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❆❜str❛❝t✿ We study/construct (proper and non-proper) Morse functions f on complete Riemannian manifolds X such that

the hypersurfaces f(x) = t for all −∞ < t < +∞ have positive mean curvatures at all non-critical points x ∈ X of f .

We show, for instance, that if X admits no such (not necessarily proper) function, then it contains a (possibly,

singular) complete (possibly, compact) minimal hypersurface of finite volume.
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1. Introduction

1.1. Mean curvature convexity

Let X be a smooth Riemannian manifold. Given a smooth function f on X , define the mean curvatures mn.curvx(f) at

non-critical points x ∈ X , i.e. where df(x) ≠ 0, as the mean curvatures of the level hypersurfaces Y = Yr = f
−1(r), for

r = f(x),
mn.curvx(f) def

= mn.curvx(Yr),
where the mean curvatures of the hypersurfaces Y are defined by evaluation of their second fundamental forms on the

normalized downstream gradient field −grad f/∥grad f∥. Call a function f is strictly mean curvature convex (sometimes

we say “(n − 1)-mean curvature convex” instead of just “mean curvature convex” for n − 1 = dimY = dimX − 1) if

mn.curvx(f) ≥ ε(x) > 0 for all f-non-critical points x ∈ X , i.e. where df(x) ≠ 0,

for a positive continuous function ε on X .
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Remarks.

(a) We are especially concerned with strictly mean curvature convex Morse functions, i.e. where the critical points of
f are non-degenerate. Even though our “convexity” definition formally makes sense for all smooth functions f , one
has, in reality, to impose some, possibly weaker than Morse, constrains on the critical points of f – we do not want
to accept, for example, constant functions.

(b) In what follows, most our manifolds X are non-compact, where ε(x) may tend to 0 for x → ∞. This happens, for
instance, to the squared distance function in the Euclidean space R

n from the origin, that is an archetypical example
of a strictly mean curvature convex Morse function.

(c) If we compose f ∶X → R with a smooth nowhere locally constant function ψ∶R → R, then ψ ○ f ∶X → R has, at least
locally, the same levels as f . The sign of the mean curvatures of the levels is preserved if the derivative of ψ is
positive, ψ′ > 0; however, it changes where ψ′ < 0.

Conclude by observing that Morse properties of a function are influenced by the sign of the mean curvature of the levels

via the following obvious inequality.

[ind ≤ n − 2] The critical points of strictly mean curvature convex Morse functions have their Morse indices ≤ n− 2 for

n = dimX .

1.2. Non-proper and proper Plateau–Stein manifolds

[n-n-proPS]⌣ Call a possibly non-complete, Riemannian manifold X of dimension n ≥ 2 without boundary Plateau–

Stein if it admits a strictly mean curvature convex Morse function f ∶X → R.

Sometimes, to emphasize that f is not assumed proper, we call these non-proper Plateau–Stein or [n-n-proPS]⌣, where

“⌣” stands for “convex” with “⌢” in the next section for “concave” and where non-proper must be always understood as

not necessarily proper.

Three other similar conditions on X are as follows.1

[PS](1) Given a compact subset B ⊂ X and ε > 0, there exist a strictly (n − 1)-volume contracting continuous map

Ψε∶B → X , that is voln−1(Ψε(H)) < voln−1(H) for all smooth hypersurfaces H ⊂ X , such that distX(Ψε(x), x) ≤ ε for all

x ∈ B.

(This condition does not truly need any smooth structure in X .)

[PS](2) X admits a C 1-smooth strictly (n − 1)-volume contracting vector field V , n = dimX , i.e., for every compact

subset B ⊂ X , there exists ε > 0 such that V integrates on B to a flow up to the time t = ε where the flow maps, say

Vt ∶B → X , are strictly (n − 1)-volume contracting on B for 0 < t < ε.

[PS](3) X admits a strictly (n−1)-mean convex function f , i.e., such that the gradient field of −f is strictly (n−1)-volume

contracting. (See subsection 3.3 for an alternative definition.)

Clearly, [PS](3)⇒ [PS](2)⇒ [PS](1) and also [PS](3) implies Plateau–Stein, since every strictly (n − 1)-mean convex

function f admits an arbitrarily small perturbation that makes it strictly (n − 1)-mean curvature convex.

What seems non-obvious – I do not see a direct proof of this – is the following corollary to the Inverse Maximum Principle

stated in the next section.

Contraction Corollary for Covering.
Let X be an infinite covering of a compact manifold. If X is [PS](1), i.e., if it admits strictly (n − 1)-volume contracting

continuous maps Ψε∶B → X , for all compact subsets B ⊂ X and all ε > 0, with distX(Ψε(x), x) ≤ ε, then X is Plateau–

Stein.

1 Bringing forth these properties was motivated by our conversations with Bruce Kleiner.
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Remark/Question.
Probably, if f is strictly mean convex, then one can arrange a smooth function a on X with a large derivative along
the gradient field grad f , such that the field −ea(x)grad f would be strictly mean contracting. But it is less clear what
should be exactly the class of (non-covering) manifolds X where the existence of a strictly (n − 1)-volume contracting
field implies Plateau–Stein.

[proPS]⌣ Say that X is proper Plateau–Stein, if it admits a proper positive strictly mean convex Morse function

f ∶X → R+, where proper for (a not necessarily positive) function f on X means that x →∞⇒ ∣f(x)∣→∞, where “→∞”

means “eventually leaves every compact subset”. Sometimes we say that the Riemannian metric on X is proper/non-

proper Plateau–Stein.

Proper Plateau–Stein manifolds are reminiscent of complex Stein manifolds X that, by definition, support proper positive

strictly C-convex, traditionally called plurisubharmonic, functions. An obvious necessary condition for the existence of

such a (not necessarily proper) function is the absence of compact complex submanifolds of positive dimensions in X .

A theorem by Grauert says that this condition is also sufficient if X can be exhausted by compact domain with strictly

C-convex (pseudoconvex) boundaries.

We shall prove in this paper a Riemannian counterpart to Grauert’s theorem with “suitable compact minimal hyper-

surfaces” (“hypersurface” always means a codimension 1 subvariety, possibly with singularities) instead of “compact

complex submanifolds”.

The possible topologies of Plateau–Stein manifolds are rather transparent. Plateau–Stein manifolds X are non-compact

and, if proper, they have zero homology Hn−1(X ;Z2) for n = dimX . In particular, they are connected at infinity. Moreover,

proper Plateau–Stein manifolds X are diffeomorphic to regular neighborhoods of codimension two subpolyhedra in X .

This follows from [ind ≤ n − 2]. For example, proper Plateau–Stein surfaces are homeomorphic to the 2-plane R
2 and

proper Plateau–Stein 3-folds are topological handle bodies, while non-proper Plateau–Stein allows a complete (warped

product) metric on the topological cylinder Xn
= Xn−1

0 ×R for all (n − 1)-manifolds Xn−1
0 as a simple argument shows.

In fact one can show (we leave this to the reader) the following. Let f ∶X → R be a proper, not necessarily positive, Morse

function, where all critical points have indices ≤ n − 2. Then there exists a complete Riemannian metric on X (which

is proper Plateau–Stein according to our definition if f is positive) for which this function is strictly mean curvature

convex.

Unlike the proper Plateau–Stein the non-proper Plateau–Stein condition is not topologically restrictive for open mani-

folds. Every open manifold X admits a (possibly non-complete) non-proper Plateau–Stein Riemannian metric.

In fact, a simple argument shows that given a smooth function f without critical points on a smooth manifold X , there

obviously exists a (possibly non-complete) Riemannian metric on X such that the level hypersurfaces of f are convex

with respect to this function.

Probably, every open manifold X of dimension n ≥ 3 admits a complete non-proper Plateau–Stein Riemannian metric.

(Complete Plateau–Stein surfaces X are homeomorphic either to R
2 or to the cylinder S1

×R, since other non-compact

complete connected surfaces necessarily contain (non-contractible) closed geodesics that is incompatible with being

(complete or not) Plateau–Stein in dimension n = 2.)

The geometry of Plateau–Stein manifolds is not as apparent as their topology.

Examples and Questions.
(a) Let X = (X,g0) be a complete simply connected n-manifold, n ≥ 2, of non-positive sectional curvature κ(g0) ≤ 0.
Since the spheres Sx0(R) ⊂ X around a given point x0 ∈ X are strictly convex, such X is proper Plateau–Stein and all
open subsets U ⊂ X are Plateau–Stein.

Even though the inequality κ(g0) ≤ 0 is unstable under smooth perturbations of g0, the Plateau–Stein may be stable.
For example, let the Ricci curvature of X be bounded from below by −δg0, δ > 0, e.g. X is a symmetric space of
non-compact type with no Euclidean factor. Then mn.curv(S(R)) ≥ δ > 0 for all R > 0. Since this inequality is stable
under uniformly C 1-small perturbations gε of the original metric g0 on X , the function x → dist2

g0
(x, x0) remains mean

curvature convex with respect to gε; hence, these gε are proper Plateau–Stein.

✾✷✺



Plateau–Stein manifolds

If a non-flat symmetric space (X,g0) of non-compact type does have a Euclidean factor, then the perturbed metrics gε
are, obviously, non-proper Plateau–Stein. Probably, they are proper Plateau–Stein.

On the other hand, the Euclidean metric g0 on R
n, n ≥ 2, admits arbitrarily C∞-small perturbations gε that are not

Plateau–Stein. Indeed, one can arrange gε such that g0 − gε is supported in an annulus A pinched between two large
spheres, say Sn−1(R) and Sn−1(R + 1) in R

n, R ≫ 1/ε, and such that (A,gε) is isometric to the Riemannian product
Sn−1(R)×[0, 1]. It is clear such gε is not Plateau–Stein, since the mean curvature of a smooth function f on X = (Rn, gε)
is, obviously, non-positive at the maximum point of f on Sn−1(R).
(b) Let Gε be the space of ε-small C∞ perturbations gε of g0 that are invariant under the action of Zn on R

n, i.e. these
gε correspond to perturbations of the flat metric on the torus R

n/Zn. Divide the space Gε into three classes:

(b1) proper Plateau–Stein;

(b2) Plateau–Stein but not proper Plateau–Stein;

(b3) not even non-proper Plateau–Stein.

What is the topological structure of this partition? Are all three subsets (b1), (b2), (b3) ⊂ Gε dense in Gε for small ε? Is
any of these (b1), (b2), (b3) ⊂ Gε a meager set? (I am uncertain of what happens even for n = 2 where the answer might
be known, albeit in different terms.)

(c) Let p∶X1 → X be a Riemannian submersion between Riemannian manifolds, i.e. the differential dp∶T(X1)→ T(X)
everywhere has rank(dp) = n = dimX and it is isometric on the horizontal tangent (sub)bundle T(X1)⊖kerdp ⊂ T(X1)
(normal to the fibers p−1(x) ⊂ X1). The simplest instance of this is the projection of a Riemannian product X1 = X ×X

′

onto the X factor. Let the action of the normal holonomy (by the parallel transport along the horizontal bundle) on the
fibers be volume preserving, e.g. p = X ×X ′ → X . Then the p-pullback of hypersurfaces from X to X1 preserves their
mean curvatures. Therefore, if a function f ∶X → R is Morse strictly mean convex, then a generic smooth perturbation of
p○ f ∶X1 → R is also Morse as well strictly mean convex. Consequently:

(c1) If X is a Plateau–Stein then so is X1.

(c2) If X is a proper Plateau–Stein and the fibers p−1(x) ⊂ X1 are closed manifolds for all x ∈ X , then X1 is also proper

Plateau–Stein.

(c3) If X and the fibers p−1(x) are proper Plateau–Stein, if the action of normal holonomy is isometric on the fibers,

and if the normal holonomy group is compact, then X1 is proper Plateau–Stein.

(c4) It follows from (a) and (c2) that non-compact semisimple groups with finite centers are proper Plateau–Stein, while
(c1) implies that unimodular solvable, e.g. nilpotent, groups are (not necessarily proper) Plateau–Stein.

Probably, all non-compact Lie groups X with left invariant metrics, except for compact×R, are Plateau–Stein but it is
less clear which Lie groups, and Riemannian homogeneous spaces in general, are proper Plateau–Stein.

(d) The Riemannian cylinders that are product R×X ′ are Plateau–Stein for many (all?) open Riemannian X ′, e.g. for
the interiors X ′ of compact manifolds with boundaries (this is obvious) and for complete connected manifolds of with
infinite volume. (This is not hard.)

(e) What are non-compact, e.g. complete, Riemannian manifolds X ′, such that the Riemannian products X ×X ′ are
proper Plateau–Stein for all proper Plateau–Stein manifolds X?

Conclude with the following questions where topology and geometry are intertwined. Let V be a closed Riemanian

manifold.

(I) When does V admit a Riemannian metric such that the universal covering X of V with this metric is proper, or at

least non-proper, Plateau–Stein?

(II) When is the universal covering of V bi-Lipschitz equivalent to a (proper) Plateau–Stein manifold?

Probably, the answers are invariant under the codimension two surgeries of V , and even possibly, depend only on the

fundamental group Γ = π1(V ). Anyway, the fundamental groups Γ of such manifolds V (where the answers are positive)

may be called (I) or (II) “Plateau–Stein” [proPS]⌣ and [n-n-proPS]⌣. The best candidates for “Plateau–Stein” Γ are

✾✷✻
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non-amenable groups with one end. On the other hand, there may exist some “tricky” (forget about virtually cyclic)

amenable groups that are not even [n-n-proPS]⌣.

Question (II) makes sense for all complete manifolds X , not only coverings of compact ones: When such X is bi-Lipschitz

equivalent to a Plateau–Stein manifold? (“Bi-Lipschitz” seems too restrictive in this context; one needs something

half-way from bi-Lipschitz to quasiisometric in the spirit of the directed Lipschitz metric [3].)

1.3. Inverse Maximum Principle

[n-n-proPS]min Say that a Riemannian manifold X is [n-n-proPS]min if it contains no compact minimal hypersurface.

One cannot exclude such a hypersurface being singular. Below is smooth version of this condition with minimal replaced

by “almost concave”.

[n-n-proPS]⌢ Say that a Riemannian manifold X is [n-n-proPS]⌢ if it admits a continuous positive function ε(x) > 0

such that every compact smooth domain, i.e. a relatively compact open compact subset U ⊂ X with smooth boundary

in X , has a point x ∈ ∂U where mn.curvx(∂U) ≥ ε(x). Another way to put it is that X contains no bounded domain with

ε-mean-concave boundary.

[proPS]min Say that X is [proPS]min if it is connected at infinity and if, for every compact subset B ⊂ X , there is a

(larger) compact subset C = C(B) ⊂ X such that all compact minimal hypersurfaces Hi ⊂ X with boundaries contained

in B ⊂ X are themselves contained in C .

A smooth almost concave version of this condition is as follows.

[proPS]⌢ Say that X is [proPS]⌢ if it is connected at infinity and there are continuous positive function ε(x) > 0 and

a proper continuous function φ∶X → R+ such that: given a compact subset V ⊂ X and a smooth domain U ⊂ X , where

sup
x∈U

φ(x) > sup
x∈V

φ(x),

there exists a point x ∈ ∂U ∖V , where mn.curvx(∂U) ≥ ε(x).
One immediately sees by looking at the maxima points of strictly mean curvature convex functions f(x) on the boundaries

∂U that proper/non-proper Plateau–Stein manifolds satisfy the corresponding [ ⋅]min-conditions. Namely,

[n-n-proPS]⌣ Ô⇒ [n-n-proPS]⌢, [proPS]⌣ Ô⇒ [proPS]⌢.

Also it is not hard to see by a simple approximation argument (see Step 2 in the next section and subsections 3.4,

5.6, 5.7) that

[n-n-proPS]⌢ Ô⇒ [n-n-proPS]min, [proPS]⌢ Ô⇒ [proPS]min.

IMP for Thick Manifolds. The main purpose of the present paper is proving inverse implications for Riemannian

manifolds X that are thick at infinity (see subsection 2.1). Examples of these include:

●conv complete manifolds X where the balls of radii ≤ ε are convex for some ε > 0;

●Ricc complete manifolds X where Ricci(X) ≥ −const ⋅Riem.metric(X) and, at the same time, the volumes of the unit

balls Bx(1) ⊂ X for all x ∈ X are bounded from below by some ε > 0;

●Lip complete manifolds X where the ε-balls B = Bx(ε) ⊂ X for some ε > 0 admit λ-bi-Lipschitz embeddings B → R
n

for n = dimX and for some constant λ independent of B.

Notice that coverings of compact manifolds are thick at infinity by either of these conditions.
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Main Theorem: Inverse Maximum Principle.
Let X be a complete C 2-smooth Riemannian n-manifold, n ≥ 2. If X is thick at infinity, then

IMP[non-proper] [n-n-proPS]min⇒ [n-n-proPS]⌣;

IMP[proper] [proPS]min⇒ [proPS]⌣.

Convex/Minimal Existence Alternative.
Observe that IMP[non-proper] says, in effect, that either X can be “filled” by strictly mean convex hypersurfaces (that

are the levels of a strictly mean curvature convex Morse function f(x)) or, alternatively, X contains a compact minimal

hypersurface Y and IMP[proper] encodes a similar alternative.

1.4. φ-bubbles, plan of the proof of IMP and Trichotomy Theorem

Let µ be a Borel measure µ in X and define the µ-area of a domain U ⊂ X with boundary Y = ∂U as

area−µ(U) def
= voln−1(Y ) − µ(U),

where “domain” means either a closed subset U ⊂ X with the interior int(U) ⊂ U being dense in U or an open subset

that equals the interior of its closure.

Call U a µ-bubble if it locally minimizes the function U ↦ area−µ(U) where “local” may be understood at this point

relative to the Hausdorff metric in space of pairs (U,Y = ∂U). (We return to this in Section 2.) For instance, if µ = 0

then µ-bubbles are domains bounded by stable minimal hypersurfaces in X .

If µ is given by a measurable density function φ(x), x ∈ X , i.e. µ = φdx for the Riemannian n-volume (measure) dx,

then we speak of φ-bubbles and observe that if φ is a continuous function, then the mean curvatures of the boundaries

Y = ∂U of φ-bubbles satisfy mn.curvx(Y ) = φ(y) for all regular points x of Y . In particular, if φ ≥ 0, then φ-bubbles

are mean convex at all regular points of their boundaries, i.e. mn.curvx(Y ) ≥ 0 at all regular x ∈ Y and strictly mean

convex at such points if φ > 0. In sequel, if φ is not specified, these are called just (strictly) mean convex bubbles.

(By definition, Y is regular at a point x ∈ Y if Y is a C 2-smooth hypersurface in a neighbourhood of this point.)

Bubbles with Obstacles. If φ0 = ∞B equals +∞ on some, say, compact subset B ⊂ X and zero outside B, then the

boundaries of φ-bubbles U ⊃ B are, almost by definition, minimal hypersurfaces Y in the closure of the complement

X ∖B that solve the Plateau problem with the obstacle B.

We shall often use positive continuous functions φ = φε > 0 that approximate such φ0, being large, say 1/ε, on B and

ε > 0 away from B. Then the corresponding φε-bubbles Y = Yε lie close to φ0-bubbles for small ε → 0 that helps to

understand their overall geometry, while the continuity of φ makes the local (quasi)regularity of these Yε similar to that

of minimal varieties.

We divide the proof of IMP into five steps.

Step 0: Excluding “Narrow Ends”. The representative case of the theorem is where X is one-ended, i.e. connected at

infinity, and where this end has infinite area. This means that the boundaries Yj = ∂Vj of an arbitrary exhaustion of X

by bounded domains Vj ∈ X satisfy voln−1(Yj) → ∞, j → ∞, for n = dimX . (In fact, one needs a slightly more general

version of this condition as we shall explain in subsections 2.2 and 2.3.)

Step 1: Mean Convex Exhaustion. Let X be one-ended complete with infinite area at infinity. Then there exist strictly

mean convex compact bubbles Uj ⊂ X , j = 1, 2, . . . , that exhaust X ,

U1 ⊂ U2 ⊂ . . . ⊂ Uj ⊂ . . . and ⋃
j

Uj = X.

Notice that the thickness at infinity condition is not needed beyond this point. On the other hand, it is essential for the

existence of the bubbles Uj . In fact, such φj-bubble Uj is obtained for φj > 0 that is large on the ball B = Bx0(j) ⊂ X of

radius j around a fixed point x0 ∈ X and small away from B.
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The existence of Uj is proven in subsections 2.2 and 2.3 by the standard minimization argument of the geometric measure

theory, that works on our (non-compact) X because of the thickness condition that is designed exactly for this purpose

(see subsection 2.1) in order to prevent partial escape of minimizing sequences of (boundaries of) bounded domains U

in X to infinity. (Such an escape can be imagined as a “long narrow tentacle” protruding from the “main body” of U .)

Step 2: Mean Convex Regularization. One can not guaranty at this point that the boundary hypersurfaces Yj = ∂Uj
are smooth for n = dimX ≥ 7. Yet, they do have positive mean curvatures in a generalized sense. Moreover, (this proves

the implication [n-n-proPS]⌢⇒ [n-n-proPS]min) these Yj can be approximated by C 2-smooth hypersurfaces Y ′j ⊂ Uj with

positive mean curvatures.

In fact, since (the boundaries of) φ-bubbles U are quasiregular (as defined in subsection 3.2) for all continuous functions

φ by the Almgren–Allard regularity theorem, the minus distance function d(x) = −dist(x, Y = ∂U) can be regularized

almost without loss of the lower mean curvature bound near the boundary of U . Namely, we shall see in subsection 3.4,

and, from a different angle, in subsection 5.6, that every strictly mean convex bubble U ⊂ X admits a continuous function

d′∶U → (−∞, 0] such that

• d′(x) = 0 for x ∈ Y = ∂U ,

• d′(x) is smooth strictly negative in the interior int(U) ⊂ U and all critical points of d′ in int(U) ⊂ U are

non-degenerate,

• there exists a continuous function δ in U that vanishes on the boundary Y = ∂U , such that mn.curvx(d′) ≥
φ(x) − δ(x) for all d′-non-critical points x ∈ int(U).

Remarks and Questions.

(a) The above regularization is non-essential at this stage of the proof; yet, it will become relevant later on.

(b) This regularization, along with the simple but “non-elementary” minimization argument at Step 1 in the framework
of the geometric measure theory provides an exhaustion of X by compact domains U′j ⊂ X with smooth strictly mean
convex boundaries Y ′j . Is there an “elementary” proof of this?

(c) Our regularization procedure (see subsections 3.3, 5.6), however simple, requires C 2-smoothness of the Riemannian
metric in X and it does not work for C 1-manifolds with the sectional curvatures bounded from above and from below.
But the inverse maxima principles, if properly formulated, may hold for C 1-smooth manifolds and for some singular
spaces, e.g. for Alexandrov spaces with curvatures bounded from below.

Step 3: Inverse Maximum Principle for Manifolds with Boundary. Let V be a smooth compact Riemannian man-

ifold with boundary and φ be a continuous function on V such that the boundary of V is strictly mean φ-convex,

i.e. mn.curvv(∂V ) > φ(x) for all v ∈ ∂V . Then, assuming φ > 0,

● either the interior of V contains a φ-bubble, or

● V admits a Morse function f ∶X → R− = (−∞, 0] that vanishes on the boundary of X and that is strictly mean

φ-convex, i.e., mn.curvv(f) > φ(v) for all f-non-critical points v ∈ V .

The proof of this is divided into two half-steps.

Half-Step 3A: Shrinking Bubbles. Take a (eventually small) positive ρ > 0, a (large) C > 1 and a monotone decreasing

sequence εi > 0, i = 0, 1, 2, . . ., where ε1 = ε1(V ) > 0 is (very) small and where εi → 0 for i→∞. Construct step by step

a sequence

U0 = V ,φ1, U1, φ2, U2, φ3, . . . , Ui, φi+1, Ui+1, . . . ,

where φi+1, i = 0, 1, 2, . . ., is a continuous function on Ui and where Ui+1 ⊂ Ui is a φi+1-bubble and the following three

conditions must be satisfied:

(∗)ε φi ≥ φ + εi for all i = 1, 2, . . .,

(∗)ε,ρ φi(u) = φ(u) + εi for all u in the ρ-neighbourhood of ∂Ui−1 ⊂ Ui−1,
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(∗)Cρ ∂Ui+1 is contained in the Cρ-neighbourhood of ∂Ui ⊂ Ui for all i = 0, 1, 2, . . .

This (∗)Cρ is the only non-trivial requirement on our sequence, where the existence of a φi+1-bubble Ui+1 ⊂ Ui with

the boundary ∂Ui+1 lying close to ∂Ui needs a suitably chosen φi+1 that must be far away from the ρ-neigbourhood of

∂Ui ⊂ Ui (see subsections 2.4, 4.1, 4.2).

Half-Step 3B: Regularization. On can show (see Section 2) that if V contains no φ-bubble, the sets Ui become empty

for large i. Then, if ρ > 0 is sufficiently small, one can construct the required f by “splicing and regularizing” minus

distance functions u↦ −dist(u, ∂Ui) on the subsets Ui (see Section 4).

Remarks.

(a) “Shrinking bubbles” can be seen as discretization of a some “gradient flow” for a non-Hilbertian norm in the (tangent
space to the) space of subvarieties in X , where the Hilbertian norm leads to the mean curvature flow.

(b) The condition φ > 0 can be dropped with a slightly more general notion of “φ-bubble”, that would allow, for instance,
the central geodesic in the (hyperbolic) Möbius band for the role of a (φ = 0)-bubble.

Step 4. Limits by Exhaustion. We shall use in subsection 4.2 a simple compactness property (of sets of the boundaries)

of our mean convex bubbles Ui,j ⊂ Uj to construct mean convex functions f on X as limits of such functions fj in bounded

mean convex domains Uj ⊂ X that exhaust X . Looking closer (see Section 4) one obtains with the above argument the

following

Trichotomy Theorem.
Let X be a complete Riemannian C 2-smooth manifold (not assumed thick at infinity). Then (at least) one of the three

conditions is satisfied.

(i) X admits a proper (positive, if X is connected at infinity) strictly mean curvature convex Morse function;

(ii) X contains a complete (possibly compact) minimal hypersurface H of finite volume;

(iii) X admits a non-proper strictly mean curvature convex Morse function and such that either there is a non-compact

minimal hypersurface H with finite volume that is closed in X as a subset and that has compact boundary, or there

is a sequence of compact minimal hypersurfaces Hi ⊂ X with no uniform bound on their diameters, such that the

boundaries ∂Hi are contained in a fixed compact subset in X .

Remarks.

(a) A complete Riemannian manifold X with two ends that admits a proper strictly mean curvature convex Morse function
f ∶X → R, may contain, however, arbitrarily large compact minimal hypersurfaces with boundaries in a given compact
subset in X . For instance, the 2D hyperbolic cusp X0 (the hyperbolic plane divided by a parabolic isometry) has
this property and the Cartesian products X = X0×V for compact V furnish example of all dimensions.

What are other examples of minimal hypersurfaces protruding toward “concave ends” in complete manifolds? Are
there such examples with thick ends, e.g. for manifolds with bounded geometries?

(b) The above theorem (and, in particular, its special case stated in the abstract to our paper) shows that the inverse
maximum principle does not truly need thickness at infinity, but the direct maximum principle, probably, does. Quite
likely, there exist complete Plateau–Stein n-manifolds for n ≥ 3 that contain complete minimal hypersurfaces of
finite (n − 1)-volume.

1.5. Miscellaneous remarks, questions and corollaries

(A) The most essential ingredient of our proof – the Almgren–Allard regularity theorem for “soap bubble” – is trivial

for n = dimX = 2: curves with continuous curvature in surfaces are, obviously, smooth. Consequently, our argument is

quite elementary for n = 2. In fact, both IMP hold with (almost) no restrictions on X , where IMP[non-proper] reduces to

the following, most likely known, proposition.

IMP[dim = 2] Let X be a surface with a complete C 2-smooth (probably, C 1 will do in this case) Riemannian metric.

Then one of the following three properties holds:
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(i) X contains a simple closed geodesic.

(ii) X supports a smooth function f ∶X → R which has no critical points and such that the sublevels f−1(−∞, r] ⊂ X are

strictly geodesically convex for all r ∈ R. (Such X , obviously, is homeomorphic to the plane R
2 or to the cylinder

S1
×R.)

(iii) X is homeomorphic to the sphere with three points removed.

(Originally I overlooked (iii); it was pointed to me by Yura Burago that one cannot always ensure a simple closed

geodesic with this topology where non-simple geodesics are abundant for all metrics. But it should be noticed that the

essence of this IMP resides in the surfaces that are homeomorphic to R
2 and to S1

×R.)

(B) An instance of a corollary to, say, IMP[non-proper], is the validity of the counterparts of the stability of Plateau–

Stein under Riemannian submersions (see (c) from the previous section) for the corresponding [ ⋅]min.

For example, let X be a complete and thick at infinity. If X is [n-n-proPS]⌢ then so is the Riemannian product X ×X ′,

for all closed Riemannian manifolds X ′. This, however, looks almost as obvious as the original Plateau–Stein case

and, moreover, “thick” seems unnecessary. Indeed, if a compact smooth domain U1 ⊂ X ×X
′ is mean concave, i.e. its

boundary satisfies mean.curvx(∂U1) ≤ 0 for all x ∈ ∂U1, then the boundary of the projection U ⊂ X of U1 to X is also

mean concave at all regular points x ∈ ∂U , while singular points have generalized mean curvatures = −∞. This allows

an approximation/regularization of ∂U with mean.curv(∂U) ≤ ε everywhere for all ε > 0.

On the other hand, the [ ⋅]min counterpart of the above IMP[non-proper] is not fully trivial. If X ×X ′ contains a closed

minimal (possibly singular) hypersurface then so do X and X ′, provided X and X ′ are complete and thick at infinity.

But the direct proof of this by the geometric measure theory is very simple.

Notice that minimal hypersurfaces in split Riemannian manifolds X1 = X ×X
′ do not always split, e.g. in flat 3-tori.

Probably, there are non-split compact domains U1 with minimal boundaries in certain Riemannian products X1 = X ×X
′

for open manifolds X and closed X ′, where “split” means U1 = U ×X
′.

But it seems unclear, for example, if such non-split U1 with minimal boundaries exist in the products X1 = X ×S
1 of a

hyperbolic surfaces X of finite areas by circles and if there are compact domains with minimal boundaries in the products

X1 = X ×X
′ of complete hyperbolic surfaces X and X ′ of finite areas. (These X1 are not uniformly locally contractible

but some IMP may hold.)

(C) The existence of an exhaustion of a Riemannian manifold X by compact mean convex domain is an interesting

property in its own right, call it strict mean convexity at infinity. For instance, a Galois covering X of a closed

Riemannian manifold X is strictly mean convex at infinity unless the Galois group Γ of the covering is virtually cyclic

and if, moreover, Γ is non-amenable, then X can be exhausted by domains with mean curvatures ≥ ε > 0. (A representative

counterexample for cyclic Γ is provided by manifolds X that admit fibrations over the circle X → S1 such that the fibers

are minimal hypersurfaces.)

Mean convexity at infinity is visibly “cheaper” than Plateau–Stein; yet, there are non-proper Plateau–Stein manifolds

that are not mean convex at infinity. For instance, let X be a topological cylinder, i.e. homeomorphic to X = X0×R,

where X0 is a compact manifold, and let g0 be a Riemannian metric on X0. Let φ = φ(t), t ∈ R, be a positive function

and observe that the metric φ(t)g0 +dt
2 on X is concave at the t → −∞ end of X rather than mean convex. But such X ,

obviously is Plateau–Stein since f(x0, t) = φ(t) is a strictly mean convex function.

Question.
Under what conditions does Plateau–Stein imply strict mean convexity at infinity? (An easy instance of such a condition
is thickness at infinity + connectedness at infinity.)

(D) Smoothness conditions we impose on functions and on hypersurfaces in the definitions of Plateau–Stein manifolds

and of their [ ⋅]⌢-counterparts allows a glib formulation of our results with no need for concept of “minimal hypersurface”.

But insistence on this smoothness looks facetious in view of the geometric measure theory techniques that underly the

essential part of the argument while “regularization of bubbles” that excludes [ ⋅]min may strike one as a waste of effort.
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In fact, an expected generalization of the IMP-implications must apply to non-smooth objects in singular spaces X . On

the other hand, the regularization process we employ delivers  this is implicit in the arguments in Section 4  a simple

but non-trivial information on geometry of singular minimal varieties. (This “information” is by no means new.)

(E) Here another obvious consequence of the inverse maximal principle implications [ ⋅]min ⇒ [ ⋅]⌣, where minimal

varieties and their singularities do not appear.

(n − 1)-Contraction Corollary.
Let X be a C 2-smooth complete Riemannian manifold that is thick at infinity. If X admits a strictly (n − 1)-volume

contacting vector field V then X is Plateau–Stein. If, moreover, X is connected at infinity and if there are vector fields

Vi such that the supports of Vi exhaust X and such that Vi are strictly (n − 1)-volume contacting in the complement of

their supports, then X is proper Plateau–Stein.

(Recall, that this theorem was stated for coverings of compact manifolds in subsection 1.2 and that a vector field V is

strictly (n − 1)-volume contacting if the V -derivatives of the volumes of all smooth hypersurfaces in X are negative.)

(F) Let X , not necessarily thick at infinity, contain no compact minimal hypersurface. Then does it admit a strictly

(n−1)-volume contracting vector field? (This question is motivated by such a result for 1-volume (i.e. length) contracting

fields that was pointed out to me by Bruce Kleiner. Possibly, there is something like that for all k-volume contracting

vector fields.)

2. Construction of φ-bubbles and of minimal hypersurfaces

We shall describe in this section a few standard φ-areas (including (n − 1)-volume) minimization constructions that

deliver minimal hypersurfaces, such as φ-bubbles, under the thickness condition.

2.1. Thickness at infinity

An n-dimensional Riemannian manifold X is called thick at infinity if it contains no non-compact minimal hypersurface

with compact boundary and with finite (n − 1)-volume. Such a hypersurface Y ⊂ X must, by definition, be closed in X

as a subset and be ε-locally voln−1-minimizing in X at infinity. This means that there exists ε > 0 (ε = 1 is good for

us) and a compact subset A = A(Y ) ⊂ X (that contains the boundary of Y ) such that the intersection Y ∩ B with every

ε-ball B = Bx(ε) ⊂ X for x ∈ X ∖A is voln−1-minimizing in X in the class of hypersurfaces (integral currents) with the

boundary equal Y ∩ ∂B.

Examples.
The Paul Lévy (Buyalo–Heintze–Karcher) tube volume bound shows that the condition ●Ricc from subsection 1.3 implies
this thickness, while the conditions ●conv and ●Lip are taken care by the following corollary to the implication:

cone inequality Ô⇒ filling inequality

and the lower bound on volumes of minimal varieties by the filling constant [12].

●fill If every closed integral k-chain S in X , k = 1, 2, . . . , of diameter ≤ 1 bounds a (k + 1)-chain T such that

volk+1(T) ≤ const ⋅ diamS ⋅ volk(S)

for some const = const(X), then X is thick at infinity.
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Remark.
This thickness concept obviously generalizes to all dimensions 2 ≤ m ≤ n− 1 with minimal subvarieties Y ⊂ X of dimen-
sion m, where the above criterion remans valid, while ●Ricc should be replaced by ●sect with the lower sectional curvature
bound instead of such a bound on Ricci.

2.2. Convex and concave ends

Let X be a Riemannian manifold possibly with compact boundary ∂X and a single end such that X is thick at infinity.

Then one of the following three possibilities is realized:

1⌣ X can be exhausted by compact strictly mean convex bubbles,

2⌢ X can be exhausted by compact strictly mean concave bubbles,

3≡ there exists a continuous positive proper function h∶X → R+ such that the levels Yt = h
−1(t) ⊂ X are minimal

hypersurfaces, that are the boundaries of 0-bubbles, for all t ≥ t0 = t0(X) ≥ 0.

Proof. Start by observing that 1⌣ and 2⌢ are not mutually exclusive and if there are these two kinds of exhaustions

then there also (obviously) exists an exhaustion by 0-bubbles. But 3≡ is incompatible with 1⌣ and with 2⌢ by the

maximum principle.

Let 3≡ do not hold and, moreover, assume that X cannot be exhausted by compact 0-bubbles. Then minimization of

voln−1(Y ) for Y = ∂U , where U ⊂ X is a compact sufficiently large domain, either moves Y to infinity or brings to a

compact region X0 ⊂ X . In the former case, let −φ be a negative function on X , where φ is very large at infinity and

very small in the vicinity of some X0 that contains the boundary of X . Then minimization of φ-area brings U to a strictly

mean concave −φ-bubble in X .

Similarly, if volume minimization brings Y to a fixed compact X1 ⊂ X we use a positive φ that is very large on some

compact X ′1 ⊃ X1 and very small at infinity. Thus we obtain a strictly mean convex bubble. We keep modifying φ by

shifting the switch from “very large” to “very small” further and further to infinity and, thus, we exhaust X either by

strictly mean convex or by strictly mean concave bubbles.

Now, let X be exhausted by compact 0-bubbles. Then X contains infinitely many “empty bands”, say W , between

the boundaries of these bubbles say U1 and U2 ⊃ U1, i.e. W = U2∖U1, where such W is bounded by the minimal

hypersurfaces Y1 = ∂U1 and Y2 = ∂U2 with no 0-bubble between the two. Then the obvious adjustment of the above

argument delivers both a strictly mean convex and a strictly mean concave bubble pinched between U1 and U2.

Besides, Almgren’s min-max argument delivers a non-stable minimal hypersurface in W that separates Y1 from Y2.

2.3. Minimal separation of ends

Here X has several ends and no boundary, where the set of ends is given its natural topology. Notice that every isolated

end E can be represented/isolated by an equidimensional submanifold (domain) XE ⊂ X with compact boundary and a

single end; we say “exhaustion of E” instead of “exhaustion of XE for some XE ⊂ X”.

If the set of ends of X contains at least two limit points (e.g. if it has no isolated ends), then X contains a compact

two-sided smooth hypersurface H ⊂ X such that there are infinitely many ends of X on either side of H. Hence, clearly,

if X is complete and thick at infinity, then the homology class of H contains a minimizing hypersurface.

Now let X have at least two isolated ends, say E1 and E2. If none of these ends admits a strictly mean convex exhaustion,

then H contains a compact (non-stable) minimal variety M ⊂ X where this M may be a varifold.

Proof. Let h∶ x ↦ t = h(x) ∈ (−∞,+∞) be a smooth proper Morse function X → R such that h(x) → −∞ for x → E1

and h(x) → +∞ for x → E2. The voln−1-minimization process starting from the levels h−1(t) moves some connected

component of h−1(t) for small negative t (approaching −∞) to E1, while some component for positive large t goes to E2.

Since the manifold X is thick at infinity, Almgren’s min-max theorem applies and the proof follows.
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By combining the above with 1⌣/2⌢/3≡ in the previous section, we conclude to the following. Let X be a complete

Riemannian manifold that is thick at infinity. Then

[⌣ /−] Either an isolated end of X admits a strictly mean convex exhaustion, or X contains a compact minimal

subvariety.

2.4. Shrinking mean convex ends

Let X be a complete connected Riemannian manifold of dimension n with non-empty compact boundary Y⌣ = ∂X with

mn.curv(Y⌣) > ε0 > 0, let 0 < εi < ε0, i = 1, 2, . . . , be a sequence of positive numbers that converges to 0 and let ρ(x) > 0

be a continuous function on X . Then either

⋆A X contains a minimal hypersurface H ⊂ X of finite (n− 1)-volume that is closed in X as a subset and that does not

meet Y⌣, or

⋆B X can be exhausted by an increasing sequence of compact strictly concave bubbles Ui in X that contain Y⌣,

Y⌣ ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Ui ⊂ . . . ⊂ X, ⋃
i

Ui = X,

such that

● Ui is contained in the ρi−1-neighborhood of Ui−1 for ρi−1 = infx∈Ui−1
ρ(x) and all i = 1, 2, . . . , where U0

def
= Y⌣,

● the mean curvatures of the topological boundaries Yi = ∂Ui ⊂ X satisfy mn.curvx(Yi) = −εi at all those regular

x ∈ Yi, where dist(x,Ui−1) ≤ ρ/2.

Remarks.
If X is thick at infinity, then, as we know, the above minimal hypersurface H, if it exists at all, must be compact. If X
is compact and no minimal H exists, then the sequence Ui stabilizes and the boundaries Yi of the bubbles Ui become
empty for large i. On the other hand, if H does exist and ρ ≤ ρ0 = ρ0(H) > 0, then no Ui intersects H. (If ρ is large then
Ui may exhaust X even in presence of H.)

Proof of the ⋆A/⋆B-Alternative. Proceed as at the half-step 3A from subsection 1.4. Namely, granted Ui−1 for

some i, let φi be positive continuous functions on X such that φi = εi in the ρi/2-neighbourhood of Ui−1, φi(x) is very

large for dist(x,Ui−1) ≥ 2ρi/3. Then, clearly, there exists a compact −φi-bubble Ui ⊃ Ui−1 that satisfies all of the

above properties. Since εi → 0, the boundary of the union ⋃iUi ⊂ X must be a minimal hypersurface H in X with

voln−1(H) < voln−1(Y0); if no such hypersurface exists, then this boundary must be empty and ⋃iUi = X .

If ⋆B holds for all ρ(x) > 0 then, by the maximum principle, X contains no minimal hypersurface H of any volume. This

leads to the following

Almgren’s min/max Theorem for Non-Compact Manifolds.
If a complete Riemannian manifold X with non-empty compact strictly mean convex boundary contains a complete

minimal hypersurface, then it also contains a complete minimal hypersurface of finite volume. (“Complete” means being

closed in X as a subset, not intersecting the boundary of X and having no boundary of its own.)

2.5. Shrinking to concave boundary

The above admits a relative version where X has a concave component Y⌢ in its boundary (or several such components)

that serves as an obstacle for shrinking bubbles and where the minimal hypersurface H that (if it exists at all) obstructs

shrinking of bubbles may have non-empty boundary that is contained in Y⌢.

Namely, let again X be a complete connected Riemannian manifold of dimension n with compact boundary that is

now decomposed into two disjoint parts ∂X = Y⌣ ∪ Y⌢ (these Y⌣ and Y⌢ are unions of connected components of ∂X ),
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where Y⌢ (possibly, empty as in the previous section) is strictly mean concave and where Y⌣ is non-empty and has

mn.curv(Y⌣) > ε0 > 0.

Let ρ(x) > 0 be a continuous function on X . Then either

⌢ ⋆A X contains a minimal hypersurface H ⊂ X of finite (n − 1)-volume that is closed in X as a subset, that does not

meet Y⌣, and that may have boundary contained in Y⌢, or

⌢ ⋆B the complement X ∖Y⌢ can be exhausted by an increasing sequence of compact strictly concave bubbles Ui in X

that contain Y⌣,

Y⌣ ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Ui ⊂ . . . ⊂ X, ⋃
i

Ui = X ∖Y⌢,

such that Ui is contained in the ρi−1-neighborhood of Ui−1 for ρi−1 = infx∈Ui−1
ρ(x) and all i = 1, 2, . . . , where U0

def
= Y⌣.

Remarks.
We could also impose here additional constrains on the mean curvatures of the boundaries Yi = ∂Ui ⊂ X as we did in
the absence of Y⌢ but we postpone doing this until Section 4 where this becomes relevant.

An essential case of the above is where X is compact with two boundary components, Y⌣ and Y⌢, and these shrinking
bubbles are used (see subsection 1.4) for construction of a strictly mean curvature convex Morse function f on X that
equals 1 on Y⌣ and 0 on Y⌢, where such f exists if and only if there is no minimal hypersurface H in X with ∂H ⊂ Y⌢.

Here (and everywhere in this kind of context) “only if” follows by the maximum principle, while “if” is what we call the
inverse maximum principle.

Proof of ⌢ ⋆A and ⌢ ⋆B. Proceed as earlier and keep pushing boundaries of bubbles closer and closer to Y⌢. Then,

say in the compact case, we arrive at a maximal compact bubble Umax ⊂ X the boundary of which cannot be moved closer

to Y⌢ anymore. Then either Umax = X or the topological boundary of Umax is non-empty. Then this boundary, call it H,

makes our minimal hypersurface in the interior of X : if not “minimal” it could be moved closer to Y⌢.

Notice that this H is tangent (rather than transversal) to Y⌢ where the two hypersurfaces meet.

3. Distance functions, equidistant hypersurfaces and k-mean convexity

We fix in this section our terminology/notation and state a few standard facts on distance functions in Riemannian

manifolds X .

3.1. Signed distance function and equidistant hypersurfaces

Interior domains U<−ρ, U−ρ = U
≤

−ρ and equidistant hypersurfaces Y−ρ. Let U be a (closed or open) domain or an

open subset (possibly dense) in a Riemannian manifold X (or in any metric space for this matter) and denote by

x ↦ d(x) = dU(x) = dist±(x, ∂U) the signed distance function to the topological boundary Y = ∂U , i.e. dU(x) equals

the distance from x to Y outside U , dU(x) equals minus the distance from x to Y in U . In writing,

dU(x) = dist(x, Y ) = inf
y∈Y

dist(x, y) for all x ∈ X ∖U,

dU(x) = −dist(x, Y ) = −dist(x, X ∖U) for all x ∈ U,

where dist(x, Y = ∂U) = dist(x,U) for x ∈ X ∖U , since the Riemannian distance is a length metric being defined via the

lengths of curves between pairs of points.

Let ρ ≥ 0 and denote by U−ρ = U
≤

−ρ ⊂ U and U<−ρ ⊂ U−ρ, ρ ≥ 0, the closed/open (−ρ)-sublevels of dU , that are

U
≤

−ρ = d
−1
U (−∞,−ρ] and U

<

−ρ = d
−1
U (−∞,−ρ),
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where, clearly, U0 = U−0 = U
≤

0 equals the topological closure of U and U≤−ρ are closed subsets in U for ρ > 0 with U<−ρ
being equal the interior of U≤−ρ for ρ > 0. Let

Y−ρ = d
−1
U (−ρ) ⊂ X, ρ ≥ 0,

be the (interior) ρ-equidistant hypersurface to Y, that is the subset of points u in U , where distX(u,Y = ∂U) = ρ and

that equals the topological boundary ∂U−ρ since Riemannian manifolds X are length metric spaces. Similarly define

U+ρ = U
≤

+ρ and U<+ρ ⊂ U
≤

+ρ or ρ ≥ 0 as U≤+ρ = d
−1
U (−∞, ρ] and U<+ρ = d

−1
U (−∞, ρ). Thus, U+ρ = U

≤

+ρ equals the closed

ρ-neighbourhood of U in X and U<+ρ is the open ρ-neighbourhood.

On Hausdorff (dis)continuity. Clearly, the boundaries of the open sublevels of dU satisfy

∂U
<

−ρ ⊂ Y−ρ = ∂U
≤

−ρ,

where the local minima of the dU on U make the difference set Y−ρ∖∂U
<

−ρ.

The set valued function ρ ↦ U−ρ ⊂ X , ρ ∈ R+, is continuous for the Hausdorff metric in the space of subsets in X at

those ρ where ∂U<−ρ = Y−ρ, or, equivalently, where the closure of the interior of U−ρ equals U−ρ. Since ρ ↦ U−ρ is a

monotone decreasing function in ρ for the inclusion order on subsets, it has at most countably many discontinuity points

ρ. Also observe that the function ρ ↦ Y−ρ = d
−1
U (−ρ) = ∂U−ρ is Hausdorff continuous at the Hausdorff continuity points

of the function ρ ↦ U−ρ and the word “hypersurface” is justifiably applicable to Y−ρ at these continuity points ρ.

Exercise.
Let Z ⊂X be a compact subset that is contained in a smooth hypersurface in X . Then, for all sufficiently small ρ > 0,
there exists an open subset U ⊃ Z in X with smooth boundary Y such that Z = Y−ρ = U−ρ, i.e. Z serves in U as the set
of the minima of the (minus distance to Y ) function dU ∶U → (−∞, 0).

Example (U
−ρ as the intersection of translates of U).

If X = Rn then, obviously, U−ρ equals the intersection of the parallel r-translates U + r ⊂ Rn for all r ∈ Rn with ∥r∥ ≤ ρ
and Y−ρ equals the topological boundary of this intersection.

U−ρ = ⋂
∥r∥≤ρ

U + r and Y−ρ = ∂
⎛
⎝ ⋂∥r∥≤ρU + r

⎞
⎠.

Thus, the transformation U ↦ U−ρ preserves all classes of Euclidean domains (e.g. the class of convex domains) that

are closed under intersections. It is also clear that

Y−ρ ⊂ ∂
⎛
⎝ ⋂∥r∥=ρU + r

⎞
⎠

and if the boundary of U is connected, then

U−ρ = ⋂
∥r∥=ρ

U + r and Y−ρ = ∂
⎛
⎝ ⋂∥r∥=ρU + r

⎞
⎠.

More generally, let iso≤ρ denote the set of isometries r∶X → X such that dist(x, r(x)) ≤ ρ for all x ∈ X . Then, obviously,

U−ρ ⊂ ⋂
r∈iso≤ρ

r(U).

Furthermore, if X is a compact two-point homogeneous space, i.e. the isometry group of X is transitive on the unit
tangent bundle of X , then, as in the Euclidean case,

U−ρ = ⋂
r∈iso≤ρ

r(U) and Y−ρ ⊂ ∂
⎛
⎝ ⋂r∈iso=ρ

r(U)⎞⎠ for iso=ρ = ∂(iso≤ρ).
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3.2. Accessibility and quasi-regularity

A point x in the boundary Y = ∂U is called ρ-accessible (from U), if x ∈ (Uρ)+ρ ⊂ U ∪ Y . In other words, x is contained

in some Riemannian ρ-ball in X that is contained in the closure of U . (The referee pointed out to me that this is usually

called “with reach ρ”, with a possible origin of the concept due to Federer.)

Say that an open subset U in X is C 2-quasiregular (at its boundary) if, loosely speaking, the singular locus singY ⊂

Y = ∂U is non-accessible from U . More precisely, the following two conditions must be satisfied:

● The subsets

Acc>ρ0
(Y ) = A>ρ0

(Y ) = ⋃
ρ>ρ0

Aρ(Y ) ⊂ Y ⊂ X

are open in Y for all ρ0 ≥ 0. Notice that this condition implies that, besides being open, the subsets A>0(Y−ρ) ⊂ Y−ρ,
ρ > 0, are C 1,1 in C 1,1-smooth Riemannian submanifolds in X .

● The subset A>0(Y ) ⊂ X is a C 2-smooth hypersurface in X , that is a C 2-smooth (n− 1)-submanifold without boundary

that, topologically, is a locally closed subset in X .

If U ⊂ X is a closed domain then its quasiregularity means that of the interior int(U) ⊂ X . On the other hand,

“quasiregularity of a hypersurface” H ⊂ X is understood as quasiregularity if its complement X ∖H ⊂ X .

Almgren–Allard Quasiregularirty Theorem.
Let X be a C 2-smooth Riemannian manifold. Then φ-bubbles U ⊂ X are C 2-quasiregular for all continuous func-

tions φ(x). Also, all kinds of minimal hypersurfaces H ⊂ X are quasiregular.

(See [13] for a simple prove of this.) Here “minimal hypersurface” is understood as a minimal varifold that does not,

necessarily, bound any domain in X .

The following two instances of quasiregularity are, unlike Almgren–Allard theorem, fully obvious.

(A) Locally finite intersections of C 2-smooth domains with transversally intersecting boundaries are C 2-quasiregular.

(B) If U a C 2-quasiregular domain in a C 2-smooth Riemannian manifold, e.g. the boundary Y is C 2-smooth to start

with, then the sub-domains U<−ρ are also C 2-quasiregular.

3.3. Smooth and non-smooth k-mean convex functions and hypersurfaces

Let X be a C 2-smooth Riemannian manifold and let Grk(X) be the Grassmann space of the tangent k-planes τ in X .

Define the k-Laplacian ∆k from C 2-functions f on X to functions on Grk(X) by taking the traces of the Hessian of f on

all τ ∈ Grk(X),
∆k(f)(τ) = traceτHess(f).

For example ∆n = ∆ is the ordinary Laplacian for n = dimX and ∆1(f)(τ) equals the second derivative of f on the

geodesic in X tangent to the tangent line τ.

Say that f is k-mean φ-convex for a given continuous function φ = φ(τ) on Grk(X) if ∆k(f)(τ) ≥ φ, where, as usual

strictly corresponds to > φ and plain “convex ” stands for 0-convex. Observe that the k-mean convexity says, in effect,

that the gradient of −f is strictly k-volume contracting. Also notice that

k-mean convex Ô⇒ l-mean convex for l ≥ k,

1-mean convex = convex, n-mean convex = subharmonic

and that

(n − 1)-mean convex Ô⇒ mean curvature convex,
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while the converse implication is not, in general true.

On the other hand, a C 2-smooth strictly mean convex co-oriented hypersurface Y ⊂ X (e.g. if Y = ∂U) can be realized

as the zero set of a C 2-smooth strictly (n − 1)-convex function f(x) defined in some neighbourhood of Y .

Bending d(x) to a Mean Convex f(x). (Compare [5, 10].) A strictly mean convex function f can be obtained, for

example, by “bending” the signed distance function d(x) = ±dist(x, Y ) (that is d(x) = dU(x) for Y = ∂U), i.e. where

bending is achieved by means of a smooth strictly monotone increasing function β(d), −∞ < d < +∞, that vanishes at

d = 0, that has the first derivative d′(0) = 1 and positive second derivative d′′(x) > 0.

If Y is compact, then the function

f(x) = β ○d(x) = β(d(x))
is strictly (n − 1)-mean convex in some neighborhood of Y , provided the second derivative d′′(0) is sufficiently large

(compared to the absolute values of the negative principal curvatures of Y ).

If Y is non-compact one needs to modify this f by making its second derivative normal to Y to be large as a function

on Y .

Remark.
The above remains true (and equally obvious) for k-mean convex hypersurfaces Y ⊂ X , k = 1, 2, . . . , n − 1, where the
traces of the second fundamental forms are positive on the k-planes tangent to Y .

The notion of k-mean convexity extends from C 2-functions to all continuous ones via linearity of the operator ∆k by

declaring a continuous function f(x) being k-mean φ-convex if it is contained in the localized weak convex hull of the

space of smooth k-mean φ-convex functions. In other words, f(x) is k-mean φ-convex if ∆k(f)(τ) − φ(τ), understood

as a distribution, is representable by a positive measure on Grk(X).
Then one defines the set of strictly k-mean φ-convex functions as the intersection of the sets of (φ + ε)-convex ones,

where the intersection is taken over all positive functions ε = ε(τ) on Grk(X). For example, a continuous function f

is strictly k-mean convex if there exists a continuous function ε(x) > 0 such that the restriction of f to every (local)

k-dimensional submanifold Y ⊂ X with principal curvatures κy(Y ) bounded by ∣κy(Y )∣ ≤ ε(y) is a subharmonic function

on Y .

Also one easily sees that if fi, i ∈ I, are strictly k-mean φ-convex functions, then f(x) = maxi fi(x) is also strictly k-mean

φ-convex.

Linearized Definition of k-Mean Curvature Convexity. A cooriented hypersurface Y is called strictly k-mean φ-convex

for φ = φ(τ) defined on a neighborhood of the pullback of Y under the tautological map Grk(X)→ X , if Y is representable

as the zero set of a continuous strictly k-mean φ-convex function f(x) defined in some neighbourhood of Y .

Here, “cooriented hypersurface” means that there is a neighbourhood X0 of Y where Y serves as the boundary of a

closed domain U ⊂ X0. Then our f must be positive inside U and positive outside. We say in this situation that U itself

is strict k-mean (curvature) φ-convex (at the boundary).
Mean Curvature Convexity of Functions Revisited. (Compare [5, 10].) A continuous function f(x) is called strictly

k-mean φ-curvature convex if, for every point x ∈ X , there exists a convex C 2-function β∶R → R with strictly posi-

tive derivative β′ > 0 such that the composed function x ↦ β ○ f(x) = β(f(x)) is strictly k-mean φ-convex in some

neighbourhood of x ∈ X .

Notice that the so defined strict k-mean curvature φ-convexity is stable under small C 2-perturbations of functions. Also,

maxima of families of strictly k-mean curvature φ-convex functions are strictly k-mean curvature φ-convex, since

β ○max
i
fi = max

i
β ○ fi for monotone increasing β,

and since strict k-mean φ-convexity is stable under taking maxima.
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Remark.
Probably, little (essentially nothing?) changes if one allows non-smooth convex monotone increasing β in this definition.

k-Convexity Lemma.
Let X be a C 2-smooth Riemannian manifold and U ⊂ X a quasiregular domain with boundary Y = ∂U which is k-mean

φ-convex on the regular locus regY = Y ∖singY for a positive continuous function φ = φ(τ) > 0. Then the minus distance

function dU(x) = −dist(x, Y ) is k-mean curvature (φ − ε)-convex in the interior of U for some continuous function

ε = ε(τ) that vanishes on the pullback of Y in Grk(X). Moreover, ε(x) is bounded in terms of ∣infxRiccix(X)∣ for x

running over the ball Bx(R) ⊂ X for r = dist(x, Y ). (For instance, ε(x) = 0 if the Ricci curvature is non-negative in this

ball.)

The proof is quite simple and, I guess, is well known in some quarters. Yet, for the completeness sake, we spell it down

in subsection 5.6, where our argument is essentially the same as that in [5, 10].

Question.
Is there a meaningful characterization of Plateau–Stein n-manifolds that admit (proper) strictly (n − 1)-mean convex
functions?

3.4. Smoothing and approximation

Continuous strictly k-mean convex function f can be approximated by smooth strictly k-mean convex ones, by convolving

with the following

Standard ε-Smoothing Kernel. Such a kernel is a function in two variables Kε(x1, x2), ε > 0, on a Riemannian manifold

X that is defined with some Ψ by

Kε(x1, x2) = λ(x1)Ψ(ε−1
dist(x1, x2)), ε > 0,

for

λ(x1) = (∫
X
Ψ(ε−1

dist(x1, x2))dx2)
−1

.

A standard ε-smoothing of functions on X is

f(x)↦ fε(x) = ∫
X
f(x2) ⋅Kε(x, x2)dx2.

It is obvious that if f is a continuous strictly k-mean φ-convex function and V ⊂ X is a compact subset, then fε is strictly

k-mean φ-convex on V for all sufficiently small ε > 0.

It follows that f can be uniformly, and even in the fine C 0-topology, approximated by C 2-smooth strictly k-mean φ-convex

functions, where, moreover, such approximating functions can be chosen equal f on a closed subset X0 ⊂ X if f itself is

smooth in a neighborhood of X0 in X . Recall that C 0-fine approximation means that the difference between f and an

approximating function can be made less than a given strictly positive continuous function on X .

Curvature Smoothing Corollary.
Let f(x) be a continuous strictly k-mean curvature φ-convex function on a C 2-smooth Riemannian manifold X . Then f

can be C 0-finely approximated by smooth strictly mean curvature φ-convex functions with non-degenerate critical points.

Proof. Locally, in a neighborhood Ux ⊂ U of a given point x, such an approximation is obtained by finely approximating

f ○β(x) = f(β(x)), for a suitable β, by a smooth k-mean φ-convex function on Ux , call such an approximation (f ○β)appr,

and then applying the inverse −β-function, thus approximating f by fappr = β
−1
○ (f ○β)appr. Then the global C 2-smooth

approximation of f is obtained, by a usual argument with a covering of X by open subsets Ui, i = 1, 2, . . . , n+1 = dimX+1,

where each of Ui equals the disjoint union of arbitrarily small subsets. Finally, “C 2-smooth” is upgraded to “generic C∞”

by an arbitrarily C 2-small perturbation.
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4. Splicing, smoothing and extending distance functions

We shall prove in this section the inverse maximum principles stated in subsection 1.3.

4.1. Staircase of distance functions

Let X be a Riemannian manifold let U1 ⊃ U2 ⊃ U3 ⊃ . . . ⊃ Ui ⊃ . . . ⊂ X be closed domains with boundaries Yi = ∂Ui, let

di(x), x ∈ Ui, denote the minus distance function from x to the boundary Yj = ∂Uj and let some numbers δi > 0 satisfy

δi > sup
x∈Yi+1

dist(x, Yi).

Then there exists a negative proper continuous function h∶X → R−, such that locally, in a neighbourhood of every point

x ∈ X , this h equals the maximum of the functions βi ○di, for kx ≤ i ≤ lx , where

● lx is the maximal l such that x ∈ Ul;

● kx is the minimal k such that dist(x, Yk) ≤ δk ;
● βj are smooth monotone increasing functions, βk ∶R→ R, with strictly positive derivatives, β′j > 0.

Proof. The required max-function h is determined by its sublevels, call them Y−ρ = h
−1(−∞,−ρ) ⊂ X , that come

as intersections of certain sublevels of the functions di that are (Ui)−ρi ⊂ Ui = d−1
i (∞, ρi] for some ρi that must be

continuous strictly increasing functions in ρ. The essential point is to choose these ρi such that if the boundary of some

(Ui)−ρi passes through a point x contained in the boundary of the intersection ⋂i(Ui)−ρi , then dist(x, Yi) ≤ δi. Since

δi > supx∈Yi+1
dist(x, Yi), this inequality can be obviously satisfied with some ρi and the proof follows.

Corollary (Non-Smoothed Inverse Maximal Principle for compact manifolds).
Let X be a compact Riemannian C 2-smooth manifold with strictly mean convex boundary. Then either X contains

a compact minimal hypersurface in its interior or it admits a continuous negative strictly mean convex function that

vanishes on the boundary of X .

Proof. Shrinking the mean convex “ends” of X (see subsection 2.4) provides a finite descending sequences of φ-convex

bubbles Ui with a fixed (albeit very small) strictly positive φ and with arbitrarily small supx∈Yi+1
dist(x, Yi) > 0. Then the

above h is strictly mean convex being local maximum of distance functions that are strictly convex by the k-convexity

lemma in subsection 3.3.

Remark.
Bruce Kleiner explained to me how a version of this follows by an application of the mean curvature flow, but this does
not seem to be simpler than our more pedestrian argument.

4.2. Proofs of Inverse Maximum Principles

What remans is to justify Step 4 in the proof of IMP in subsection 1.4. Let, for instance, X be a complete C 2-smooth

Riemannian manifold that is connected and thick at infinity. We already know (see subsection 2.4) that if X contains

no minimal hypersurface then it can be exhausted by compact strictly mean convex bubbles Uj . We also know that each

Uj can be shrunk via smaller bubbles Uji ⊂ Uj ,

Uj0 = Uj ⊃ Uj1 ⊃ Uj2 ⊃ . . . ⊃ Uji ⊃ . . . ,

where the minus distance functions dij(x) = −dist(x, ∂Uji), x ∈ Uji, can be “spliced” to continuous mean curvature convex

functions hj on Uj .
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If the (positive!) mean curvatures of the boundary hypersurfaces Yji = ∂Uji are bounded from above at all points x ∈ Yji
by α(x), where α(x) is a (possibly very fast growing) continuous function on X , then, by the usual compactness principle

of the geometric measure theory, some subsequence of hj converges on all compact subsets in X to the required h.

A transparent way to achieve the control over sup mn.curv(∂U′) of a bubble U′ inside a given bubble U is to see the

construction of U′ in terms of an obstacle (see subsection 1.4) that is a subdomain V ⊂ U that must be engulfed by U′. If

the mean curvatures of the boundary of V at all boundary points are bounded by α(x), then the same bound will hold for

∂(U′). If, for instance, X has Ricci curvature bounded from below, one may take V = (U−ρ)+ρ/2, where this V (pinched

between U−ρ/2 and U−ρ) has its mean curvatures bounded by above roughly by ρ−(n−1). In general, one modifies this by

replacing constant ρ by a positive function ρ(x) on X , that must decay, roughly, as (1 + ∣R(x)∣(n−1))−1
, for a negative

function R(x) that serves as a lower bound for the Ricci curvature of X .

The curvature of the boundary of such V , that is obtained by pushing U inward by ρ(x) and then outward by ρ(x)/2,

can be easily bounded by some (very fast growing) α(x). This argument, that extends to multi-ended manifolds with

the preparations made in subsections 2.2–2.4, yields the following non-regular IMP stated in subsection 1.4.

Trichotomy Theorem.
Let X be a complete Riemannian C 2-smooth n-manifold. Then (at least) one of the the following three conditions is

satisfied:

● X admits a proper strictly mean curvature convex function h∶X → R+.

● X contains a minimal hypersurface H that is closed in X as a subset and such that voln−1(H) <∞.

● X admits a non-proper continuous strictly mean curvature convex function h∶X → R and also there is a sequence of

minimal hypersurfaces Hi ⊂ X with boundaries ∂Hi contained in a fixed compact subset X0 ⊂ X , where these Hi are

closed in X as subsets and such that voln−1(Hi) <∞, diam(Hi)→∞, i→∞.

Proof of the Regularized Maximum Principles. The above functions hi are approximated by C 2-Morse func-

tions and the minimal H is approximated by slightly concave hypersurfaces according to the smoothing lemma. (See

subsection 3.4). This accomplishes the proof of the IMPs stated in subsection 1.3.

Remark.
It seems, I did not check the details, the above theorem remans true with “convex” replaced everywhere by φ-convex for
a given continuous (not even necessarily positive) function φ(x), where the minimality condition on H must be replaced
by mn.curvx(H) = φ(x), x ∈ H, and where the finiteness requirement for the (n − 1)-volume of H must be replaced by a
suitable finiteness condition for some φ-area.

5. Generalized convexity

We look at the mean convexity from a broader prospective in this section and we prove the k-mean convexity lemma

from subsection 3.4. All of what we say is known but dispersed in the literature.

5.1. Smooth and non-smooth convexity classes

A coorientation of a germ of hypersurface Y at a point x in a manifold X is expressed by calling the closure of one of the

two “halves” in the complement Bx ∖Y , for a small ball at x, being inside Y and the closure of the other half outside Y .

Thus, cooriented germs at x ∈ X are partially ordered. We agree, thinking of Y2 being more convex than Y1, that Y2 ≥x Y1

stands for Y2 is inside Y1. Formally, being inside a cooriented Y1 does not need any coorientation of Y2. In fact, Y2

is inside Y1 implies that Y1 is outside Y2 only for one of the two coorientations of Y2. So the above “Y2 is inside Y1”

tacitly assumes that this does imply “Y1 is outside Y2”; moreover, if, geometrically, without coorientations, Y1 = Y2, then

“inside” means that their coorientations are equal as well.
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Assume X is smooth, let T(X) denote the tangent bundle of X and H be the space of tangent cooriented hyperplanes

H = Hx ⊂ Tx(X), x ∈ X , that are the tangent spaces to germs of smooth cooriented hypersurfaces in X . Observe

that the relation Y2 ≥x Y1 between C 1-smooth cooriented hypersurfaces implies that they have equal oriented tangent

spaces (hyperplanes) at x. Accordingly, we may write Y2 ≥H Y1 instead of Y2 ≥x Y1 for their common cooriented tangent

hyperplane H ⊂ Tx(X).
Given a cooriented hyperplane H ⊂ Tx(X), denote by QH = QH(X) the space of quadratic functions (forms) H →

Tx(X)/H = R and by Q = Q(X) the space of QH over all H ⊂ Tx(X), x ∈ X .

The affine space aff(QH) naturally represents the space of 2-jets J2x (Y ) of germs of cooriented hypersurfaces Y at x that

are tangent to H and one may speak of the difference J2x (Y1) − J2x (Y2) ∈ QH . Obviously,

Y2 ≥H Y1 Ô⇒ J
2
x (Y1) − J2x (Y2) ≥ 0,

where we refer to the usual partial order on the space QH regarded as a space of R-valued functions on H, where this

implication is reversible for

Strict Order. The above implication is not, in general, reversible but it is reversible in the strict form:

Y2 >H Y1 ⇐⇒ J
2
x (Y1) − J2x (Y2) > 0,

where the strict inequality between germs signifies that not only Y2 ≥H Y1, but also that this non-strict inequality is

stable under small C 2-perturbations of the germs that remain tangent to H.

If X is endowed with an affine connection, then one may identify aff(QH) with QH ; thus, every germ Y is assigned

the quadratic form Q on H = Tx(Y ) ⊂ Tx(X) with values in Tx(X)/H. If, moreover, X is a Riemannian manifold, then

Tx(X)/H is canonically isomorphic to R, and Q equals the second fundamental form of Y at x.

Denote by Qaff(X) the space of 2-jets of cooriented hypersurfaces Y ⊂ X and call a subset R ⊂ Qaff(X) a convexity

relation (of second order) if

J
2
x (Y1) ∈ R Ô⇒ J

2
x (Y2) ∈ R for all germs Y2 ≥ Y1,

where Y2 ≥ Y1 signifies that both Y have the same underlying cooriented tangent space (hyperplane) H ⊂ Tx(X), where

this inequality makes sense. We say that a cooriented C 2-smooth hypersurface Y ⊂ X satisfies R, or it is R-convex, if

the 2-jets of Y are contained in R at all points y ∈ Y . If X is a Riemannian manifold, then Qaff(X) = Q(X) and such a

relation is expressed in terms of the second fundamental forms of hypersurfaces.

5.2. k-convexity and (n − k)-mean convexity

Let X be an n-manifold with an affine, e.g. Riemannian, connection and say that a cooriented C 2-hypersurface Y ⊂ X is

([k≥]+ [k>])-convex if the second fundamental form of Y with values in T(X ∣Y )/T(Y ), when diagonalized, has at least

k≥ nonnegative terms and k> positive terms. If only one of the two terms in the sum k = k≥ +k> is present, one speaks of

k-convexity for k = k≥ and of strict k-convexity for k = k>. Accordingly, a domain V ⊂ X is called ([k≥] + [k>])-convex

if its boundary is ([k≥] + [k>])- convex.

For instance, a small ε-neighbourhood of compact smooth submanifold Pn−k−1 of codimension k + 1 in a Riemannian X

is strictly k-convex and it is easy to show that every curve-linear subpolyhedron in X of codimension k + 1 also admits

an arbitrarily small strictly k-convex neighbourhood.

If X = Rn, these [k≥]+ [k>] are the only convexity relations that are invariant under affine transformations of Rn, where

k = n − 1 corresponds to the ordinary local convexity, while 1-convex hypersurfaces are nowhere concave.

The distinction between “≤” and “<” is nonessential for compact Y ⊂ Rn, since, (almost) obviously (see [2, § 1/2]) every

smooth compact (possibly with a boundary and with a self-intersection) k-convex hypersurface Y in R
n can be C 2-

approximated by strictly k-convex hypersurfaces Y ′ that may be positioned, depending on what you wish, inside or

outside Y .
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Remark/Question.
If Y is non-compact, then a “strict” approximation of Y by Y ′ may be possible in one topology, e.g. for Y ′ being obtained
from Y , by a map f with dist(y, f(y)) ≤ ε but not in a finer topology where ε = ε(y) → 0 for y → ∞. Besides, an
approximation of ([k≥] + [k>])-convex hypersurfaces by ([k ′≥ − l] + [k ′> + l])-convex ones may depend on l and on your
positioning Y ′ inside/outside Y . Is there a comprehensive description of what may happen?

Since a generic linear function f on a k-convex domain V ⊂ Rn bounded by k-convex hypersurface adds no l-handles to

sublevels of f at the critical points of f on Y , a compact k-convex domain V ⊂ Rn is diffeotopic to a regular neighbourhood

of (n − k − 1)-dimensional subpolyhedron Pn−k−1
⊂ R

n.

Questions.
Does there exist such a diffeotopy ft ∶V → R

n, (that eventually “shrinks” V to Pn−k−1) where all intermediate domains
ft(V ), t > 0, (for f0(V ) = V ) are k-convex?

What are topological possibilities of k-convex domains in the Euclidean n-sphere?

Observe that the complement to a disjoint union of ε-neighbourhoods of two or more equatorial spheres of dimension k ,

k < n/2, is strictly k-convex; it is contractible to some Pn−1 but not to any Pn−k−1. (A more traditional problem concerns

k-convex domains V ⊂ Sn, such that, moreover, the complementary domains Sn ∖ V are (n − 1 − k)-convex.)

Recall that a C 2-smooth cooriented hypersurface Y ⊂ X is called (n − k)-mean convex if the traces of the second

fundamental form of Y restricted to the tangent (n − k)-planes Hn−k
⊂ T(Y ) are non-negative. In other words, the

principal curvatures of Y ⊂ X , say κ1 ≤ κ2 ≤ . . . ≤ κn−1, satisfy

κ1 + κ2 +⋯ + κn−k ≥ 0 at all points y ∈ Y .

(If k = 1 this means that Y is convex and if k = n−1 this says that the mean curvature of Y is non-negative.) Accordingly,

strict (n − k)-mean convexity requires this inequality to be strict, i.e. all traces to be positive.

Question.
Can every closed (n− k)-mean convex hypersurface in R

n be approximated by strictly (n− k)-mean convex ones? (This
is easy for k = 1 and k = n − 1, but I see no immediate proof it for other k . Am I missing something obvious?)2

Clearly, (strictly) (n − k)-mean convex hypersurfaces are (strictly) k-convex, and every embedded closed k-convex

hypersurface in the Euclidean space R
n is isotopic to a strictly (n − k)-mean convex one (since it can be brought to a

neighbourhood of k-subpolyhedron Pk
R
n). But this if far from being true, even on the homotopy level, in non-Euclidean

spaces.

Mean Convex Surgery. Let V ⊂ X be a smooth (n − k)-mean convex domain and let Bl ⊂ X be a smooth disk that all

lies outside V except for its boundary sphere Sl−1
= ∂Bl ⊂ Y = ∂V , where we assume (just for the civility sake) that Bl

meets Y normally, i.e. under the angle π/2 along Sl−1
= Bl∩Y . Let us slightly thicken Bl by taking its ε-neighbourhood,

denoted εB
l
⊂ X , and observe, assuming ε > 0 is sufficiently small, that

● the union V ∪ εB
l has smooth boundary except for a ∼ π/2 corner along the boundary of a small tubular neigh-

bourhood of Sl−1
⊂ Y ;

● the new smooth part of the boundary of V ∪ εB
l, that is ∂(V ∪ εB

l) ∖ ∂V = ∂(εBl) ∩ (X ∖ V ), is (l + 1)-mean

convex.

2 Bruce Kleiner pointed out to me that such approximation is possible with the mean curvature flow.

✾✹✸



Plateau–Stein manifolds

If l ≤ n − k − 1, then the corner in V ∪ εB
l can be (n − k)-mean convexly smoothed.

About the proof. The boundary of the union V ∪ εB
l is concave along the corner and the obvious smoothing of V ∪ εB

l

does not give us an (n − k)-mean convex domain. However, the (n − k)-mean curvature of the boundary of the ε-tube

around Bl for l ≤ n − k − 1 tends to +∞ for ε → 0. This “infinite excess of positivity” allows one to construct strictly

(n − k)-mean smoothing similarly but easier than how it was done in [4] for scalar curvature.

5.3. Convergence stability

The limit behavior of embedded R-convex hypersurfaces is opposite to what is demanded by the C 0-dense h-principle:

the spaces of such hypersurfaces are closed rather than dense in the C 0-topology for closed subsets R ⊂ Q.

Moreover, let R ⊂ Q(X) be a closed convexity relation and let Y ⊂ X be a C 2-smooth cooriented hypersurface that is

closed in X as a subset. Let Ui ⊃ Y , i = 1, 2, . . . , be a sequence of neighbourhoods such that ⋂iUi = Y and let Yi ⊂ Ui

be smooth cooriented hypersurfaces closed in Ui as subsets, the closures of which do not intersect the boundaries of Ui

and that separate the components of the boundaries ∂Ui in the same way as Y does. In other words, Yi are homologous

to Y in Ui (in the sense of homology with infinite supports if Y is non-compact). If all Yi satisfy a closed convexity

relation R then Y also satisfies R.

Proof. In fact let Q0 be the jet of Y at some point Y0 and Ω0 ⊂ Q be an arbitrarily small neighbourhood of Q0. Then,

by the weak (and obvious) maximal principle, every Yi for all i ≥ i0 = i0(Ω0) contains a point y−i such that the 2-jet

J2y+
i
(Yi) ∈ Q (or a germ at this point, if you wish) satisfies

J
2
y−
i
(Yi) ≤ ωi for some ωi ∈ Ω0

(as well as a point y+i , where J2y+
i
(Yi) ≥ ω′i for some ω′i ∈ Ω0).

(Counter)examples.

(a) Every curve Y in the plane can be (obviously) C 0-approximated by locally convex immersed curves Yi. By the above,
these Yi must have lots of double points as Yi come close to the region where Y is concave.

(b) Similarly, according to Lawson and Michelson [6] every co-orientable immersion f of an (n − 1)-manifold Y to a
Riemannian n-manifold X can be C 0-approximated by immersions fi∶Y → X with positive mean curvatures. (The
building blocks of fi are finite coverings maps onto the boundaries of ε-neighbourhoods of (n − 2)-submanifolds in
X , where, observe, such boundaries have mean curvatures ∼ ε−1 for ε → 0.)

(c) In contrast with the above, if k > n/2, then every closed cooriented strictly (n − k)-mean convex hypersurface Y in

a complete Riemannian manifold X with non-negative sectional curvatures bounds a compact Riemannian manifold

U , i.e. ∂U = Y , such that the immersion Y → X extends to an isometric immersion U → X . (This U is contractible
to its k-skeleton, since the minus distance function u↦ −distU(u, ∂U = Y ) admits an approximation by an (n − k)-
mean convex Morse function on U that provides an isotopy of U to a regular neighbourhood of a k-dimensional
subpolyhedron Pk

⊂ U [10].)

On the other hand, k-convex hypersurfaces for k < n− 1 in general non-flat n-manifolds X with non-negative curvatures

do not necessarily bound immersed n-manifolds in X . But this is true in the presence of many “movable” totally

geodesic submanifolds in X by the Euclidean argument from [2, § 1/2], where the standard examples of such manifolds

are Riemannian cylinders X = X0×R and complete simply connected n-spaces X of constant negative curvature.

Questions.
What are possible topologies of (embedded and immersed) k-convex hypersurfaces in the Euclidean n-sphere? Are there
any constrains on immersed (n − k)-mean convex hypersurfaces in the Euclidean n-space for n ≥ 2k?
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The convergence stability suggests that the notion of R-convexity can be extended to non-smooth subsets. The cheapest

way to produce non-smooth examples starting with the class U of smooth R-convex domains U ⊂ X , i.e. having smooth

R-convex boundaries, is enlarging/completing U by some/all of the following four operations over subsets.

[⋔]<∞ Locally finite intersections of smooth domains Ui ∈ U with mutually transversal boundaries.

[⋂ ↓]
∞

Intersections of infinite decreasing families of subsets.

[⋂]
≤∞

Finite and infinite intersections of smooth domains, that is essentially the same as [⋔]<∞ + [⋂ ↓]
∞

.

[⋃ ↑]
−∞

Union of infinite increasing families.

Question.
Given, say an open, convexity relation R ⊂ Q(X), let C(R) denote the class of all compact subsets in X obtained
from compact smooth R-convex domains U ⊂ X by some of the above operations, e.g. by [⋂]

≤∞
, i.e. by taking infinite

intersections of compact smooth R-convex domains U . Is there any, not necessarily exhaustive, characterization of
subsets in C(R) in terms of R? Is every R uniquely determined by C(R)?

For instance, which Cantor sets C ⊂ R
n are representable as infinite intersections of disjoint finite unions of compact

convex subsets? Clearly, this is possible if the Hausdorff dimension of C satisfies dimHauC < 1, but “generic” subsets C

with dimHauC > 1 admit no such representation.

In fact, the geometry of a Cantor set C ⊂ Rn at a point x ∈ C may be characterized by the minimal possible “oscillatory

complexity”, oscε = oscε(C, x), ε > 0, e.g. the total curvature curvε (that is the (n − 1)-volume of the tangential Gauss

map counted with multiplicity) of the boundaries of smooth neighborhoods Uε ⊂ R
n of x such that diam(Uε) ≤ ε and

where the boundaries ∂Uε do not intersect C . It seems “most” Cantor sets in R
n, n ≥ 2, (I checked this only for a few

particular classes of sets) have oscε → ∞, e.g. curvε → ∞ for ε → 0, and they do not belong to any convexity class

R ⊂ Q, unless R equals Q minus a “very thin” subset.

Convergence Stability for k-Mean Convexity for Functions. Since this convexity is defined by linear inequalities on

the (second) derivatives of functions f , it is stable under all kinds of weak limits and it non ambiguously extends to

continuous functions as we saw in subsection 3.3.

5.4. Riemannian curvature digression

The above is a baby version of the following Riemannian problems. Given two 2-jets, or germs g1 and g2 of Riemannian

metrics at a point x in a smooth manifold X , write g1 ≼ g2, if the two have equal 1-jets and their sectional curvatures

satisfy

curvτ(g1) ≥ curvτ(g2) for all tangent 2-planes τ ⊂ Tx(X).
For example, metrics with “large amount” of positive curvature are regarded as small.

A lower curvature relation/bound B is a subset of 2-jets g of Riemannian metrics at the origin in R
n such that

● 1-jets of g equal the 1-jet of the Euclidean metric;

● if g2 ∈ B and g1 ≼ g2 then g1 ∈ B;

● the subset B in the space of jets is invariant under orthogonal transformations of Rn.

The latter condition allows one to invariantly speak of B-positive metrics on all smooth n-manifolds X that are, in other

words, Riemannian n manifolds that satisfy B (compare with [2, § 7]).

The fundamental questions are as follows.

A. Given B what is the weakest topology/convergence T = T(B) in the space of Riemannian manifolds, such that the

limits of B-positive manifolds are B-positive?
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B. What are singular B-positive metrics spaces?

C. What are B for which the above two questions have satisfactory answers?

If B consists of the metrics with a given bound all sectional curvatures, then the (best known) answer to A. is the

Hausdorff convergence of metric spaces and B. is essentially resolved by the theory of Alexandrov spaces.

The starting point of the theory for spaces with a lower bound on the Ricci curvature is the (almost obvious) stability

of the inequality Ricci(g) ≥ const ⋅ g under C 0-limits of Riemannian metrics on a given underlying (and unchangeable)

smooth manifold X while the general theory, albeit not fully established, is well underway, see [1, 7, 9] and references

therein.

The most tantalizing relation B is expressed with the scalar curvature by scal(g) ≥ const, where even the C 0-limit

stability is not fully established and where some possibilities are suggested by the intrinsic flat distance [11].

Nothing seems to be known about other B, e.g. those encoding some positivity of the curvature operator, e.g. positivity

of the complexified sectional curvature, see [8] and [2, § 7].

5.5. Cut locus, focality and curvature blow-up

Let us see what happens to convexity under equidistant deformations of a hypersurface Y ⊂ X , where an attention must

be paid to singularities on the cut locus that may be aggravated by the presence of focal points. Recall that the cut

locus cut(U) ⊂ X of an open subset U ⊂ X (or of a closed domain U) with respect to Y = ∂U is defined as the closure

of the set of points u ∈ U that have more than one ancestor in Y , where a point x in the closure of U is called a

d-ancestor, for d = dist(x, u), or just “ancestor” of a point u ∈ U , with u being called a d-descender, or “descender” of

x, if dist(x, u) = dist(u,Y ) − dist(x, Y ). Assume that X is a complete C 2-smooth Riemannian manifold and recall a few

obvious properties of cut(U).
If Y = ∂U is a C 2-hypersurface, than the cut locus of U does not intersect Y and the ρ-equidistant hypersurfaces

denoted Y−ρ ⊂ U are C 2-smooth away from cut(U), i.e. the complements Y−ρ∖cut(U) are C 2-smooth (locally closed)

hypersurfaces in U .

If the boundary Y = ∂U is C 1-smooth, then x ∈ Y is ρ-accessible from U if and only if the geodesic segment of length ρ

issuing from x normally to Y inward U either does not intersect cut(U), or, if it meets cut(U), then only at its terminal

in U .

All open U ⊂ X satisfy (by a simple Čech homology argument)

ρ ≤ dist(y, cut(U)) Ô⇒ y is ρ-accessible from U for all y ∈ Y = ∂U .

Consequently, if U is C 2-quasi-regular, then Y ∖cut(U) is C 2-smooth.

Focal Points. Let y0 ∈ Y be an ancestor of u0 ∈ U , i.e. a (global) minimum point of the function y↦ dist(y,u0) on Y .

Assume X is complete and let γ = γ(s) in X be a geodesic ray issuing from x0 inward U such that

γ(s0) = u0 for s0 = dist(u0, y0),

where s ≥ 0 denotes the geodesic length parameter. (If Y is C 1-smooth hypersurface at y0 then γ is unique being normal

to Y .)

The point u0 is called non-focal for y0 along γ if y0 remains a local minimum of the function y↦ dist(y,u) on Y as we

slightly move along γ inward, i.e. for u = γ(s0 + ε) and all sufficiently small ε > 0. In other words, the (s0 + ε)-ball in

X around uε ∈ U , say

Buε(s0 + ε) ⊃ Bu0
(s0) ⊂ U,

is “contained in U at y0”, i.e. the intersection of Buε(s0 + ε) with a small neighbourhood of y0 in X is contained in U .
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Notice that focal/non-focal for y0 ∈ Y depends only on the geometry of Y in a small neighbourhood of Y0 plus on how

one defines “inward”. Thus, one can extend the above definition by taking an arbitrarily small neighbourhood B0 ⊂ X of

y0, (e.g. a small ε-ball around y0), letting

U0 = X ∖ (B0 ∩ (X ∖U)) ⊃ U

and defining focal/non-focal along geodesic segments in U0 that starts at y0 and may go beyond U .

If Y is a C 1-smooth hypersurface and y is an ancestor of u with dist(u,y) = dist(u,Y ) = ρ then the ρ-sphere around u,

say Su(ρ) = ∂Bu(ρ) ⊂ U , that contains y is C 2-smooth at y, provided our Riemannian metric is C 2-smooth. If, moreover,

Y is a C 2-smooth hypersurface, then the second fundamental form QY of Y at y is minorized by the form QS at y,

i.e. QY −QS is negative semidefinite since Bu(ρ) ⊂ U . (Our sign convention for Q′s is the one for which the boundaries

of convex subsets U ⊂ X have positive definite second fundamental forms Q.)

Obviously, u ∈ U is non-focal for Y = ∂U (along the minimal geodesic segment between the two points) if and only if

the quadratic form QY −QS is negative definite.

Denote by foc(U) ⊂ U ∩ cut(U) the subset of the focal points where u is called focal if it is focal for some ancestor of u

in Y = ∂U and observe that if Y is C 2-quasi-regular, e.g. C 2-smooth, then the subset foc(U) ⊂ U , is closed in U . (This

is not, in general, true for C 1-hypersurfaces Y .)

The appearance of focal points can be seen in terms of the hypersurfaces Y−ρ ⊂ U equidistant to Y = ∂U as follows.

Join a point u0 ∈ Y−ρ with one of its ancestors, say y0 ∈ Y , by a minimal geodesic segment γ in the closure of U , where

length(γ) = ρ, and observe that the hypersurfaces Y−ρ+ε, 0 < ε ≤ ρ, are C 2-smooth at the points u+ε = Y−ρ+ε∩γ, provided

Y is C 2-smooth at y0. Then, the second fundamental forms Qε of Y−ρ+ε at the points u+ε are uniformly bounded from

below.

If u0 is a non-focal for y0 then the forms Qε are also bounded from above; moreover, the hypersurfaces Y−ρ+ε can be

locally, around γ, included into a C 2-smooth family of local equidistant hypersurfaces to a small neighbourhood of

y0 ∈ Y . But if u0 is focal for y0 then these forms “blow up” for ε → 0 as follows.

The ((n− 1)-dimensional) spaces T(ε) normal to γ at the points u+ε, that serve as tangent spaces to Y for ε > 0, admit

orthogonal splittings T(ε) = T0(ε)⊕T1(ε), where these T0(ε) and T1(ε) continuously depend on ε ∈ [0, ρ] and are

such that

● The subspace T0(ε = ρ) ⊂ Ty0
(Y ) equals the kernel of the above difference form QY −QS at y0.

● The forms Qε restricted to T1(ε) are continuous for all 0 < ε ≤ ρ and they continuously extend to the space

T1(ε = 0).
● The forms Qε on the subspaces T0(ε) tend to +∞ for ε → 0. In fact, the values of Qε on the unit vectors in T0(ε)

is of order 1/ε.

5.6. C 2-approximation with corners

We show here how equidistant hypersurfaces to a quasiregular Y can be approximated by piecewise smooth hypersurfaces

with one sided controls on their curvatures. Let U ⊂ X be a C 2-quasiregular open subset (domain) with boundary Y = ∂U

in a complete Riemannian manifold X , let Y−ρ = ∂U−ρ = U
≤

−ρ ⊂ U , ρ > 0, be the equidistant hypersurface, where, as

earlier, U≤−ρ denotes the set of u ∈ U , where dist(u,Y ) ≤ ρ.

⌣-Approximation Lemma.
Given ε > 0 and 0 < ρ′ < ρ, there exists a domain U′ = U⌣ερ′ in X such that

U−ρ ⊃ U
′

⊃ U−(ρ+ε),

and such that the boundary Y ′ = ∂U′ is piecewise C 2-smooth.

✾✹✼



Plateau–Stein manifolds

In fact, there are C 2-diffeomorphisms Di∶X → X such that Di(U−ρ) do not intersect the singular locus of Y−ρ′ and Y ′

equals the union of the Di-pullbacks of Y−ρ′

Y
′

=⋃
i

D
−1
i (Y−ρ′).

Moreover, if ρ − ρ′ is small, then these Di are C 2-close to the identity map X → X ; consequently, the curvatures of the

smooth pieces D−1
i (Y−ρ′) are close to the curvatures of their Di images in Y−ρ′ .

Proof. Let γ ⊂ X be a minimal geodesic segment. Then, obviously, there exists smooth vector field Vγ(x) on X that

is tangent to γ, where it equals the unit field directed from x0 to x1 and such that the norm of Vγ satisfies

∥Vγ(x)∥ < 1, x ∉ γ, lim sup
x→∞

∥Vγ(x)∥ < 1.

Integrate Vγ for the flow time equal length(γ); thus, obtain a C 2-diffeomorphism Dγ ∶X → X such that Dγ sends one

end of γ, say x0, to the other one, called x1 = Dγ(x0), where this diffeomorphism is sharp at γ in the sense that

dist(x,Dγ(x)) < length(γ) for all x ∉ γ, and where one can achieve a map γ ↦ Dγ to be continuous for the C 2-topology

in the space of diffeomorphisms.

Remark.
It is easy to arrange the maps Dγ ∶X → X such that their differentials Tx0(X)→ Tx1(X) are isometries for all γ. Moreover,
if X has positive sectional curvatures, one can make Dγ second order isometries at these points, i.e. such that every
geodesic through x0 goes to a curve with zero curvature at x1. However, this is impossible for manifolds of negative

curvature.

Now, let δ > 0 be very small (depending, in particular, on ε), take all minimal segments γ between the points y ∈ Y−ρ
and its (ρ′ + δ)-ancestors in U and let

U
′

= U−ρ ∖⋃
γ

D
−1
γ (X ∖U−ρ′).

Finally, take a sufficiently dense locally finite set of geodesic segments, say {γi}, and take Dγi for the required

diffeomorphisms Di.

This ⌣-approximation implies, in particular, that the distance function d to the boundary Y of U can be approximated by

the maximum of smooth distance functions with their second partial derivatives close to those of h at nearby points. It

follows that all k-convexity bounds extend from smooth to non-smooth points of d. In particular, the k-convexity lemma

from subsection 3.3 follows from this ⌣-approximation since one, obviously, has a uniform bound on the “bending” β in

this case.

On External Approximation. The above piecewise smooth hypersurfaces Y δ⌣∆
−ρ that approximate the boundary ∂U<−ρ are

positioned inside U<−ρ. Probably, there is no similar approximation by hypersurfaces lying outside but this is obviously

possible if Y−ρ is compact: just apply the inside approximation to Y−ρ′ for ρ′ < ρ and let ρ′ → ρ.

5.7. Cornered domains and smoothing the corners

Let us indicate here a geometric alternative to the smoothing operators we used in subsection 3.4. A cornered domain of

class C k in a C k-smooth n-manifold X is a closed subset V such that every boundary point v in V admits a neighbourhood

U(v) in V that is C k-diffeomorphic to the intersection of k ≤ n mutually orthogonal halfspaces in R
n.

The regular part of the boundary of V , denoted reg∂V ⊂ ∂V , consists of those v , where U(v) ⊂ V is diffeomorphic to a

half space, i.e. k = 1. The (n− 1)-faces Wi, i ∈ I, of V are the closures of the connected components of reg∂V ⊂ V where,

obviously,

⋃
i∈I

Wi = ∂V .
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(Sometimes, one takes finite unions of disjoint connected components for faces.) Corners or (n − 2)-faces of V are, by

definition, non-empty pairwise intersections of (n − 1)-faces,

Wi1i2 =Wi1 ∩Wi2 .

(Since we assume the corner structure being “simple”, there is no non-empty intersection Wi1 ∩Wi2 of dimension < n−2.

On the other hand, corners may be disconnected.)

It is easy to see that a cornered V equals an intersection V = ⋂j∈J Vj , where

● Vj ⊂ X are n-submanifolds with smooth boundaries ∂Vj ,

● all intersections between (k-tuples of) ∂Vj are transversal,

● there are at most finitely many boundaries that intersect a given compact subset in X .

These three imply that the intersections of ∂Vj with V equal finite union of disjoint (n − 1)-faces of V , where these

V ∩ ∂Vj ⊂ ∂Vj are cornered domains in ∂Vi. If one wishes, one may let J = I and choose Vi such that V ∩ ∂Vi =Wi.

If X is a Riemannian manifold than one may speak of the dihedral angles between pairs of (n − 1)-faces along

(n − 2)-faces. Clearly all these angles ∠(Wi1 ,Wi2), that are continuous functions on Wi1i2 =Wi1 ∩Wi2 , are bounded by

∠(Wi1 ,Wi2) < π.

Essential Example.
A generic C∞-perturbation of the smooth pieces of U′ that approximate U−ρ in the previous section turn U′ into a
cornered domain.

Since the corners of V are convex for the dihedral angles < π one expects that cornered domains V admit approximations

by smooth domains that are, up to an arbitrary small error, “as convex” as the faces Wi of V . Indeed, this is possible for

quite a few, classes of convexity relations (see next section) including strict k-mean convexity where the picture is most

transparent for the mean curvature convexity.

Corner Smoothing Lemma.
Let X be a C 2-smooth Riemannian n-manifold, φ∶X → R a continuous function and V a cornered domain of class C 2

such that the mean curvatures of the regular part of the boundary ∂V ⊂ V ⊂ X satisfy

mn.curvx(∂V ) > φ(x) for all x ∈ reg∂V ⊂ ∂V .

Then, for an arbitrary neighbourhood ∆ ⊂ V of the boundary ∂V ⊂ V , there exists a domain V ′ ⊂ V with C 2-smooth

boundary such that

∂V
′

⊂ ∆, mn.curvx(∂V ′) > φ(x) for all x ∈ ∂V
′

;

moreover, the normal projection ∂V → ∂V ′ is a C 2-diffeomorphism on every (n − 1)-face of V .

Proof. Let ∂V be compact and let ∂+δV ⊂ X be the boundary of the δ-neighbourhood of V for a small δ > 0. Clearly,

∂+δV is a C 1-smooth hypersurface, that is, moreover, piecewise C 2. This is seen with the normal projection ∂+δV → ∂V

that sends every C 2-piece of ∂+δV onto an m-face of V , for some m = 1, 2, . . . , n−1. If m = n−1, then the mean curvature

of this piece is δ-close to that of the corresponding (n − 1)-face and if m < n − 1 then the mean curvature is ∼ δ−1.

Thus, the mean curvature of ∂+δV is a piecewise continuous function on ∂+δV that satisfies

mn.curvx(∂+δV ) > φ(x) for all sufficiently small δ > 0 and all x ∈ ∂+δV .

Now, observe that ∂+δV equals the δ-level of the distance function d(x) = dist(x, V ) and let dε(x) be the average of

d(x) over the ε-ball Bx(ε) ⊂ X for a small ε > 0.
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Since the second differential of d(x) is a bounded measurable function and ∥gradd∥ = 1, the δ-level say ∂+δ,εV ⊂ X

of dε is a C 2-smooth hypersurface that C 1-converges to ∂+δ for ε → 0. Since the mean curvature of a level of a

function is linear in the second derivatives of the function the mean curvatures of ∂+δ,ε are, up to an ε-error, equal the

Bx(ε)-averages of these of ∂+δ ; hence, the mean curvatures of ∂V ′ = ∂+δ,ε are > φ(x) for sufficiently small ε > 0.

Finally, in order to have ∂V ′ inside rather than outside V , we apply the above to an interior equidistant hypersurface

∂V−δ instead of ∂V = ∂V0, where a minor readjustment of this argument is needed to take care of non-compact ∂V .

This, together with Essential Example allows an alternative proof of

Smoothing of Quasiregular Hypersurfaces.
Let U be an open domain in X with quasiregular boundary and let the mean curvatures at all regular points of ∂U be

strictly minorized by a continuous function ψ on X , i.e.

mn.curvx(∂U) > ψ(x) for all regular points x ∈ ∂U.

Then U can be exhausted by closed subsets Ui ⊂ U with smooth boundaries Yi = ∂Ui, where the mean curvatures of

these are strictly minorized by ψ(x) at all x ∈ ∂Ui and all Ui.

The two basic examples where this smooth approximation is used in the present paper are

(i) strictly mean convex bubbles U ⊂ X with compact boundaries Y ,

(ii) minimal hypersurfaces H.

In both cases the Almgren–Allard quasiregularity theorem applies and, in case (i), allows a smooth strictly mean convex

approximation of Y , while in case (ii) one approximates the boundary Yε of the ε-neighbourhood Uε(H) ⊂ X of H by a

smooth cε-concave hypersurface, i.e. with mn.curv(Yε) ≤ cε, where cε → 0 for ε → 0.

Remarks.

(a) When we discussed smoothing minimal hypersurfaces H with Joachim Lohkamp a few years ago he, on one hand,
said he was well aware of possibility of such smoothing, but, on the other hand, he expressed a concern about
singularities at the focal points.

Focal points are invisible in the argument with bending and standard linear smoothing (see subsection 3.4) but the
above makes it clear why singularities at these points cause no additional complication.

(b) The corner smoothing lemma remains valid for the (n − k)-mean convexity for all k but it fails, in general, for
k-convexity, probably for all k ≠ 1, n − 1. To see this for even n − 1 ≥ 4 and k = (n − 1)/2 ≥ 2, let V ⊂ R

n−1
⊂ R

n

be a compact domain with smooth boundary. Then there obviously exist C∞-small perturbations V ′, V+ and V− of
V in R

n such that V+ and V− transversally meet along the boundary ∂V ′ and bound together a domain U′ ⊂ R
n

that is k-convex away from the corner along ∂V ′. This U′ ⊃ V ′ can be seen as a small thickening of V ′ that is
homeomorphic to V ′×[0, 1] = V ×[0, 1]. Therefore, if the homology group Hn−2(V ) ≠ 0, then Hn−2(U) ≠ 0 as well;
hence, U cannot be approximated by smooth k-convex domains if k < n − 2.
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