c1
NFκB  Nuclear factor ’kappa-light-chain-enhancer’ 

of activated B cells
NKRF  NFκB repressing factor
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NMJ  Neuromuscular junction
NSCLC  Non-small-cell lung cancer
OI  Osteogenesis imperfecta
PLS1  Plastin 1
PLS2  Plastin 2
PLS3  Plastin 3
RELA  RELA proto-oncogene, NFκB subunit
RD  Regulatory domain
SMA  Spinal muscular atrophy
SMN1  Survival of motor neuron protein 1
SMN2  Survival of motor neuron protein 2
SS  Sézary syndrome

VCF  Vertebral compression fracture
XCI  X-chromosomal inactivation

Introduction

The ever-growing number of diseases, in which PLS3 is 
involved, highlights the importance of this F-actin-binding 
and -bundling protein, with a broad spectrum of cellular 
pathways (Fig. 1). It seems that the expression of PLS3 is 
tightly regulated since knockout or mutations cause osteo-
porosis, while overexpression seems to trigger osteoarthritis 

A

B

Fig. 1  PLS3-associated disorders and main cell types involved. a 
PLS3 is involved in a variety of diseases, which associate with the 
PLS3 levels in a cell. Low protein abundance leads to osteoporosis, 
while increased levels are associated with cancer and osteoarthri-
tis. In some neurodegenerative diseases, where F-actin levels are 
reduced, PLS3 overexpression acts protective. Green letters imply a 
protective role of PLS3 while red letters highlight PLS3 as disease 
driving protein in the depicted disorders. PLS3 plastin 3, SMA spinal 
muscular atrophy, ALS amyotrophic lateral sclerosis. b PLS3 fulfills 

distinct functions within different cell types. Osteoclasts, osteoblasts, 
osteocytes and chondrocytes are the target cells within the bone dis-
ease spectrum, which are influenced when PLS3 is dysregulated. In 
some neurodegenerative disorders, where motor neurons (e.g., SMA) 
or Purkinje cells (e.g., ataxia) are affected, overexpression of PLS3 
showed a protective effect. Involvement of PLS3 in cancer is highly 
divers and includes different kinds of solid tissues as well as hemat-
opoietic and lymphatic cancers. The figure was created with BioRen-
der.com
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and various types of cancer. Instead in several neuromus-
cular disorders, such as spinal muscular atrophy (SMA), 
amyotrophic lateral sclerosis (ALS) and CHP1-associated 
ataxia, PLS3 overexpression acts as a protective modifier. In 
this review, we present the current knowledge on the gene 

expression and protein function, the various cellular func-
tions, in which PLS3 is involved and the disorders associated 
with PLS3 levels (decreased or increased) (Fig. 2).

Fig. 2  Cellular function of PLS3. The main function of PLS3 is its 
role in F-actin-binding and -bundling activity and, thus, in F-actin 
dynamics. Consequently, PLS3 is involved in endocytosis, cell motil-
ity, cell adhesion, mechanotransduction, pathogen infection,  Ca2+ 

homeostasis, exocytosis, vesicle trafficking, axonal local translation 
and others. PLS3 protein is depicted as red circle. ER endoplasmic 
reticulum, ECM extra cellular matrix. The figure was created with 
BioRender.com
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Gene and expression

In 1980, Bretscher & Weber identified fimbrin (later 
renamed to plastin), a 68 kD protein isolated from small 
intestine of the chicken [1]. Plastins are a family of actin-
binding and -bundling proteins consisting of three tissue-
specific paralogs PLS1, PLS2, and PLS3 localized in humans 
on chromosomes 3, 13 and X, respectively [2]. The three iso-
forms share approximately 70% nucleotide sequence identity 
[3]. PLS1 (plastin 1, I-plastin) is expressed in the intestine, 
colon, kidney and hair cell stereocilia of the inner ear, PLS2 
(plastin 2, L-plastin) in hematopoietic cell lineages and 
many types of cancer cells, and PLS3 (plastin 3, T-plastin), 
the most abundant isoform, in cells from solid tissues [2, 3]. 
In lower organisms, such as yeast, only one isoform is pre-
sent, known as fimbrin or Sac6. Before 2008, papers referred 
to fimbrin or T-plastin, and only after that, the correct name 
of plastin 3 has been established in publications.

The expression of PLS3 is of utmost interest in the con-
text of several medical conditions, such as spinal muscular 
atrophy (SMA), osteoporosis, osteoarthritis as well as a large 
number of cancers. While the regulation of the PLS3 expres-
sion in different tissues is still elusive, several mechanisms 
have been proposed, which do not necessarily exclude each 
other (Table 1). Early reports stated that PLS3 expression 
is limited to solid tissues [4]. However, elevated expression 
levels were found in blood samples in about 5% of healthy 
individuals [5]. PLS3 shows high expression in the fetal and 
adult spinal cord and PC12 cells during neuronal differentia-
tion, where it accumulates in growth cones [5]. PLS3 mRNA 

is enriched and locally transcribed in the axonal compart-
ment of motor neurons [6].

PLS3 is located in both, humans and mice, on the 
X-chromosome next to the macrosatellite DXZ4 [7]. In 
women, approximately 15% of genes escape the X-chro-
mosomal inactivation (XCI) and are, therefore, bialleli-
cally expressed [8]. Another 15% of genes variably escape 
XCI in a tissue-specific manner [8–10]. PLS3 is a facul-
tative escape gene in humans but not in mice [11]. The 
macrosatellite DXZ4 is essential for XCI and has a highly 
variable repeat number of 50–100 copies of a 3 kb repeat 
monomer [12]. Interestingly, on the inactive X-chromo-
some, DXZ4 is hypomethylated and binds to the transcrip-
tional regulator protein CCTF-binding factor (CTCF), 
both features of chromatin regulation [13]. It has been 
hypothesized that the copy number of DXZ4 may modu-
late the escape of genes in its molecular neighborhood 
and thereby the expression level of PLS3 in females [14].

Accordingly, in SMN1-deleted asymptomatic women 
of spinal muscular atrophy (SMA) discordant families, 
the PLS3 expression is elevated in blood and Epstein–Barr 
Virus transformed lymphoblastoid cells but not in their 
SMA-affected siblings, indicating a sex-specific protec-
tive effect (see more details in Sect. 3.6.1) [5]. Moreover, 
mutations or knockout of PLS3 mainly affect men or male 
mice, while women or female mice are either very mildly or 
not affected, further supporting the sex specificity of PLS3 
expression [15, 16].

Table 1  Mechanisms that were proposed to regulate the expression of PLS3 in cancer

Mechanism Medical condition Cell type Effect References

SNPs (PLS3)
rs871773 C > T

Colorectal cancer Circulating tumor cell Low recurrence time [84]

SNPs (PLS3)
rs6643869

Colorectal cancer Circulating tumor cell Low recurrence time
Sex-specific in women

[82]
[83]

Copy number gain chromosomal instability Colorectal cancer Circulating tumor cell Metastasis 
Poor prognosis

[79]

Expression associated with EMT Breast cancer Circulating tumor cell Poor prognosis
Especially triple-negative and 

Luminal A subtypes

[85]
[86]

PLS3 triggers PI3K/AKT signaling Pancreatic cancer PACA cells Poor survival [75]
Non-small-cell lung cancer Lung cancer Poor survival [91]
UV-resistance Bladder, prostatic, 

head and neck cancer
Bladder, prostatic, head 

and neck cancer cells
[92, 93]

PLS3 as downstream target of Lamin A Colorectal cancer [81]
Suppression of PLS3 by ZNF471 Gastric cancer Gastric cancer cells [90]
Overexpression of PLS3 by LOXL1 Gastric cancer Gastric cancer cells [88]

Promoter-specific hypomethylation Sézary syndrome CD4 + Favorable disease outcome [98]
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Function

The main function of PLS3 is in F-actin-binding and -bun-
dling. Consequently, PLS3 is involved in all processes 
dependent on F-actin dynamics such as cell motility, focal 
adhesion, cell division, endocytosis, neurotransmission, 
vesicle trafficking, axonal local translation, intracellular 
calcium PLS3-dependent processes, pathogen infection and 
others (Fig. 2).

Protein structure

The three plastin isoforms seem to have different effects 
on the actin cytoskeleton organization depending on the 
cell type [17]. Plastins are monomeric proteins with a sin-
gle polypeptide chain composed of two tandem repeats of 
actin-binding domains (ABD1 and ABD2) [18]. Each of 
these ABDs encompasses a pair of ~ 125 residue calponin 
homology (CH) domains (ABD1: CH1 and CH2, ABD2: 
CH3 and CH4) [19]. Each of the CH domains consists of 
four major α-helices. While three α-helices form a loose 
bundle of helices, the fourth is orientated perpendicular to 
the major bundles [20]. At their N-terminal end, plastins 
possess a  Ca2+-binding regulatory domain (RD) of approxi-
mately 100 amino acids. The RD contains two EF-hands 
and a calmodulin-binding motif (CBM) [3, 21, 22]. The RD 
is connected with the ABD core via a linker [23]. PLS3 
consists of 630 amino acids and the molecular mass of the 
protein is 70.8 kDa. In humans, the homology between PLS1 
and PLS2 is 73%, 75% between PLS1 and PLS3, and 79% 
between PLS2 and PLS3 [3]. Comparisons of the plastin 
isoforms between humans and mice show 94% identity for 
PLS1, 96% for PLS2, and 99% for PLS3 [3].

Plastins cross-link actin filaments into bundles, which are 
higher-order assemblies, through the tandem pair in their 
ABDs [24, 25]. So far, only the crystal structures of the 
ABD1 and ABD2 actin-binding cores are resolved [24, 26]. 
A homology-based model of the PLS3 actin-binding core 
has been generated using the Phyre2 web portal for pro-
tein modeling, prediction, and analysis [23]. The full-length 
crystal structures of all plastins remain to be determined.

F-actin dynamics/ cell motility

The main function of plastins is the binding and bundling 
of F-actin [3, 23, 27, 28]. F-actin is a polymer composed 
of globular (G-actin) subunits. These microfilaments are 
the main components of the cytoskeleton [29]. The actin 
cytoskeleton is a complex network whose dynamic forma-
tion influences numerous fundamental physiological cellular 
processes, such as focal adhesion, cell motility, endo- as well 
as exocytosis, mechanotransduction and cell division [30]. 

The F-actin network underlies a tight regulation and must be 
assembled, maintained, and disassembled in 3D at the cor-
rect time and place, and with proper filament organization 
and dynamics [31]. Thereby, the dynamic formation of the 
actin cytoskeleton is dependent on various F-actin-binding 
and -bundling proteins [32].

Plastins are involved in the assembly and organization 
of the actin cytoskeleton through their two ABDs. Bind-
ing of each ABD to two separate actin filaments promotes 
the formation of a bundle with a center-to-center distance 
of ~ 120 Å between the filaments [28]. However, the exact 
mechanism by which the ABD1 and ABD2 bind and bundle 
actin is poorly understood. It is assumed that both ABDs dif-
ferently interact with actin [26]. Actin-binding is mediated 
through ABD1, while bundling is facilitated through both 
ABDs [33]. Furthermore, the plastin isoforms differentially 
interact with F-actin resulting in distinct F-actin organization 
[17, 20]. It has been suggested that PLS3 binding via both 
ABD1 and ABD2 is essential at the leading edge and focal 
adhesions [23]. The F-actin-binding and -bundling activity 
of the ABD domains is  Ca2+ dependent, as the binding of 
 Ca2+ by EF-hands inhibits the interaction with F-actin [33, 
34].

The ABD cores form a compact and rather globular struc-
ture in an antiparallel arrangement induced by the contact 
between the CH1 and CH4 domains at the N- and C-ter-
minal ends [3, 26]. This conformational structure seems to 
be highly dynamic and dependent on the presence of  Ca2+ 
[35]. The conformational plasticity of CH2, located within 
the structurally polymorphic ABD1, influences the diverse 
functions of different actin assemblies [22]. This indicates 
that the structural plasticity is related to the function of the 
plastin isoform. Furthermore, the crystal structure indicates 
that the two ABDs harbor different binding characteristics 
with F-actin [20, 33].

As an F-actin-binding and -bundling protein, PLS3 plays 
an essential role in cell motility [36]. The movement of a cell 
is activated by adhesion to the extracellular matrix, executed 
through membrane remodeling at the leading edge and con-
trolled by the actin cytoskeleton [37, 38]. PLS3 promotes 
membrane protrusion and cell migration to overcome gaps 
in the extracellular matrix and when adhesion is spatially 
gapped [39]. In the skin, PLS3 influences the basement 
membrane assembly [40]. Furthermore, PLS3 is involved 
in membrane trafficking under hypoxia [41]. All these func-
tions arise from the interaction with the actin cytoskeleton. 
It has been speculated that PLS3 serves as a mechanical link 
between the actin polymerization network at the front of 
the cell and the myosin motor activity in the cell body [36]. 
PLS3 modulates the actin dynamics and generates force 
independent of cross-bridge formation mediated by actin 
related protein 2/3 complex (Arp2/3) [42]. The Arp2/3 com-
plex facilitates the actin polymerization which is essential 
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to generate pushing forces capable of deforming the cell 
membrane [31].

Influence of intracellular calcium 
on PLS3-dependent processes

The crucial role of  Ca2+ for F-actin-bundling by plastins has 
been a subject of research for a long time [43]. Especially, 
in terms of PLS2, studies focused on its  Ca2+-dependent 
functions regarding actin-bundling and specifically T-cell 
activation and motility [34, 44], reviewed in Babich, Bur-
khardt [45], Morley [46].

Interestingly, comparisons of the three plastin isoforms 
show a much lower amino acid identity at the N-terminal 
EF-hand domains than the higher conserved actin-binding 
domains. Thus, several studies compared the plastin iso-
forms regarding their  Ca2+ sensitivities and  Ca2+-dependent 
functions [33, 47–49].

EF-hands of both PLS2 and PLS3 were shown to consist 
of alpha-helix-rich sequences and underlie conformational 
changes upon  Ca2+-binding [47]. PLS3 has a lower sensitiv-
ity for  Ca2+ as indicated by only a slight change of the EF-
hands’ secondary structure in contrast to PLS2. Also, higher 
concentrations of  Ca2+ are required for structural changes 
of the EF-hand motifs of PLS3 [47]. Congruently, monitor-
ing the disassembly of plastin/F-actin bundles induced by 
 Ca2+, PLS3 has been proven to be less sensitive to  Ca2+ 
than both PLS1 and PLS2 [33]. Further analysis has shown 
a difference in affinity to  Ca2+ within the two EF-hands of 
PLS3 (one high and one low affinity site) in contrast to PLS2 
comprising two high-affinity sites [47].

Generally, the presence of  Ca2+ reduces the ability to 
bundle F-actin in all three isoforms [33]. Further studies 
on the functional linkage between the EF-hands and the 
linker region CBM revealed inhibition of rapid proteolytic 
cleavage at the CBM upon  Ca2+ stimulation, emphasizing 
a  Ca2+-dependent linkage of these two regions in all three 
human isoforms. Focusing on the impact of  Ca2+ on the 
ABDs, inequality is found: one ABD, most likely ABD1, 
binds F-actin independent of the presence of  Ca2+; whereas 
at the other ABD, most likely ABD2, F-actin-binding is 
inhibited by  Ca2+ bound by the EF-hands [33].

To gain further insight into the process of  Ca2+-binding to 
the EF-hands as well as into kinetic and structural details on 
 Ca2+-regulated domains of plastins, three biophysical meth-
ods have been used: surface plasmon resonance studies, iso-
thermal titration calorimetry studies, and nuclear magnetic 
resonance spectroscopy [48]. In terms of  Ca2+-regulated 
function, a crucial role of the regulatory helix 5 (H5) linker 
region localized between the second EF-hand motif and the 
first CH1 domain of ABD1 has been suggested, which may 
even differ between the plastin isoforms. Precisely, the H5 
region of PLS3 (TPL-EF-H5 construct) is not displaced by 

the bee venom peptide melittin, unlike a possible displace-
ment in PLS2 (LPL-EF-H5 construct) [48].

Another approach assessed the  Ca2+-coordination struc-
tures of PLS2 and PLS3 and their synthetic peptide analogs 
by Fourier transform infrared spectroscopy [49]. Based on 
the results, an association between the aggregation tendency 
of the two  Ca2+ binding sites of PLS3 and its lower sensitiv-
ity to  Ca2+ was suggested [49].

The importance of well-regulated  Ca2+ homeostasis for 
the proper function of PLS3 is underlined by several find-
ings of disturbed  Ca2+ regulation associated with loss of its 
functionality, shown in PLS3 rescue in SMA models [50] 
or osteogenesis imperfecta (OI)-associated PLS3 mutations 
[23].

Endocytosis

The role of PLS3 in endocytosis has been first described in 
budding yeast [51]. Knockout of the PLS3 ortholog, Sac6, 
causes massive impairment of endocytosis; especially of the 
receptor-mediated internalization of the pheromone α-factor 
[51]. Actin-bundling is a crucial process required for proper 
endocytosis in which Sac6-mediated bundling of actin fila-
ments forms a framework in the early stages of this process 
[52]. Actin organization in cortical actin patches, which are 
dynamic actin structures within the inner faced layer of the 
cell membrane in yeast, dependent on actin-bundling pro-
teins Sac6 and Scp1 (ortholog of human SM22). Loss of 
both proteins results in tremendous defects in patch biogen-
esis (increased patch lifetime), while Sac6 loss alone causes 
random movement or patch disassembly, with the absence of 
fast movements [52]. In filamentous fungi, Ashbya gossypii 
and Aspergillus nidulans, the polarized hyphal tip growth 
and endocytosis are Sac6/fimbrin A dependent, and their 
lack causes reduced rates of endocytic uptake [53, 54]. This 
highlights the importance of PLS3 orthologs as actin regu-
lators and the requirement of functional actin dynamics to 
fulfill proper extension growth across species. Additionally, 
Sac6 along with other actin-binding and -bundling proteins 
(such as Abp85) are required for the uptake of the maltose 
transporter in yeast [55]. Moreover, fimbrin cross-linkers, 
twisting the actin filaments, provide approximately one-sixth 
of the energy required for endocytosis [56, 57]. Importantly, 
Arp2/3-actin networks are crucial to generate the force dur-
ing membrane invaginations. Those networks are disrupted 
in Sac6-deficient cells and consequently result in disturbed 
endocytosis [56].

In fission yeast, it has been proposed that fimbrin selec-
tively regulates the access to actin filaments for other actin-
binding proteins, such as the tropomyosin Cdc8p [58]. 
Accordingly, in fimbrin-deficient cells, mislocalization 
of tropomyosin to actin patches results in increased patch 
lifespan and decreased motility [58]. Fimbrin is also able 
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to displace tropomyosin from actin filaments lowering the 
inhibition of myosin I by tropomyosin and thereby ensuring 
motor activity [59].

The role of PLS3 in endocytosis caught first attention in 
human studies when PLS3 has been identified as a protective 
modifier of SMA [5]. In the context of SMA, both F-actin 
levels and  Ca2+- homoeostasis are reduced, two processes 
crucial for endocytosis, but restored by PLS3 overexpres-
sion [5, 60–64]. Importantly, endocytosis is a key process 
in neurons as they rely on constant refilling of the recycling 
vesicle pool in the presynapse. Apart from other reasons, 
endocytosis is a main cellular process disturbed in SMA, 
contributing to disturbed function of neuromuscular junc-
tions (NMJs) [61, 65–68].

Another approach assessed defects in endocytic pathways 
in a SMA model and hypothesize that PLS3 increases the 
expression of endocytic proteins by supporting the availabil-
ity of ribonuclear protein granules containing the required 
components for their translation [68]. Local axonal transla-
tion is dependent on transport of mRNAs and microRNAs 
along the axons to the growth cone of polarized neurons. 
Thereby, mRNAs and microRNAs not only hitchhike on late 
endosomes and lysosomes but they also act as hubs for local 
translation, finally contributing to the function and mainte-
nance of neurons and neuronal circuits [69, 70]. Congru-
ently, PLS3 directly interacts with activated RAB5, an early 
endosomal protein, and thereby regulates endocytic activity 
in mammalian cells [71]. It is, therefore, tempting to postu-
late that PLS3 overexpression may restore impaired vesicle 
trafficking in SMA and consequently local translation.

Signaling

The dynamic regulation of F-actin assembly and the interac-
tion with the actin cytoskeleton is regulated by the coordi-
nated activation of actin assembly factors through different 
signaling cascades [31]. It is accepted that PLS3 is involved 
in these signal transduction pathways [72]. Early studies 
show that the up- or down-regulation of PLS3 influences 
different signaling pathways. Downregulation of PLS3 has 
been shown to inhibit the p38 mitogen-activated protein 
kinase (MAPK) signaling pathway in MDA-MB-231 cells, 
which mediates apoptosis [73]. In keratinocytes, PLS3 is 
involved in the calcineurin/nuclear factor of activated T-cell 
(NFAT) pathway, which is a major regulator of cell migra-
tion [74]. In osteocytes, PLS3 levels regulate the expression 
of RELA proto-oncogene, NFΚκB subunit. PLS3 interacts 
with NFκB repressing factor (NKRF) facilitating its translo-
cation into the nucleus, and thus the transcription of nuclear 
factor-activated T cells c1 (NFATC1) and an important fac-
tor in osteoclastogenesis [16]. Through the PI3K/AKT sign-
aling pathway, PLS3 regulates tumor progression by promot-
ing the proliferation and migration of cancer cells [75].

Several studies have demonstrated that PLS2 can be 
phosphorylated at positions Ser 5 and Ser7 during leuko-
cyte activation by various stimuli [3]. Phosphorylation 
of Ser5 is mediated by cAMP-dependent protein kinase 
A, while the relevant kinase for Ser7 is still controver-
sially discussed. In osteoclasts, phosphorylation of PLS2 
on Ser5 and Ser7 increases the F-actin-bundling capac-
ity [76] and the avidity for cellular F-actin and F-actin-
binding activity [77]. In macrophages, PLS2 is phospho-
rylated exclusively on Ser5 by stimulation with bacterial 
lipopolysaccharide [78]. Ser5 is only found in PLS2 
and not conserved in other plastin isoforms. To date, no 
phosphorylation of PLS3 is known and further studies 
are required [72].

Disease involvement

PLS3 levels require a tight balancing in the cell. Aberrantly 
increased levels are associated with cancer and osteoarthri-
tis. Instead in several neurodegenerative conditions associ-
ated with decreased F-actin levels, PLS3 overexpression acts 
protective. Instead, deletions or loss-of-function mutations 
in PLS3 cause osteoporosis in humans and mice. Finally, 
S-nitrosylation of PLS3 associates with thoracic aortic dis-
section (Fig. 1). Moreover, PLS3 is involved in infection and 
pathogen entry.

Cancer

Malignancies in solid tissues

A rising number of biomedical studies investigated PLS3 in 
the context of the most common malignancies (colorectal, 
prostate, breast, gastric, and lung cancer) and explored its 
potential use as a biomarker. Metastases in distant organs 
are the most common cause of death in these solid tissue 
tumors. The cell migration and invasion of tumor cells are 
driven by the modulation of the actin cytoskeleton. PLS3 
is highly expressed during epithelial–mesenchymal transi-
tion (EMT) in circulating tumor cells (CTCs) in colorec-
tal cancer. Elevated levels of PLS3 during EMT in CTCs 
negatively regulate expression levels of epithelial genes, 
and positively regulate the levels of mesenchymal genes 
and thereby increase the invasiveness of colorectal cancer 
[79]. Several mechanisms that could explain the regulation 
of PLS3 in CTCs had been suggested. Chromosomal insta-
bility, a hallmark of cancer formation, can trigger a copy 
number gain of Xq23 leading to PLS3 overexpression [79, 
80]. A study in colorectal cancer cells states that PLS3 is 
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a downstream target of Lamin A, which is a risk factor for 
this type of cancer. PLS3 in turn downregulates E-cadherin 
leading to increased invasiveness during EMT [81]. Fur-
thermore, genetic polymorphisms modifying PLS3 levels 
have been discussed. The intronic polymorphism rs871773 
C > T is associated with a low recurrence time of colorectal 
cancer, while the rs6643869 polymorphism correlates with 
the time of tumor recurrence in women and has been identi-
fied in CTCs [82–84].

PLS3 overexpression is found in two-third of CTCs 
from breast cancer patients in different stages of EMT 
and is associated with poor overall survival, especially in 
patients with luminal type A or triple-negative breast can-
cer [85]. Silencing of PLS3 in MDA-MB-231 triple-neg-
ative breast cancer cells increases the sensitivity towards 
the anti-cancer agent paclitaxel [73]. A recent study has 
published a gene panel consisting of seven genes (PLS3, 
MGB1, HER2, CK19, CDH1, CDH2, and VIM) that can be 
used to discriminate EMT stages in CTCs tested by qPCR 
[86]. For prostate cancer, a gene panel with 14 genes has 
been developed including PLS3, VIM, and CDH2, and in 
9.5% of patients an increased expression of PLS3 has been 
found [87]. Interestingly, LOXL1 downregulates CDH1 
and upregulates VIM, CDH2, PLS3, and SNAI2 in gastric 
cancer cells, where expression of LOXL1 correlates with 
EMT [88]. In gastric cancer, increased expression of PLS3 
indicates a poor prognosis and is associated with cancer 
differentiation, the depth of tumor invasion and EMT [89]. 
Chromatin immunoprecipitation (ChIP) assays in patients 
with gastric cancer have shown that the transcription factor 
ZNF471 acts as a tumor suppressor gene. ZNF471 binds 
the PLS3 promoter and suppresses its expression. Methyla-
tion of the CpG-methylation site of the ZNF471 promoter 
is a useful prognostic marker for overall survival in gastric 
cancer patients [90]. High PLS3 expression is also a feature 
of pancreatic cancer cells. Here, PLS3 acts as an oncogene 
and its overexpression triggers the activation of the PI3K/
AKT signaling pathway leading to cancer progression [75]. 
In non-small-cell lung cancer (NSCLC), increased PLS3 
plasma levels are a predictor of poor survival. PLS3 expres-
sion is of therapeutic value and can predict the responsive-
ness to treatment with Nivolumab—a PD-1 monoclonal anti-
body—in NSCLC patients [91]. Moreover, UV-light- and 
cisplatin-resistant tumors show elevated PLS3 expression 
[92, 93]. Downregulation of PLS3 in human liver cancer 
cells increased the sensitivity of these cells to cisplatin [94]. 
Cells lacking PLS3 expression are sensitive to DNA damage 
and silencing of PLS3 led to increased damage by UV light. 
By this, expression of PLS3 could be used as a therapeutic 
marker in irradiation therapy [94]. Together, the mentioned 
studies suggest an association of increased PLS3 expression 
during EMT and a high prognostic potential of PLS3 as a 
biomarker in malignancies of solid tissues. The expression 

levels of PLS3 represent a useful marker for cancer progno-
sis especially as part of a gene panel.

Malignancies of the hematopoietic and lymphatic 
system

Elevated PLS3 expression is a negative prognostic marker 
for acute myeloid leukemia (AML), the most common acute 
leukemia in adults, while knockdown of PLS3 increases sur-
vival in vivo [95]. In Sézary Syndrome (SS), an aggressive, 
rare form of cutaneous T-cell lymphomas (CTCL), circu-
lating  CD4+ T-cells show increased expression of PLS3, 
TWIST1 and GATA6 compared to normal  CD4+ T-cells [96, 
97]. The promoter regions of all three genes have been found 
to be hypomethylated in SS  CD4+ T cells indicating an epi-
genetic regulation of the expression levels. This is of large 
interest, since all three genes are located on different chro-
mosomes [98–101]. Therefore, PLS3 has been suggested as 
a biomarker for SS  CD4+ T cells and it is associated with an 
unfavorable disease outcome [102–104].

Bone disorders

Osteoporosis

Dynamic regulation of the actin cytoskeleton by actin-bind-
ing and -bundling proteins like PLS3 [3, 20] is particularly 
crucial in the musculoskeletal system to instantly adapt to 
environmental changes through mechanotransduction [105, 
106]. Mechanotransduction is the conversion of mechanical 
signals into cellular response, which is assumed to play an 
essential role in several pathologies of the musculoskeletal 
system, such as osteoporosis [107, 108] and osteoarthritis 
[109–111]. In chicken, fimbrin is detected in the dendrites 
of osteocytes [105, 112], which play a key role in mecha-
notransduction [113]. Therefore, PLS3 could influence the 
mechanical signal transformation [108].

In 2013, pathogenic variants in PLS3 have been reported 
to be associated with osteoporosis including fractures in 
men and mild osteoporosis in women [108]. Moreover, 
PLS3 showed a significant association with osteoporosis 
in women upon menopause, suggesting that mutations in 
PLS3 not only associate with the monogenic but also the 
complex genetic trait of osteoporosis [108]. Osteoporosis 
is a multifactorial disease that is dependent on hormonal, 
environmental as well as genetic factors [114, 115]. Low 
bone mineral density (BMD) seems to be genetically deter-
mined in 50–85% of cases [114, 116–118]. This emphasizes 
the genetic component as a determining factor for BMD 
and its relating fracture risk. Primary (hereditary) osteo-
porosis usually becomes symptomatic in childhood and is, 
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therefore, referred to as early-onset osteoporosis. The clini-
cal features are characterized by low BMD (age normalized 
average score (Z-score < 2.0)), occurring vertebral compres-
sion fractures (VCFs), or low-trauma fracture history [119, 
120]. The most common form of monogenic osteoporosis is 
OI [120], which additionally affects extraskeletal features 
like blue sclera, joint hypermobility, and deafness [15, 114, 
121]. Around 85–90% [15, 114] of OI cases are linked to 
a dysregulation in type I collagen, although the list of OI-
associated genes is increasing [15, 114, 122–125].

Up to date, 27 mutations in PLS3 are associated with 
early-onset osteoporosis (Table 2; Fig. 3). Nevertheless, rare 
variants also indicate OI traits [108, 126, 127], which is why 
PLS3 was also included as a genetic cause for OI according 
to Van Dijk, Sillence [121]. However, several studies have 
reported variants that lead to severe skeletal abnormalities 
among women, resembling the osteoporotic phenotype of 
men [108, 115, 128–130]. This huge variation in heterozy-
gous women is suggested to be caused by X-inactivation of 
the mutant allele or PLS3 escaping X-inactivation which is 
why women are less severely affected [15, 126, 129, 131, 
132]. Even though bone morphometry was very heterogene-
ous [16, 126, 133–136], most male patients showed periph-
eral fractures, low BMD, VCFs, especially in the thoracic 
spine, and low bone turnover rate, while only a few devel-
oped extraskeletal OI traits [108, 126–128, 131, 137–140], 
developmental delay [15, 127] or neuromuscular abnormali-
ties, like waddling gait [108, 126, 131, 141]. So far, no spe-
cific biomarkers have been identified, which can distinguish 
genetic factors of osteoporosis, although microRNAs are 
getting more and more popular as functional markers [120, 
142]. This makes it difficult to diagnose PLS3 mutations, 
although genetic analysis would be important to assess bone 
fragility risk within families. Thus, to find genetic causes 
of bone disorders, it is recommended to use gene panel 
screening containing known monogenic osteoporosis genes 
in fracture-prone children to identify genetic factors influ-
encing bone health and to reveal family risk [114, 143–145].

In summary, most of the osteoporosis-related PLS3 vari-
ants are frameshift [108, 122, 135, 137, 138, 144] or non-
sense mutations resulting in premature termination codons 
[108, 128, 130, 140], which are followed by mRNA decay 
[108, 128, 131, 135]. Next to that, partial deletions within 
PLS3 were identified [126, 140, 146]. Surprisingly, no phe-
notypic differences were seen between mutations causing 
deletion or truncation of PLS3 protein or missense or in 
frame insertion mutations resulting in mutated PLS3 protein, 
most likely because all types of mutations cause a loss of 
function of PLS3 [108, 128–131, 135, 140, 147].

Studies of missense mutations in full-length PLS3 
report impairments in F-actin-bundling ability or defects 
in  Ca2+ sensitivity, which lead to localization shifts within 
the cell and can also disturb  Ca2+-dependent structural 

rearrangements necessary for actin dynamics [23]. Impaired 
actin dynamics caused by mutations within the ABD2 of 
PLS3 result in inefficient F-actin-bundling properties, with-
out influencing actin-binding by ABD1 [23]. In turn, this 
specific mutation interferes with PLS3′s actin-cytoskeletal 
association and thus, its localization at the lamellipodia and 
leading edge [23]. Considering these findings, it could be 
hypothesized that the proper intracellular localization of 
PLS3 is dependent on its actin-bundling function [23]. Simi-
larly, in another study, a PLS3 mutation, disrupting the ABD 
interface, results in conformational changes and defective 
actin-binding and -bundling function [140].

A cellular mislocalization and impaired  Ca2+-dependent 
actin-associated distribution of PLS3 were also related to 
mutations influencing the  Ca2+ sensitivity, causing either 
hypo- or hypersensitivity to  Ca2+. Misregulated PLS3 
cycling could thereby result in impaired bone homeosta-
sis and might explain the osteoporotic phenotype in these 
patients [23].

To analyze the proposed functions of PLS3 regarding 
mechanotransduction [5, 15, 108, 120, 143, 144, 148],  Ca2+ 
regulation [23, 33, 149], osteoblastic bone mineralization 
[15, 120, 126, 131, 134, 143, 144, 150], osteoclastogenesis 
[16] and vesicular trafficking [15, 16, 61, 151], various PLS3 
mutations have been investigated and mouse model studies 
established to specifically investigate the effect of PLS3 loss 
or overexpression [16].

It is well established that PLS3 is highly abundant in the 
dendrites of osteocytes, which not only control mechano-
sensing but also regulate osteoblast and osteoclast activity, 
and an impairment of this cell system might explain the 
resulting osteoporotic phenotype [136, 152]. Indeed, in oste-
ocytes, mutations in PLS3 interfere with cellular signaling, 
resulting in imbalanced bone homeostasis [121, 129]. In line 
with this, data acquired from PLS3 mutation carriers showed 
increased levels of apoptotic osteocytes together with abnor-
mal gene expression of osteocyte-related genes [153].

Because PLS3 mutations cause childhood-onset osteopo-
rosis associated with low BMD, it has been further hypoth-
esized that the bone-forming osteoblasts might be disturbed 
by PLS3 loss [129, 143]. In healthy bone conditions, PLS3 
abundance increases upon osteoblast differentiation [131, 
154]. However, in some patients with PLS3 mutations, 
matrix mineralization and osteoblast number are decreased 
[126, 129, 131, 155]. The resulting imbalanced levels of 
osteoblasts and osteoclasts, favoring bone resorption, might 
result in osteoporosis.

For differentiation and bone formation, osteoblasts rely 
on high  Ca2+ concentrations, which is in part regulated by 
the interaction of the  Ca2+-binding proteins PLS3 and PLS2. 
Through their interaction, bound  Ca2+ is released to increase 
the intracellular  Ca2+ level when the extracellular  Ca2+ level 
is low [149]. However, mutations in  Ca2+ binding domains 
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(EF-hands) of PLS3 weakened the interaction of PLS3 with 
PLS2, as revealed by PLS2-TRAP co-immunoprecipitation 
and western blot analysis, and thus might contribute to the 
osteoporotic phenotype [149].

To enable further analyses, a ubiquitous Pls3 KO mouse 
model has been generated that is comparable to loss-of-func-
tion mutations observed in OI patients [16]. In 3-month-
old Pls3 KO animals reduced cortical and trabecular thick-
ness and decreased bone parameters is seen. In line with 
humans, the osteoporotic phenotype in male mice is more 
pronounced than in females [16]. Importantly, the NFκB 
pathway, an essential pathway for osteoclastogenesis, is 
strongly influenced upon PLS3 loss [16]. NFκB signaling 
is initiated through binding of receptor activator of NFκB 
ligand (RANK-L) to its receptor RANK on the surface of 
osteoclasts, activating the transcription of nuclear factor-
activated T cells c1 (Nfatc1) [156]. Besides, Nfatc1 expres-
sion is negatively regulated by the NFκB-repressing factor, 
NKRF. As PLS3 binds to NKRF, Pls3 KO results in insuf-
ficient repression of Nfatc1 nuclear translocation, and there-
fore in increased osteoclast differentiation [16]. Moreover, 

podosomes, specific F-actin ring structures in osteoclasts, 
important for resorptive activity, migration, and adhesion, 
are structurally disturbed in Pls3 KO mice, which might 
be due to increased depolymerization of F-actin and, thus, 
instability of the cytoskeleton [16].

When investigating the effects of elevated PLS3 levels 
in mice carrying homozygously a human PLS3 transgene 
under an ubiquitously expressing promotor and integrated 
into the Rosa26 locus on chromosome 6, a thickening of 
the cortical bone is seen in 3-month-old female PLS3 OE 
mice compared to the controls [16]. This led to increased 
stiffness and breaking force in the females, which might be 
due to impaired bone renewal [16, 116]. In contrast to Pls3 
KO, PLS3 OE might cause increased translocation of NKRF 
to the nucleus, which in turn results in inhibition of Nfatc1 
transcription and consequently inhibits osteoclastogenesis 
[16]. These PLS3 effects might be additionally influenced 
by impaired intracellular vesicle dynamics [61]. Similar to 
the Pls3 KO, also in PLS3 OE mice defective podosome 
formation is detected, probably caused by reduced F-actin 
disassembly [16]. In summary, it is assumed that an optimal 

Fig. 3  Schematic representation of the PLS3 gene and correspond-
ing protein domains. Illustrated are the causative mutations for 
osteoporosis and the resulting amino acid changes that were previ-
ously published. All depicted mutations were modified according to 
HGMD Professional (NM_005032.7 (GRCh38)). References and 
clinical characterization are shown in Table 2. Note, RNA containing 
frameshift and nonsense variants (except for the last exon 16), most 

likely undergo nonsense-mediated mRNA decay and thus no pro-
tein is produced. E EF-hand motifs, CBM calmodulin-binding motif, 
RD regulatory domain, CH calponin-homology domain, ABD actin-
binding domain, Core actin-binding core domain, SNP single-nucle-
otide polymorphism, CNV copy number variation, NA not available; 
★ = PLS3 isoform including 18 exons, accession No.: NG_012518. 
The figure was created with BioRender.com
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amount of PLS3 is essential to sustain bone health. Neither 
removal of PLS3, resulting in bone abnormalities, nor an 
increased level of PLS3, leading to a hyperosteotic pheno-
type, seems to be beneficial for bone homeostasis but rather 
detrimental.

Osteoarthritis

In 2015, increased PLS3 levels have been reported in chon-
drocytes from patients with osteoarthritis compared to 
healthy individuals [157]. Osteoarthritis is a multifacto-
rial disease that affects the whole joint and is defined by 
degeneration of the articular cartilage, synovial inflam-
mation and increased bone mass in the subchondral bone 
[158]. This is in line with the observed elevated cortical 
thickness in PLS3 OE mice, which might be due to inhibited 
osteoclastogenesis [16]. Furthermore, the RANKL–RANK 
pathway plays a crucial role not only in osteoarthritis in gen-
eral [159–161], but seems to be stressed in osteoarthritis 
patients showing increased PLS3 levels [157]. Further, dif-
ferentially upregulated pathways in osteoarthritis patients 
are related to the actin cytoskeleton, endocytosis, TGF-β, 
MAPK, TNF-α, WNT and general metabolism processes 
[157]. As mentioned before, an interference of the mecha-
notransduction process is a crucial factor associated with 
the pathogenesis of osteoarthritis, where also the impact of 
PLS3 on the actin cytoskeleton is suggested to play an essen-
tial role [109–111]. Recent findings have shown that patients 
with varus gonarthrosis-induced osteoarthritis show higher 
levels of PLS3 in the medial compartment compared to the 
less affected lateral knee compartment. Besides, PLS3 was 
also predominantly found at the direct force-facing contact 
side of the respective joints [162]. These data might confirm 
previous assumptions that PLS3 seems to be involved in 
the mechanotransduction system and its enhanced level is 
associated with osteoarthritis. So far, less is known about 
the effect of PLS3 deletions on cartilage. Another study has 
shown no effect on the intervertebral disc of osteoporosis 
patients linked to loss of function and PLS3 deletions [148]. 
The influence of PLS3 overexpression, PLS3 loss, and PLS3 
mutations on articular cartilage itself remains elusive and the 
underlying mechanism affecting cartilage health still needs 
to be explored.

Since about 5% of the general population show increased 
PLS3 expression in blood [5], it would be interesting to 
study if the increased expression of PLS3 in blood is asso-
ciated with an increase of PLS3 in cartilage, that seems to 
be associated with osteoarthritis, and thus can act as a bio-
marker for osteoarthritis as well [162].

Thoracic aortic dissection

In terms of its role in diseases, PLS3 has also been shown to 
be involved in the causative mechanisms of thoracic aortic 
dissection in mice [163]. In more detail, S-nitrosylation of 
PLS3, induced by angiotensin II and mediated by inducible 
nitric oxide synthase, promoted the formation of a com-
plex of PLS3 with cofilin, which depolymerizes actin and 
facilitates actin dynamics, and plectin, which links various 
cytoskeletal proteins and is important in formation of cell 
junctions in endothelial cells. This process was detected to 
aggravate the development of thoracic aortic dissection via 
pathological angiogenesis as well as disruption of the adher-
ent junctions at the endothelial barrier [163].

Neurodegeneration

PLS3 is highly abundant in certain areas of the brain espe-
cially in the hippocampus but also in the spinal cord [164]. 
It is strongly upregulated during the development and matu-
ration of motor neurons pointing towards an important role 
in these processes [66]. PLS3 is an important interaction 
partner of several proteins or protein complexes involved 
in neurodegeneration disorders such as SMA [5, 61], ataxia 
[66], amyotrophic lateral sclerosis (ALS) [68], and Char-
cot–Marie–Tooth (CMT) [165] (Fig. 1).

Spinal muscular atrophy

One of the most unexpected findings was the discovery that 
PLS3 overexpression acts as a protective modifier of SMA 
[5]. SMA is primarily a neurodegenerative motor neuron 
disorder and the most common cause of genetic death in 
infancy. It is caused by deletions and functional loss of 
SMN1, while the copy gene SMN2 strongly modulates the 
disease severity [166].

Rarely, individuals carrying a homozygous deletion of 
SMN1 and three or four SMN2 copies are fully asympto-
matic, in contrast to approximately 99% of individuals with 
such a genotype who develop SMA. This suggests that pro-
tective modifier(s) in the genome of these subjects coun-
teract the detrimental effect of reduced SMN levels [5, 65, 
167]. PLS3 is the first human SMA protective modifier iden-
tified by transcriptome analysis of differentially expressed 
genes. All asymptomatic, but none of the symptomatic sib-
lings of six discordant families showed an up to ~ 40-fold 
upregulation of PLS3 in lymphoblastoid cell lines (where 
PLS3 usually is not expressed). Instead, the same individuals 
show no difference in PLS3 expression in fibroblasts, sug-
gesting a tissue-specific regulation [5]. Generation of iPSCs 
from fibroblasts of two discordant families showed that the 
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expression of PLS3 is highly elevated in asymptomatic indi-
viduals but not in symptomatic siblings [167]. This is also 
found in motor neurons (MNs) differentiated from iPSCs 
[167]. The mechanism behind is still not fully understood.

Moreover, three additional SMA protective modifiers, 
coronin-1C (CORO1C), a  Ca2+-dependent protein involved 
in actin dynamics, and two  Ca2+ sensor proteins, neuroc-
alcin delta (NCALD) and calcineurin-like EF-hand pro-
tein 1 (CHP1) have been identified [61, 65, 66]. Similar to 
PLS3, CORO1C acts protective when upregulated, whereas 
NCALD and CHP1 act protective when being downregu-
lated as shown in various animal models [61, 65, 66]. Impor-
tantly CORO1C and CHP1 interact with PLS3. All modifiers 
are involved in endocytosis and restore reduced endocytosis 
in SMA (see section of 2.4).

PLS3 overexpression acts protective not only in humans 
with SMN1 mutations but also in zebrafish, worm, fly and 
mouse SMA models [5, 61, 64, 168–170]. In all systems, 
PLS3 overexpression ameliorates or counteracts the major 
hallmarks of SMA pathology. Reduced SMN level impairs 
F-actin dynamics, which might be due to a disturbed trans-
port of β-actin mRNA along the axons [63]. F-actin dynam-
ics is pivotal for cellular integrity and is involved in cellular 
shape, migration, vesicular trafficking, RNA translation, 
and endocytosis, among others [171]. In highly polarized 
MNs, all these processes are particularly crucial. In severely 
affected SMA models, numerous F-actin-dependent pro-
cesses including axonal growth, axonal connectivity at the 
NMJ, neurotransmission, F-actin caging, synaptic vesicle 
recycling as well as proprioceptive input at MN somata are 
reduced [60, 64, 172–174]. All these processes were either 
restored or ameliorated by PLS3 overexpression as shown 
across various SMA animal models [61, 64].

Unexpectedly, while impaired NMJ function and motoric 
abilities are ameliorated in severely affected mice, survival 
is prolonged by only a few days [64]. To generate a more 
comparable situation as found in discordant SMA families 
(where 3–4 SMN2 copies are present, but never only 2 cop-
ies as in the severe SMA mouse model), an intermediate-like 
SMA mouse phenotype has been generated by subcutaneous 
injection of a low dose of SMN-ASOs (Nusinersen, 30 µg at 
P2 and P3) [61]. This slightly increased SMN level rescues 
inner organ function and doubles the survival rate. These 
mice still die due to MN loss with 1 month of age. In contrast, 
additional overexpression of human PLS3, from a homozy-
gous PLS3 transgene [64], rescues MN and NMJ function 
and significantly prolongs survival (60% survive > 250 days; 
30% > 400 days), clearly proving the protective effect of 
PLS3 overexpression in an intermediate SMA mouse model 
[61]. Besides, a gene therapy approach using adenovirus-
associated virus (AAV9)-PLS3, in combination with low 
dose SMN-ASO, ameliorates the SMA phenotype in mice 
and prolongs survival [175, 176]. These experiments provide 

strong evidence that PLS3 is a genuine protective modifier 
and highlight the power of combinatorial therapies in SMA.

Exo- and endocytosis are crucial for neurotransmission in 
neurons. To properly maintain neurotransmission, endocytic 
uptake is essential to replenish the recycling pool, which 
supplies vesicles to the readily releasable pool (RRP) [177]. 
At NMJs of severely affected SMA mice, the organization 
and number of docked vesicles on the presynaptic site are 
significantly reduced causing a decrease of neurotransmitter 
release. Moreover, the RRP size is significantly reduced in 
SMA, and the depletion and refilling time constants of this 
pool tend to be slower [64, 172, 178]. F-actin is essential 
in all types of endocytosis [179] and its inhibition reduces 
endocytosis in neurons under high frequency stimulation 
[180]. Indeed, reduced SMN levels dramatically decreased 
endocytosis in vitro, as well as the FM1-43 uptake at NMJ 
level in SMA mice. Instead, PLS3 overexpression fully res-
cued endocytosis to similar levels as observed in controls 
[61]. Moreover, endocytic uptake of FM1-43 in the presyn-
aptic terminal of NMJs upon electrical stimulation was 
significantly reduced in SMA and fully restored to control 
levels in SMA-PLS3 OE mice [61].

Chp1-associated ataxia

PLS3 is a genuine interaction partner of CHP1, a  Ca2+ sen-
sor protein [66]. CHP1 is ubiquitously expressed, but par-
ticularly abundant in neuronal tissues. CHP1 is a negative 
regulator of calcineurin, the most important phosphatase 
dephosphorylating the dephosphins involved in endocy-
tosis [181]. Biallelic mutations in CHP1 cause autosomal 
recessive spastic ataxia (SPAX9; MIM 618438) in humans 
and mice [182–184]. Moreover, PLS3 overexpression in 
homozygous Chp1 mutant mice delays but does not ame-
liorate the ataxic phenotype at an early disease stage by pre-
venting axon degeneration of Purkinje neurons [185]. PLS3 
overexpression increases membrane targeting of NHE1 
[185], an important binding partner of CHP1 [186] that is 
also associated with ataxia when mutated, at an early dis-
ease stage [187]. Thus, PLS3 overexpression has a moderate 
protective effect on ataxia caused by Chp1 depletion and 
demonstrates its potential as a cross-disease modifier [185].

SOD1-associated amyotrophic lateral sclerosis

PLS3 overexpression in a C. elegans model of ALS, carrying 
the dominantly inherited G85R SOD1 mutant, proved to be 
beneficial [68]. PLS3 increased locomotion rate, ameliorated 
pharyngeal pumping defects and counteracted sensitivity to 
paralysis by aldicarb. Contrary, on a wild-type C. elegans 
background, PLS3 overexpression had a detrimental effect 
on locomotion rate, strengthening the observation that the 
balance of F-actin is essential and its overload in a cell or 
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organisms may lead to the opposite effect [68]. Since ALS 
and SMA share a lot of common pathological features, 
as well as molecular and cellular commonalities, further 
investigation of a beneficial impact of PLS3 on other ALS-
involved genes, e.g., C9ORF72 would be very interesting.

Infection and pathogen entry

Plastins are conserved from yeast to mammals. Within all 
species, they fulfill functions in actin dynamics rendering 
rapid actin rearrangements upon pathogen challenges in 
the host cell while harboring distinct functions within the 
pathogen itself. Pathogens such as Salmonella typhimu-

rium, Shigella flexneri or Trichomonas vaginalis enter the 
host cells by remodeling the actin cytoskeleton [188–191]. 
S. tysphimurium can even enter nonphagocytic cells like 
endothelial cells, upon the stimulation of CDC42 and 
RAC-1, which activate signaling of the pathogen protein 
SipA and thereby increase PLS3′s bundling activity [188]. 
At the contact point of host cell and pathogen, this process 
triggers actin rearrangements while leading to the forma-
tion of nucleation zones. PLS3 is recruited to these zones 
and stabilizes F-actin filaments. Arising from those zones, 
elongated actin filaments form protrusions surrounding the 
pathogen [188, 189, 191]. Nucleated actin filaments are the 
source of G-actin through active depolymerization to fuel 
the leading tips for the construction of the protrusion [191]. 
Finally, the pathogen is indulged in a vacuolic structure and 
released into the cytoplasm of the host cell. During infection 
with the Hepatitis C virus (HCV), PLS3 has been shown to 
regulate pathogen replication. Knockdown of PLS3 results 
in decreased viral replication and is, therefore, a potential 
target for HCV therapy [192].

Moreover, fimbrin facilitates active actin-cytoskeleton 
organizational changes to, e.g., enable amoebic movements 
and protrusion formation [190]. In Rickettsia, PLS3 together 
with profilin, capping protein, and cofilin determine the actin 
tail length required for motility during infection. In this spe-
cies, actin bundles underlying tail formation resemble the 
organization of cell protrusions [193].

In the fungal pathogen, Candida albicans, the PLS3 
ortholog Sac6 associates with oxidative stress responses. 
Sac6 negatively regulates cytosol–nucleus transport of the 
key transcription factor Cap1 and thereby the expression of 
oxidative stress response genes [194].

Biomarker

Differential expression of PLS3 is a frequent characteristic of 
CTCs as well as primary tumors, while usually being absent 
from the hematopoietic system. This renders the protein as 

well as the mRNA as immaculate biomarker candidates. 
In a recent study, a peptide library has been screened for 
affinity to PLS3-overexpressing cancer cells. They identify 
the peptide TP1 (KVKSDRVC) and develop a fluorescein 
isothiocyanate-labeled TP1 molecule that is able to identify 
PLS3-overexpressing CTCs in peripheral blood [195].

With regard to SMA, PLS3 is probably of limited use as 
a biomarker since it is only expressed in a minority of the 
human population in the hematopoietic system [5]. A study 
tested the expression of six putative protein biomarkers 
(COMP, DPP4, CLEC3B, SPP1, VTN, and AHSG) in mice 
with or without overexpression of a human PLS3 transgene. 
The expression level of PLS3 did neither affect the amount 
of SMN nor did the other putative biomarkers, supporting 
the hypothesis that PLS3 acts as an independent protective 
modifier in SMA [196].

One pitfall of PLS3 is that its differential expression is 
linked to multiple different diseases. Comorbidity of other 
PLS3-associated medical conditions should always be con-
sidered when an analysis of PLS3 as a biomarker in periph-
eral blood is performed. In addition to that, as an X-linked 
gene, a sex-specific expression bias towards women has been 
observed [5, 197].

Conclusion

Despite PLS3 not being essential for the survival of a cell 
or organism, both conditions overexpression or knockdown 
of PLS3 can influence many cellular processes either caus-
ing, facilitating or rescuing certain pathological phenotypes. 
While the full knockout in humans and mice causes a disrup-
tion of the bone remodeling cells and, thus, osteoporosis, its 
overexpression in some neurodegenerative disorders such as 
SMA or ALS, where F-actin levels are decreased, acts as a 
protective modifier. However, in wild-type condition, over-
expression of PLS3 is detrimental and causes osteoarthritis 
or facilitates cancer. PLS3 overexpression is strongly corre-
lated with several cancer types, and has been recommended 
for use as biomarker in cancer and poor prognosis for sur-
vival. PLS3 has an important function in F-actin-binding and 
-bundling and as such is involved in a plethora of cellular 
processes dependent on F-actin dynamics. These include 
cell migration and growth, axonal and neurite outgrowth of 
polarized cells, axonal local translation, endocytosis, influ-
ence of intracellular calcium on PLS3-dependent processes, 
mechanotransduction, signaling, infection with pathogens 
and others. This ever-growing knowledge on PLS3 is crucial 
to wisely use PLS3 overexpression or PLS3 reduction as a 
therapeutic target.
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