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Abstract In this paper, a model of topology optimization

with linear buckling constraints is established based on an

independent and continuous mapping method to minimize

the plate/shell structure weight. A composite exponential

function (CEF) is selected as filtering functions for element

weight, the element stiffness matrix and the element geomet-

ric stiffness matrix, which recognize the design variables, and

to implement the changing process of design variables from

“discrete” to “continuous” and back to “discrete”. The buck-

ling constraints are approximated as explicit formulations

based on the Taylor expansion and the filtering function. The

optimization model is transformed to dual programming and

solved by the dual sequence quadratic programming algo-

rithm. Finally, three numerical examples with power function

and CEF as filter function are analyzed and discussed to

demonstrate the feasibility and efficiency of the proposed

method.

Keywords Topological optimization · Plate/shell struc-

ture · Linear buckling constraint · Independent continuous

and mapping (ICM) method · Filter function

1 Introduction

Structural topology optimization is to find optimal mate-

rial layout within a given design space, for a given set

of loads and boundary conditions such that the resulting

layout meets a prescribed set of performance targets. The
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essence of topology optimization lies in searching for the

optimum path of transferring loads, therefore the compu-

tational results of topology optimization are usually more

attractive and more challenging than the results of cross-

sectional and shape optimization. In the last decades, since

the landmark paper of Bendsøe and Kikuchi [1], numerical

methods for topology optimization of continuum structures

have been developed quickly in application [2–4]. The clas-

sical methods include the homogenization method [5,6], the

variable density method (including solid isotropic material

with penalization model (SIMP) and rational approximation

of material properties (RAMP) interpolation model) [7–10],

evolutionary structural optimization (ESO) [11–13], level set

method [14–16], and so on.

The plate/shell structure is popular for lightweight con-

structions in national defense and civil industries. However,

it is shown from both research literature and industrial appli-

cations that plate/shell structures are prone to buckle. As

buckling affects the security of the whole structure, it is

necessary to address the structural stability during struc-

ture design. Buckling topology optimization of plate/shell

is to find optimal material layout of plate/shell structure that

meets the buckling requirements. Although buckling topol-

ogy optimization is only in the phase of conceptual design

in engineering, the optimal results will impact the perfor-

mance of the final structure significantly. Compared with

static topology optimization, buckling topology optimiza-

tion is more complicated, and there are few investigations

up till now. In 1995, linear buckling topology optimization

of two-dimensional structures had been studied by Neves

et al. [17], the optimization results lay the foundations for

the non-linear buckling optimization. Meanwhile, Seo [18]

studied the topology optimization of inner-wall stiffener of

cylindrical containers. The reciprocal of critical buckling

load was adopted as an objective function, and the total
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mass of stiffener was constrained to a prescribed value.

Later, Neves et al. [19] presented a two-scale asymptotic

method for the linearized elastic stability analysis. Topol-

ogy optimization of the periodic microstructures is carried

out based on the local buckling instabilities in the periodic

boundary conditions (PBC). Combining the linearized elas-

tic buckling model with the inverse homogenization and an

eigenvalue buckling analysis with Floquet-bloch wave the-

ory [20], the minimum critical buckling strain is obtained

and maximized with the PBC having a constant volume frac-

tion of materials. In 2002, Ramm et al. [21,22] constructed

the topology optimization model with linear buckling con-

straints based on the SIMP method to study the influence

of geometrical nonlinear behavior to topology optimization

design. In 2004, the shell’s topological optimization under

linear buckling response using SIMP power-law penalization

of stiffness was given to achieve the discrete topology [23]. In

2009, Lund [24–26] studied the buckling topology optimiza-

tion of laminated multi-material composite shell structures

by introducing interpolation functions, which is from the

SIMP approach. In 2012, Browne [27] studied the method of

solving the large-scale quadratic programming problem, and

the method is applied to the topology optimization problem

using compliance and buckling as constraints with the mini-

mum structural weight as objective. In 2013, Lindgaard [28]

studied the static geometry nonlinear structure topology opti-

mization of instability to maximize the buckling critical load.

Up till now, different optimization methods have been

used to solve the buckling structure topology optimization

problems, however, there is no uniform valid method to deal

with the buckling topology optimization of plate/shell. This is

so since building the buckling topology optimization model

is more complex and difficult than static topology optimiza-

tion, and calculations for sensitive analysis are enormous.

In this paper, we investigate buckling topology optimiza-

tion based on independent, continuous and mapping (ICM)

method, proposed by Sui [29] for skeleton and continuum

structural topology optimization in 1996. The topological

variables are independent of design variables such as sec-

tional sizes, geometrical shape, density or Young’s modulus

of material. Filter functions are used to map the changing

process of topological design variables from “discrete” to

“continuous” and back to “discrete”. The smooth model for

structural topology optimization is established and solved

by the traditional algorithms in mathematical programming.

The ICM method has been mainly used to study static and

dynamic topology optimization [30–32]. We extend this

method and do in depth research for the buckling problem.

A model of topology optimization for the lightest plate/shell

structures with the critical buckling load constraints is con-

structed. Usually, a power function (PF) is selected as the

filter function in the past, and we select a composite expo-

nential function (CEF) as the filtering function to complete

the changing process of design variables. The optimal results

with two different filter functions are compared by numerical

examples.

This paper is organized as follows. In Sect. 2, a buckling

topology optimization model of plate/shell structure based

on the ICM method is established. In Sect. 3, a strategy for

solving the buckling optimization model is introduced. An

optimal algorithm to solve the mathematical optimization

problem is given. In Sect. 4, the program flow of the opti-

mization algorithm is charted. Three numerical simulations

are presented in Sect. 5. In Sect. 6, conclusions are given.

2 Establishment of linear buckling topology

optimization model

2.1 Linear buckling analysis of plate/shell structures

Structural buckling widely exists in practical engineering

structure. Buckling is a mathematical instability, leading to

a failure mode. As the applied load is increased on a struc-

ture by a small amount beyond the critical load, the structure

deforms into a buckled configuration. Further load will cause

significant and somewhat unpredictable deformations, pos-

sibly leading to complete loss of the structural load-carrying

capacity. The interpretation of this result is that for P < Pcr j ,

the structure remains stable. For P > Pcr j , the structure is

unstable and buckles. Pcr j is the critical load for buckling.

Usually, once the form of structure is established, its buck-

ling will have a variety of modes and multiple critical loads.

The structure will not work before the mode reaches higher-

order buckling mode, so we just care about the first-order

critical load of buckling mode. In this paper, the linear elas-

tic and pre-buckling of continuum structure is considered.

Assuming the structure to be perfect with no geometrical

imperfections, stresses are proportional to the loads, i.e.,

stress stiffness depends linearly on the load, displacements

at the buckling configuration are small, and the load is inde-

pendent of the displacements. The linear buckling problem

can be represented as [28,29]

(

K + λ j G
)

u j = 0, ( j = 1, 2, . . . , J ) , (1)

where K and G denote the structural stiffness matrix and

geometric stiffness matrix, respectively, λ j is the j-th eigen-

value, i.e., buckling critical load factor and u j describes the

corresponding eigenvector, j denotes the j-th order of the

modal.

2.2 Description of the filter function based on the ICM

method

Filter function is the key strategy of the ICM method. It iden-

tifies the corresponding element or subdomains of geometric
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quantity or physical quantity, such as the element weight, the

element stiffness matrix, and the element geometric stiffness

matrix. Discrete design variables can be mapped to continu-

ous variables by filter function and inversed back to discrete

variables. For the buckling topology optimization model, we

define element weight, the element stiffness matrix, and the

element geometric stiffness matrix as follows

wi = fw (ti ) w0
i ,

ki = fk (ti ) k0
i , (2)

gi = fg (ti ) g0
i ,

where ti is the topology variable value of the i-th element.

wi , ki , gi denotes the element weight, stiffness matrix, and

geometric stiffness matrix of i-th element in the optimal

process, respectively. And w0
i , k0

i , g0
i represent the initial ele-

ment weight, stiffness matrix, and geometric stiffness matrix

of the i-th element, respectively. fw(ti ), fk(ti ), and fg(ti ) are

the filter functions of the element weight, element stiffness

matrix, and the element geometric stiffness matrix.

In addition, the element weight, element stiffness matrix,

element geometry stiffness matrix, and element quality

matrix are changed by taking advantage of filter functions.

These physical quantities of every element change a lot when

the structural topology changes, and then the filter functions

in the formulation can lead to convergence. Furthermore,

filter functions influence the speed of convergence and the

stability of the solution of the optimal process.

Several types of filter function are suggested in the ICM

method [33]. Among which, the PF is used frequently as

follows

f (ti ) = tαi , α ≥ 1. (3)

Here, α is a given positive constant.

Now, we introduce a new filter function—CEF to take the

place of PF, and it is as follows

f (ti ) =
eti /γ − 1

e1/γ − 1
, γ > 0, (4)

where γ is a given positive constant. In Sect. 5, the perfor-

mances of the two types of filter function are compared.

From Eqs. (2), (3), and (4), the specific expressions of PF

and CEF in the model of buckling topology optimization are

given :

fw(ti ) = t
αw

i , fk(ti ) = t
αk

i , fg(ti ) = t
αg

i ,

fw(ti ) =
(

eti /γw − 1
) /

(

e1/γw − 1
)

,

fk(ti ) =
(

eti /γk − 1
) /

(

e1/γk − 1
)

,

fg(ti ) =
(

eti /γg − 1
) /

(

e1/γg − 1
)

. (5)

It should be pointed out that these parameters of filter func-

tions can be determined by using the least squares method or

numerical experiments, see Refs. [29–31].

2.3 Mathematical model of buckling topology

optimization

Based on the ICM method, the optimal model to minimize the

structural weight subjected to the linear buckling constraints

is as follows

find t ∈ E N ,

make W =
N
∑

i=1

wi → min,

s.t. Pcr j ≥ Pcr j , ( j = 1, 2, · · · , J ) ,

0 ≤ ti ≤ 1, (i = 1, 2, · · · , N ) ,

(6)

where t denotes the vector of topological design variables,

W is the structural weight, and wi is the element weight of

structure, Pcr j presents the critical buckling load, Pcr j is the

lower limit buckling critical load, and J and N denote the

total number of the buckling modes and number of elements.

The relationship between critical load and external load

P can be expressed as

Pcr j = λ j × P. (7)

Then the buckling critical load factor is used as constraints

in the optimal model. The buckling topology optimal model

(6) can be transformed as follows

find t ∈ E N ,

make W =
N
∑

i=1

wi → min,

s.t. λ j ≥ λ j , ( j = 1, 2, · · · , J ) ,

0 ≤ ti ≤ 1, (i = 1, 2, · · · , N ) ,

(8)

where λ j is the lower limit buckling critical load factor.

In order to solve the optimal model, the reciprocal of filter

function with stiffness matrix is used as a design variable as

follows

xi = 1
/

fk (ti ). (9)

Therefore, the topological design variable is expressed as

ti = f −1
k

(

1
/

xi

)

. (10)

Then Eq. (2) can be transformed into Eq. (11)

wi = fw

(

f −1
k

(

1
/

xi

)

)

w0
i ,

ki =
(

1
/

xi

)

k0
i , (11)

gi = fg

(

f −1
k

(

1
/

xi

)

)

g0
i .
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With the introduction of filtering functions and the reciprocal

of filter function of stiffness matrix, the optimization model

(8) is written as

find x ∈ E N ,

make W =
N
∑

i=1

fw

(

f −1
k

(

1
/

xi

)

)

w0
i → min,

s.t. λ j (x) ≥ λ j , ( j = 1, 2, · · · , J ) ,

1 ≤ xi ≤ x i , (i = 1, 2, · · · , N ) ,

(12)

3 Strategy for solving the buckling optimization

model

3.1 Design sensitivity analysis

To estimate the design sensitivity, we have to consider the

derivative of the eigenvalue in Eq. (1). The eigenvalues can

be expressed using the Rayleigh quotient:

λ j = −
uT

j K u j

uT
j Gu j

. (13)

The derivative of the eigenvalue is given as follows

∂λ j

∂xi

= −

[

uT
j

(

∂ K
/

∂xi

)

u j + λ j uT
j

(

∂G
/

∂xi

)

u j

]

uT
j Gu j

, (14)

∂ K

∂xi

= −
1

x2
i

k0
i = −

1

xi

ki , (15)

∂G

∂xi

= −
β(xi )

xi

fg

(

f −1
k

(

1

xi

))

g0
i = −

β(xi )

xi

gi . (16)

βi can be obtained according to different type of filter func-

tion. When PF is selected as filter function,

β (xi ) =
f ′
g (ti ) fk (ti )

fg (ti ) f ′
k (ti )

=
αg

αk

. (17)

And CEF acts as filter function,

β (xi ) =
γk

(

eti /γk − 1
)

γg

(

eti /γg − 1
)e

ti

(

1
γg

−
1
γk

)

. (18)

Therefore, Eq. (14) is deduced as

∂λ j

∂xi

=
Ui j + λ jβ (xi ) Vi j

V∑

j xi

. (19)

Here, Ui j = 0.5uT
j ki u j and Vi j = 0.5uT

j gi u j represent the

strain energy and geometric strain energy for the i-th element

in j-th mode, respectively. V� j = uT
j Gu j is the structural

geometric strain energy in the j-th mode.

3.2 Explicit approximation of buckling constraints

As the constraint is implicit about design variables, we make

it explicit by using the first order Taylor expansion:

λ j (x) ≈ λ j

(

x(v)
)

+

N
∑

i=1

∂λ j

/

∂xi

(

xi − x (v)
)

. (20)

Here, the superscript v is the number of iterations. Take

Eq. (20) into Eq. (21), we have

λ j (x) ≈ λ j

(

x(v)
)

+

N
∑

i=1

Ai j

1

x
(v)
i

xi −

N
∑

i=1

Ai j , (21)

where Ai j =
Ui j +λ j β(xi )Vi j

V∑

j
.

Then the buckling constraints in model (12) can be

expressed as

N
∑

i=1

Ai j

1

x
(v)
i

xi ≥ λ − λ j

(

x(v)
)

+

N
∑

i=1

Ai j . (22)

We set

ci j = Ai j

1

x
(v)
i

, d j = λ − λ j

(

x(v)
)

+

N
∑

i=1

Ai j .

So the buckling constraints can be simplified to the following

form

N
∑

i=1

ci j xi ≥ d j . (23)

3.3 The standardization of the objective function

In order to obtain an explicit objective, the second-order Tay-

lor expansion is used. When PF is selected as a filter function,

the structural weight can be written

N
∑

i=1

w0
i

x
αw/αk

i

≈

N
∑

i=1

(

ai x2
i + bi xi

)

. (24)

Here,

ai =
α (α + 1)

2 (xi )
α+2

w0
i , bi = −

α (α + 2)

(xi )
α+1

w0
i ,

α = αw

/

αk .

When CEF acts as filter function, the structural weight can

be written
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N
∑

i=1

[(

e1/γk − 1
)

/xi + 1
]γk/γw

− 1

e1/γw − 1
w0

i ≈

N
∑

i=1

(

ai x2
i + bi xi

)

,

(25)

where,

ai =
1

2

γk

γw

w0
i

(

x
(v)
i

)4

e1/γk − 1

e1/γw − 1

(

e1/γk − 1

x
(v)
i

+ 1

)

γk
γw

−2

×

[(

γk

γw

+ 1

)

(

e1/γk − 1
)

+ 2x
(v)
i

]

,

bi = −
γk

γw

w0
i

(

x
(v)
i

)3

e1/γk − 1

e1/γw − 1

(

e1/γk − 1

x
(v)
i

+ 1

)

γk
γw

−2

×

[(

γk

γw

+ 2

)

(

e1/γk − 1
)

+ 3x
(v)
i

]

.

Therefore, the standard quadratic programming model for

Eq. (12) can be obtained as follows

find x ∈ E N ,

make W =
N
∑

i=1

(

ai x2
i + bi xi

)

→ min,

s.t.
N
∑

i=1

ci j xi ≥ d j , ( j = 1, 2, . . . , J ) ,

1 ≤ xi ≤ x̄i , (i = 1, 2, . . . , N ) .

(26)

3.4 Solution of the optimization model

As the number of design variables is much bigger than that

of the constraints, we deduce the dual model to decrease the

number of design variables as follows in order to reduce the

amount of calculation.

find z ∈ E J,

make −Φ (z) =
1
2

zT H z + CT z → min

s.t. z j ≥ 0, ( j = 1, 2, 3, ..., J ) ,

, (27)

where z is the design variable vector of the dual model, Φ (z)

is the objective function, and

Φ(z) = min(L(x, z)),

L(x, z) =

N
∑

i=1

ai x2
i + bi xi +

J
∑

j=1

z j

(

N
∑

i=1

ci j xi − d j

)

,

H jk =
∑

i∈Ia

Ci j Cik

/

2ai ,

Ck =
∑

i∈Ia

Cik

(

x∗
i + bi

/

2ai

)

−

N
∑

i=1

Cik x∗
i + dk .

In this paper, the convergence criterion is chosen as fol-

lows

	W =

∣

∣

∣
(W (v+1)

− W (v))
/

W (v+1)
∣

∣

∣
≤ ε. (28)

W (v+1) and W (v) are the current iteration and the previous

iteration of structural weight. ε is the convergence precision,

ε = 0.001.

3.5 Discrete degree of topological design variables

In order to measure the discrete degree of topological design

variables, we use Mnd [34] as a criterion, and it is given

Mnd =

N
∑

i=1

4Ti (1 − Ti )

N
× 100 %, (29)

where Ti is the topological variable value for the i-th element

and N is the total number of the elements. Following Eq. (29),

if the topological variable value is 0 or 1, then Mnd is 0; if the

topological variable values is 0.5, then Mnd is 1. The closer

the topological variable value to 0 or 1, the smaller is the

value of Mnd and the better the optimal result.

4 Program flow of optimization algorithm

The numerical procedures are developed by the PCL toolkit

in the MSC. Patran software platform. We use MSC.Nastran

to analyze the numerical solution of Eq. (1). The correspond-

ing program flow as shown below

Step 1 Build finite element model by using MSC. Patran;

Step 2 Input initial optimal parameters and set up optimal

model;

Step 3 Make buckling analysis by using MSC. Nastran;

Step 4 Calculate and extract the critical buckling factor

and strain energy;

Step 5 Input parameters of the optimal algorithm;

Step 6 Solve the dual optimization model (27) by the dual

sequence quadratic programming (DSQP);

Step 7 Judge convergence of the optimal results. If the

structural weight satisfies the formula (28), then the pro-

gram is terminated. Otherwise, update design variables x

and topology design variables t, then go to step3.
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Fig. 1 Base structure

Fig. 2 Topology configuration with CEF filter function

Fig. 3 Topology configuration with PF filter function in Ref. [34]

5 Numerical examples

In this section, three examples of topology optimization of

single material plate/shell structures are given. All the mate-

rial is isotropic with Young’s modulus E = 68890 MPa,

Poisson’s ratio μ = 0.3. In the initial design, the avail-

able material is uniformly distributed over the admissible

design domain. The structures are meshed by four-node 2D

plate/shell finite elements. The specific boundary condition

and force form are shown in the following three examples.

Example 1 As shown in Fig. 1, the base structure is a plane

elastic body with size 520 × 260 × 2 mm3, and mass density

ρ = 1.0 × 10−3 kg/mm3. The distributed compression load

at the top edge is 100 N/mm. Two corners of the bottom edge

are fixed. The buckling constraint value is 100 N in Ref. [34].

The region which including the above two layers of the unit is

a non-design and should be maintained. The base structure’s

weight is 0.73 kg.

The topology configuration of the structure with CEF fil-

ter function is given in Fig. 2. It is similar to the topology

configuration with PF as in Ref. [34] as shown in Fig. 3. The

iterative history curve of buckling load and structural weight

are shown in Figs. 4 and 5. The optimal structural weight

Fig. 4 Iterative history curve of critical buckling load

Fig. 5 Iterative history curve of structural weight

with CEF is 104.808 kg and the iterative number is 36, as the

optimal structural weight with PF is 115.756 kg and the iter-

ative number is 51. From the point view of structural weight

and iteration, the optimal results with CEF is better that of

PF.

Example 2 As shown in Fig. 6, the base structure is a plane

elastic body and the mass density is ρ = 2.7 × 103 kg/m3.

The forces P = 15000 N are located on the midpoint of the

top and bottom boundary. Four corners of the structure are

fixed. The base structure’s weight is 0.73 kg.

After finite element analysis, the first-order buckling load

factor of the structure is λ1 = 0.0533. The critical buckling

load is 1600 N, and the buckling load 1300 N is defined as

constraint value.

The topology configurations of the structure with different

filter functions before and after discretion are given in Fig. 7.

In addition, the first-order buckling modal of optimal struc-

ture is computed as shown in Fig. 8. The iterative history

of buckling load and structural weight with different filter

functions are depicted in Figs. 9 and 10. We can see that the

critical buckling loads of the optimal structures satisfy the

buckling constraint. From Fig. 10, we can see a clear differ-
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Fig. 6 Base structure

Fig. 7 Topology configuration with different filter functions before

and after discretion. a and b before discretion with PF and CEF, c and

d after discretion with PF and CEF

Fig. 8 The first-order buckling modal of optimal structure with differ-

ent filter function. a PF. b CEF

ence with PF and CEF in the structural weight and iterative

number. The optimal structural weight with CEF is lighter

and the number of iterations is less than that of PF.

The distributions of topological design variables are listed

in Table 1. The discretization of topological design variables

is evaluated by using Mnd. We can find that Mnd with PF

and CEF are 11.60 % and 7.25 %. Therefore, the optimal

result with CEF is better than that of PF from the view of

discretization of topological design variables.

Example 3 As shown in Fig. 11, the base structure is a part of

the cylindrical shell, the generatrix is 260 mm, arc length is

520 mm, and the radius is 5000 mm. The force P = 15000 N

is located on the center of the cylindrical shell along the

radial direction. After finite element analysis, the first-order

Fig. 9 Iterative history of the buckling load with different filter func-

tions

Fig. 10 Iterative history of structural weight with different filter func-

tions

Table 1 Distribution of topological design variables

The range of topological values Element number

PF CEF

(0,0.1] 312 360

(0.1,0.2] 28 28

(0.2,0.3] 20 20

(0.3,0.4] 24 12

(0.4,0.5] 16 0

(0.5,0.6] 20 12

(0.6,0.7] 12 16

(0.7,0.8] 32 8

(0.8,0.9] 20 8

(0.9,1] 868 888

Total element numbers 1352 1352

Mnd 11.60 % 7.25 %

buckling load factor of the structure is λ1 = 0.00325. The

critical buckling load is 48.7 N, and the critical buckling load

40 N is defined as the buckling constraint value.
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Fig. 11 Base structure

The intermediate results and optimal topology config-

uration of the structure with different filter functions are

indicated in Fig. 12. The iterative history curve of buck-

ling load and structural weight with PF and CEF is given

in Figs. 13 and 14. The performances of topological opti-

mization with different filter functions are given in Table 2.

From Fig. 13, we get that the optimal structure with PF and

CEF all satisfy the buckling constraint. The optimal struc-

tural weight with CEF is lighter than that of PF as shown in

Fig. 14.

From the above three examples, we can see that the objec-

tive (weight) with CEF is apparent lighter than that of PF.

We can also find that the optimal result with CEF has the

best performance from the point of view of iterative number.

Fig. 13 Iterative history of the buckling load with different filter func-

tions

The distribution of optimal topological values show that the

percentages of Mnd with CEF is lower than that of PF, so

the CEF filter function has the best performance from the

viewpoint of discreteness.

6 Conclusion

In this paper, a buckling topological optimal model of

plate/shell structure is established based on the ICM method.

Fig. 12 The intermediate results and optimal topology configuration of the structure with different filter functions. a The intermediate optimal

results with PF. b The intermediate optimal results with CEF
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Fig. 14 Iterative history of structural weight with different filter func-

tions

Table 2 Optimal results with different filter functions

Iterative number Buckling constraint/N Weight/kg

PF 31 40.08 0.2630

CEF 24 40.07 0.2540

CEF is selected as a filter function to recognize the design

variables, as well as to implement the changing process of

design variables from “discrete” to “continuous” and back

to “discrete”. Explicit formulations of buckling constraints

are given based on two different filter functions, first-order

Taylor series expansion by extracting structural strain and

structural kinetic energy from the results of structural modal

analysis. The program based on DSQP for solving the opti-

mal model is developed on the platform of MSC. Patran &

Nastran. Three numerical examples of continuum structure

show that clear and stable configurations can be obtained

by using the ICM method. We also find that configurations

computed with PF and CEF are similar. But we can see that

the optimal result with CEF has the better performance from

the point of view of optimal objective, iterative numbers, and

discrete degree.
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