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Among the most interesting and extensively studied
nonlinear effects involved in above-threshold ioniza-
tion (ATI) and high-order harmonic generation (HHG)
processes are “plateaus” observed in the ATI and HHG
spectra. The presence of a plateau implies that the pho-
toelectron yield resulting from 

 

n

 

-photon ATI or the
intensity of the 

 

n

 

th pump laser harmonic depend
weakly on the number 

 

n

 

 of absorbed photons over a
broad interval (for 

 

n

 

 

 

&

 

 

 

n

 

max

 

). Possessing a single-elec-
tron character, these effects have been well studied
experimentally and described theoretically, both by a
direct numerical solution of the nonstationary (time-
dependent) Schrödinger equation and within the frame-
work of a quasiclassical approach based on the rescat-
tering concept [1]. According to this concept, a strong
oscillating field returns electrons (escaping from atoms
due to tunneling ionization events) back to the host
ions: rescattering from the ions, the electrons gain addi-
tional energy from the pump wave, thus forming a pla-
teau in the ATI spectrum or recombining with the emis-
sion of large-

 

n

 

 harmonics.

It is interesting to note that the structure of such a
plateau depends only weakly on the particular shape of
the atomic potential, so that the quasi-classical esti-
mates of the cutoff (

 

n

 

max

 

) values and the structures of
the HHG and ATI spectra, calculated in the Keldysh
approximation (modified to allow for the rescattering
effect) [2] within the framework of a zero-radius three-
dimensional potential model, are in perfect qualitative
agreement both with the results of exact numerical cal-
culations and with the experimental data for real atoms
(see [3] and references therein). Recently [4], it was
demonstrated that the appearance of a plateau related to
the rescattering effect is also characteristic of a laser-
assisted electron–ion recombination process.

A common feature of the aforementioned processes
is that an electron in the initial and/or final state is
bound to an atom and, hence, is less subject to the
action of a laser wave field as compared to electrons in
the continuum. This paper presents an example of an
exactly solved problem, which shows that plateau
effects also accompany free–free electron transitions in
a strong laser field (induced multiphoton bremsstrahl-
ung and absorption upon electron scattering from an
atom). Therefore, these specific nonlinear effects are
inherent in all processes involving the interaction of
atomic systems with strong laser fields.

Let us consider the scattering of an electron from a
static atomic potential 

 

V

 

(

 

r

 

) in the presence of an ellip-
tically polarized laser field with an electric vector

 

F

 

(

 

t

 

) = 

 

F

 

Re[

 

e

 

exp(–

 

i

 

ω

 

t

 

)], where 

 

e

 

 is the unit (complex)
vector of polarization: 

 

e

 

 · 

 

e

 

* = 1 and 

 

e

 

 · 

 

e

 

 = 

 

l

 

 is the
degree of linear polarization of the field 

 

F

 

(

 

t

 

) (0 

 

≤

 

 

 

l

 

 

 

≤

 

 1).
In a formalism of the quasi-energy states (QES, see,
e.g., [5]), the state of an electron with an asymptotic
momentum 

 

p

 

 in the potential 

 

V

 

(

 

r

 

), corresponding to
elastic scattering with the energy 

 

E

 

 = 

 

p

 

2

 

/2

 

m

 

 in the
absence of the field 

 

F

 

(

 

t

 

), is a periodic function of time
which satisfies the following equation:

(1)

Here, 

 

χ

 

p

 

(

 

r

 

, 

 

t

 

) and 

 

G

 

(+)

 

(

 

r

 

, 

 

t

 

; 

 

r

 

', 

 

t

 

') are the QES wave func-
tion and the retarded Green function of the electron in
the field 

 

F

 

(

 

t

 

), respectively; 

 

e

 

 = 

 

E

 

 + 

 

U

 

p

 

 is the quasi-
energy; and 

 

U

 

p

 

 = 

 

e

 

2

 

F

 

2

 

/4

 

m

 

ω

 

2

 

 is the mean vibrational
energy of an electron in the laser field. The scattering

Φp r t,( ) χp r t,( ) Φp
scatt( ) r t,( )+ χp r t,( )= =

+ r' t 'e
ie t ' t–( )/"–

G
+( ) r t; r' t ', ,( )V r'( )Φp r' t ',( ).d∫d∫
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amplitude is determined by the asymptotic behavior of
the scattered wave:

(2)

where 

 

p

 

n

 

 =  is the electron momentum
in the channel featuring absorption (for 

 

n

 

 > 0) or emis-
sion (

 

n

 

 < 0) of 

 

|

 

n

 

|

 

 photons, 

 

!

 

n

 

 is the scattering ampli-
tude in the 

 

n

 

th channel, and the sum over 

 

n involves all
open channels with En = E + n"ω > 0.

It is possible to solve Eq. (1) exactly when the
atomic potential is modeled by a zero-radius potential
(ZRP)

(3)

admitting one weakly bound state (r) with an

energy of E0 = –"2κ2/2m. It should be noted that the use
of the ZRP in this problem is much better justified as
compared to the cases of ATI or HHG because of the
short-range character of the potential of a neutral atom.
Below we use dimensionless quantities, whereby the
energies (including Up) are measured in units of |E0 |;
frequencies, in units of |E0 |/"; and the field amplitudes

F, in units of F0 = /|e |". For example, the
scattering on a hydrogen atom is characterized by |E0 | =
0.754 eV = 0.0277 a.u. (the binding energy of H–) and
F0 = 3.362 × 107 V/cm = 6.52 × 10–3 a.u.

In the ZRP model, the problem reduces to calcula-
tion of the Fourier coefficients fk determining behavior
of the scattering wave function Φp(r, t) at r  0:

(4)

Indeed, using the well-known expression for G(+)(r, t; 0, t'),
the amplitude !n in Eq. (2) can be represented as (see
the results obtained in [6] for a circularly polarized field
F(t))

(5)

and the differential scattering cross section is

(6)

A system of linear inhomogeneous equations for fk

follows from Eq. (1) with boundary condition (4) (see

Φp
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e
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r
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2F
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m s,
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e
iφ̃n e pn⋅

e pn⋅
---------------,=

dσn

dΩ
---------

pn

p
----- !n

2
.=

the analogous calculations in [7] for ionization from the
state (r) in the ZRP):

(7)

where

(8)

%n, δ = p2 – (2n + δ)ω, and δ = 0(1) for even (odd) k val-
ues. Note that the coefficients fk with even and odd
numbers are determined independently (for ionization,
the incident wave χp(r, t) in Eq. (1) is absent and the
boundary condition (4) contains only the coefficients fk

with even k [7]). Numerical values of fk are obtained by
solving a system of equations (7) “truncated” at n; the
rate of convergence with respect to n (the number of
coefficients taken into account) depends on F, ω, and p.

The exact relations (5)–(8) admit analytical treat-
ment in some limiting cases. In particular, ignoring
nondiagonal matrix elements Mn, m in relations (7), we
obtain

(9)

Note that, in a weak field (i.e., for F2 ! ω3 or Up =

F2/2ω2 ! ω, we have Mm, n ~ ). For a cir-
cularly polarized field F(t) (l = 0), nondiagonal matrix
elements are zero and the approximation (9) coincides
with the exact expression for fk; substituting this
expression into (5) yields the well-known result for a
circularly polarized field [6]. For 0 < l ≤ 1, the poles of

the coefficients  in the complex plane E (i.e., the
zeros of the denominator in (9)) give an equation for the
complex quasi-energy. The imaginary part of the quasi-
energy coincides with the width of level (r) in the
Keldysh approximation of multiphoton ionization the-
ory [7]. 

With neglect of the term Mn, n in expression (9), we
can obtain simple closed relations for dσn/dΩ in the
Born and/or low-frequency limits, whereby the term

φE0

1 i %n δ, Mn n, %0 δ,( )+ +( ) f 2n δ+

+ Mn m, %0 δ,( ) f 2m δ+

m n≠
∑ c2n δ+ ,=

ck i
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e
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4πi
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φE0
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(2n + δ)ω in the relation  =  can
be omitted. For example, in the low-frequency limit,

(10)

where (1 + ip)–1 is the exact amplitude of elastic scatter-
ing in the ZRP model. Substituting (10) into (5) and
taking into account orthogonality of the Bessel func-
tions,

we arrive at

(11)

which is the Kroll–Watson result [8]. In the case of fast

electrons (p @ 1, or p @  in absolute units), we
can omit unity in the denominators of (10) and (11),
thus obtaining the Bunkin–Fedorov result for the ZRP
model [9]. 

An analysis shows that the main difference of the
results [8, 9] from the exact solution is due to neglect of
the nondiagonal matrix elements Mn, m in expression
(9). These elements describe high-order effects (i.e.,
rescattering effects) of interaction with the atomic
potential. In the lowest order, allowance for the rescat-

%n δ, p
2

2n δ+( )ω–

f k
KW( ) ck

1 ip+
--------------,=

Jν k+ u( )Jk u( )
k ∞–=

∞

∑ δν 0, ,=

dσn
KW

dΩ
-------------

pn

p 1 p
2

+( )
-----------------------Jn

2 2F

ω2
------- e p pn–( )⋅ 

  ,=

2m E0

tering corresponds to an iteration of the system (7)
based on the zero approximation (9):

(12)

In the ZRP model, approximation (12) is equivalent to
taking into account the first correction of the atomic
potential to the ATI amplitude in the Keldysh approxi-
mation. The results of numerical calculations (see
below) show that, for frequencies ω < 1, approximation
(12) ensures a high accuracy (the difference from the
exact results being below 5%) in a broad range of field
intensities.

Since the rescattering effects are most significant for
a linear polarization of the field F(t), the numerical
results will be presented for the simplest geometry, in
which the initial electron momentum is directed along
the linear polarization axis and the angular distribution
of scattered electrons depends only on the angle θ
between p and pn. Figure 1 shows the differential for-
ward scattering cross sections (θ = 0) calculated, by
approximate formula (11) and by exact formulas (5)–
(8), as a function of the number of absorbed (emitted)
photons for ω = 0.155; the initial electron energy E =
20.5ω, and two values of the field amplitude, F = 0.4
and 0.6. For scattering from a hydrogen atom, these
parameters correspond to a CO2 laser frequency, the
initial electron energy E = 2.4 eV, and the field intensi-
ties I ≈ 2.4 × 1011 and 5.4 × 1011 W/cm2 (in such fields,
the probability of tunneling ionization of hydrogen is
negligibly small and the effect of ionization of target
atoms in the course of scattering can be ignored).

A clearly pronounced feature in Fig. 1 is the pres-
ence of two plateaus in the differential scattering cross
section as a function of the number of absorbed pho-
tons. The first plateau (corresponding to smaller n) is
obtained for both exact and approximate calculations
and is five-to-six orders of magnitude higher than the
second plateau. A fully analogous situation takes place
in the ATI spectra (see, e.g., [3]), where the first plateau
is well described in the Keldysh approximation (and is
referred to below as the K-plateau), while the second is
due to the rescattering effects (R-plateau). The results
of a numerical analysis show that the lengths of both the
K- and R-plateaus for electron scattering at fixed E and

ω increase with F, while  increases much faster

than does . On the contrary, as the electron energy
E increases, the length (in the n scale) of both plateaus
decreases, the K-plateau contracting much faster than
the R- plateau. For example, at F = 0.4 and E = 30.5ω
= 1.42Up, the cross section smoothly decays with
increasing n unless the R-plateau appears (i.e., the

f 2n δ+
1( )

c2n δ+ Mn m, %0 δ,( ) f 2m δ+
0( )

m n≠
∑–

1 Mn n, %0 δ,( ) i %n δ,+ +
----------------------------------------------------------------------.=

nmax
R

nmax
K

Fig. 1. The differential cross section (in dimensionless
units, see the text) of forward scattering (θ = 0) as a function
of the number of absorbed (emitted) photons calculated for
ω = 0.155, E = 20.5ω = 3.1775, and F = 0.4 (Up = 3.33 =
21.48ω) and 0.6 (Up = 7.49 = 48.34ω) using the exact equa-
tions (solid curves) and the approximate formula (11)
(dashed curves). Solid and dashed arrows indicate the K-
and R-plateau cutoffs estimated by formulas (15) and (19),
respectively.
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K-plateau is virtually absent, while the R-plateau still

has a length of  ≈ 100).

Figure 2 shows the plots of dσn/dΩ versus n calcu-
lated for the energy E = 150.5ω and F = 0.4 and 0.5
(Up = 21.48ω and 33.57ω, respectively). For these
parameters, the K-plateau is completely absent and the
R-plateau appears only in a sufficiently strong field
(F * 0.5). Another characteristic feature in the high-
energy cross section is the appearance of the R-plateau
in the process of induced emission (n < 0) in a broad
range of n (for which the Kroll–Watson and Bunkin–
Fedorov approximations give a deep minimum and dif-
fer significantly from the exact results).

As the scattering angle θ increases, the structure of
the spectrum of scattered electrons significantly
changes because the role of rescattering effects
decreases. Evolution of the plateau structure is illus-
trated in Fig. 3. As was noted above for θ = 0, the
K-plateau at the E, F, and ω values indicated in Fig. 3
is absent. As the θ value increases, the R-plateau length
decreases, while the K-plateau becomes clearly mani-
fested at θ ~ π/3, significantly masks the R-plateau at
θ > π/2, and completely determines the spectrum of
scattered electrons for still greater angles of scattering.
An analogous situation is also observed for other values
of the parameters, so that the scattering by large angles
is well described by formula (11). However, it should
be pointed out that the interval of small angles ∆θ, in
which approximation (11) is inapplicable (i.e., the
region of “critical geometry,” where the momentum
transfer p–pn is perpendicular to the field polarization
plane and the argument of the Bessel function in (11) is
close to zero), significantly expands with increasing n
and may reach up to ∆θ ~ π/2.

nmax
R

The above results admit a simple qualitative inter-
pretation within the framework of a quasi-classical
approach, by analogy with interpretation of the plateau
effects in HHG [2], ATI [10], and electron–ion recom-
bination spectra [4]. The classical equations employed
in such an analysis represent the equations for saddle
points in the quasi-classical calculation of integrals in
the amplitude of the process under consideration (see,
e.g., [11]). Restricting our consideration to the case of
a one-dimensional motion of the electron along the
direction of linear polarization of the field F(t) (forward
scattering and backscattering), the K-plateau cutoff

( ) can be estimated using an equation expressing
the law of conservation of the kinetic energy of the
electron in the field upon collision with a scattering
center at a time t:

(13)

nmax
K

p
1
c
---A t( )+

2

k t( ) 1
c
---A t( )+

2

,=

Fig. 2. The same as in Fig. 1, but for E = 150.5ω = 23.3275.
Thin and thick solid curves refer to F = 0.4 (Up = 3.33 =
21.48ω) and 0.5 (Up = 5.2 = 33.57ω), respectively.

Fig. 3. The plots of dσn/dΩ versus n for various scattering
angles θ calculated for F = 0.4, ω = 0.155, and E = 30.5ω
using the exact equations (solid curves) and approximate
formula (11) (dashed curves). Solid and dashed arrows indi-
cate the K- and R-plateau cutoffs according to quasi-classi-
cal estimates (see the text).
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where A(t) = –(cF/ω)sinωt is the vector potential, p is
the initial momentum, and k(t) is the momentum upon
collision. Using a solution to Eq. (13),

(14)

it is possible to calculate the maximum energy gained
by the electron as a result of interaction with the scat-
tering center:

(15)

where the minus and plus signs correspond to forward
scattering and backscattering, respectively. Thus, for
forward scattering, the K-plateau in the bremsstrahlung
absorption spectrum disappears at E ≥ 2Up. It should be
noted that result (15) can also be obtained more for-
mally, by equating the argument and index of the Bessel
function (11), which corresponds to the region of tran-
sition from oscillating to decaying behavior of Jn(x). As
can be seen from the results of numerical calculations
presented in Figs. 1–3, estimate (15) agrees well with
the exact quantum-mechanical calculation. The differ-
ence in length of the K-plateau for the backscattering
and forward scattering is proportional to pF/ω2 and
becomes large in a strong low-frequency field, which
explains why backscattering predominates upon
absorption of a large number of photons.

The R-plateau cutoff ( ) can be estimated within
the framework of the rescattering concept, by consider-
ing first the collision of an electron with a scattering
center at a time instant t, then the motion of the electron
in the wave field (over the time interval from t to t + τ)
and finally, the repeated scattering (rescattering) at a
time instant t + τ. This three-step process is described
by the following system of equations:

(16)

(17)

(18)

where Eqs. (16) and (18) are analogous to Eq. (13) and
express the conservation of the kinetic energy of the
electron upon collisions at the time instants t and t + τ,
while Eq. (17) describes the return of the electron to the
scattering center at the time instant of rescattering
(t + τ). The joint solution of Eqs. (16)– (18) leads to the
following expression for a maximum value of the elec-

k t( ) p– 2
A t( )

c
----------,–=

nmax
K ω max k t( )2

p
2

–( )≡ 8U p 4 2U pE,+−=

nmax
R

p
1
c
---A t( )+

2

k̃ t( ) 1
c
---A t( )+

2

,=

k̃ t '( ) 1
c
---A t '( )+ t 'd

t

t τ+

∫ 0,=

k̃ t τ+( ) 1
c
---A t τ+( )+

2

 = k t τ+( ) 1
c
---A t τ+( )+

2

,

tron energy ( ω ≡ max(k(t + τ)2 – p2)) gained in the
course of the “double” scattering:

(19)

where

(20)

Here, the functions g+(τ) and g–(τ) correspond to the
forward scattering and backscattering, respectively.
The coefficient K tends to a maximum (Kmax = 1.25) for
a  0, which corresponds to small primary electron
energies and/or superstrong low-frequency fields. In
this case, the maximum energy gained by the electron
in the field amounts to 10Up (the same maximum
energy is gained by the high-energy photoelectrons in
the ATI process [10]). In the opposite case, a * 1 (or
E * 8Up), the coefficient K is small (K & 1) and rapidly
decays with increasing a. Note that the classical equa-
tions possess no real solutions for E > 10Up (the func-
tions g±(τ) are complex), which corresponds to the
absence of rescattering effects: electrons cannot return
to the scattering center (see [4] for the electron–ion
recombination and [10] for ATI). In the case of back-
scattering (θ = π) of electrons with the energies E *

0.1Up,  > , the less “intense” R-plateau related
to the rescattering is masked by the K-plateau corre-
sponding to a single (direct) scattering (Fig. 3).

The above results show that a correct allowance for
the atomic potential essentially determines the pattern
of electron scattering from an atom in a strong laser
field and accounts for the appearance of plateaus in the
spectra of electrons scattered by small angles. The pla-
teau effects observed in induced bremsstrahlung pro-
cesses are of the same nature as those in other interac-
tions of atoms with intense laser fields.
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ian Research and Development Foundation and the
Ministry of Education of the Russian Federation
(grant no. VZ-010-0), by the Russian Foundation for
Basic Research (project no. 00-02-17843), Center for
Competitions of the Ministry of Education of the Rus-
sian Federation (project no. E00-3.2-515), and the
U.S.  National Science Foundation (grant no. PHY-
0070980).
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