
Platelet-based coding of depth maps for the transmission of

multiview images

Yannick Morvana, Peter H. N. de Witha,b and Dirk Farina

a Eindhoven University of Technology, P.O. Box 513, The Netherlands;
b LogicaCMG, P.O. Box 7089, 5605 JB Eindhoven, The Netherlands

y.morvan@tue.nl

ABSTRACT

Emerging 3-D displays show several views of the scene simultaneously. A direct transmission of a selection of
these views is impractical, because various types of displays support a different number of views and the decoder
has to interpolate the intermediate views. The transmission of multiview image information can be simplified
by only transmitting the texture data for the central view and a corresponding depth map. Additional to the
coding of the texture data, this technique requires the efficient coding of depth maps. Since the depth map
represents the scene geometry and thereby covers the 3-D perception of the scene, sharp edges corresponding to
object boundaries, should be preserved. We propose an algorithm that models depth maps using piecewise-linear
functions (platelets). To adapt to varying scene detail, we employ a quadtree decomposition that divides the
image into blocks of variable size, each block being approximated by one platelet. In order to preserve sharp
object boundaries, the support area of each platelet is adapted to the object boundary. The subdivision of
the quadtree and the selection of the platelet type are optimized such that a global rate-distortion trade-off is
realized. Experimental results show that the described method can improve the resulting picture quality after
compression of depth maps by 1− 3 dB when compared to a JPEG-2000 encoder.

Keywords: Depth image coding, model based coding, piecewise-linear function, platelets-based coding

1. INTRODUCTION

Upcoming 3-D display technology allows the presentation of images with the illusion of depth. Such display
technology is based on showing several views of the same scene at the same time, exploring the different eye
positions of the human visual system. An independent transmission of these views has several disadvantages.
First, it is inefficient since there is a strong correlation between images. Second, different types of displays are
supporting a different number of views, which makes it impractical to prepare the displayed views at the encoder.
Instead, the views should be synthesized at the decoder where the display characteristics may be known. These
disadvantages can be eliminated by transmitting the texture data independently from the geometry data. One
approach is to send the texture data for the central view and a depth map1 that specifies the depth of each pixel
in the texture image. This depth map, also called depth image, can be represented by a gray-scale image where
dark and bright pixels correspond to far and near pixels, respectively (see Figure 1). Based on this depth map,
arbitrary views can be synthesized at the decoder. For efficient transmission of 3-D image data, the coding of
depth maps needs to be addressed.

Previous work on depth image coding has used a transform-based algorithm derived from JPEG-20003 and
MPEG encoders.4 Key advantage of using a standardized video coding algorithm to compress depth images is
the backward compatibility with already existing technology. However, transform coders have shown a significant
shortcoming for representing edges without deterioration at low bit-rates. Perceptually, such a coder generates
ringing artifacts along edges that lead to errors in pixel positions, which appears as a blurred depth signal along
the object borders. An alternative approach is to use triangular meshes5, 6 to code depth maps. This investigated
technique divides the image into triangular patches and approximates each patch by a linear function. If the
data cannot be represented with a single linear function, smaller patches are used for that area. However, the
placement of the patches is usually based on a regular grid, such that a large number of small patches are
generated along edges.

Figure 1. Example texture image (left) and the corresponding depth map (right).2 A typical depth image contains
regions of linear depth changes bounded by sharp discontinuities.

The characteristics of depth maps differ from normal textured images. For example, since a depth map
explicitly captures the 3-D structure of a scene, large parts of typical depth images depict object surfaces. As a
result, the input depth image contains various areas of smoothly changing gray levels. Furthermore, at the object
boundaries, the depth map shows step functions, i.e. sharp edges. Following these observations, we propose to
model depth images by piecewise-linear functions separated by straight lines. For this reason, we are interested
in an algorithm that extracts and compactly approximates these geometrical structures.
Several contributions have considered the use of geometrical models to approximate images. One modelling
function, the “Wedgelet”7 function, is defined as two piecewise-constant functions separated by a straight line.
This concept was originally introduced as a mean of detecting and recovering edges from noisy images, and was
later extended to piecewise-linear functions, called “Platelet”8 functions. To define the area of support of each
modeling function, a quadtree segmentation of the image is used. The concept is to recursively subdivide the
image into blocks of variables size and approximate each block with an appropriate model.

Considering our compression framework, we adopt the “Wedgelet” and “Platelet” signal decomposition
paradigm. Afterwards, the decomposition accuracy and the subsequent coding is subjected to a rate-distortion
trade-off. In this way, we follow the idea developed to code image texture using piecewise polynomials9 as mod-
eling functions. More particularly, we consider four different piecewise-linear functions as modeling functions.
The first and second modeling functions, a constant and linear function, respectively, are suitable to approximate
smooth regions. The third and fourth modeling functions attempt to capture depth discontinuities, using two
constant functions or two linear functions separated by a straight line. These modeling functions are used to
approximate the image. To this end, the image is subdivided into variable-sized blocks using a quadtree decom-
position. An independent modeling function is subsequently selected for each node. The selection of the most
appropriate function is performed using a cost function that balances both rate and distortion. In a similar way,
we employ an equivalent cost function that determines the optimal block sizes of the quadtree. Our results show
that, the proposal yields up to 1− 3 dB PSNR improvement over a JPEG-2000 encoder.

The sequel of this paper is structured as follows. Section 2 briefly illustrates the proposed acquisition and
transmission system of multiview images. Section 3 introduces the framework of our depth image coding algo-
rithm, while Section 4 provides further details about the modeling functions and coefficient estimation techniques.
In Section 5, we describe a bit-allocation strategy that balances both rate and distortion. Experimental results
are presented in Section 6 and the paper concludes with Section 7.

2. ACQUISITION AND TRANSMISSION SYSTEM FOR MULTIVIEW IMAGES

This section aims at describing our system (see Figure 2) for acquisition, coding/decoding and rendering of
multiview images. Before describing the processing step performed on multiview images, let us first examine the
acquisition sub-system.

left

view

right

view
depth image

estimation

transmission

channel

view

rendering

-

synthesis

depth image

decoder

texture

decoder

Multiview images

acquisition

Coding, transmission and decoding Multiview synthesis

texture

encoder

depth image

encoder

Figure 2. Overview of our multiview image transmission system.

2.1. Multiview image acquisition

To acquire multiview images, one possible approach is to capture a texture image and the corresponding 3-D
geometry of the scene. The 3-D geometry can be acquired by recording the scene from several viewpoints.
In practice, two points of view corresponding to a left and right camera are usually employed. By comparing
differences between the two captured images, the depth (that corresponds to the 3-D geometry) can be estimated
and represented in a so-called depth image. This depth image is represented by a gray-scale image: dark and
bright pixels correspond to background and foreground distance, respectively.

2.2. Displaying multiview images

To synthesize a new view for display, we first convert the texture image into a set of 3-D points. We assume
that the focal-length of the recording camera is a fixed parameter F and the principal point of the image is at
(ox, oy). This lets us calculate the 3-D position p of each pixel (x, y) in homogeneous coordinates by

p = ((x− ox)z/F), (y − oy)z/F, z, 1)⊤,

where z = F + D(x, y) is the distance of the pixel to the recording camera and D(x, y) is the depth map value
at position (x, y). To synthesize a new view of the scene at an arbitrary camera position t, we employ a 3 × 3
camera rotation matrix R, and a new corresponding focal-length f , to obtain the projection of each pixel as

p′ =





f 0 ox

0 f oy

0 0 1





(

R|Rt
)

p.

Here, Rt forms the translation component that adds to R so that the total matrix
(

R|Rt
)

involves the complete
rotation and translation to the new position. For the case that the observation camera is identical to the capturing
camera, it follows that t = 0, f = F , and R is equal to the identity matrix, such that we obtain exactly the
input image. Example views that were synthesized from a single texture image and the depth information are
depicted in Figure 3.

2.3. Transmission system

For an efficient transmission of multiview images, the problem of compression of the texture and depth image
should be addressed. In past years, numerous video coding standards such as MPEG-1, MPEG-2 and MPEG-4
have been developed to perform efficient compression of video signals. However, there are only a few proposals
suited for an efficient compression of depth images. Therefore, we propose a novel depth image coder which we
embed in our transmission system.

(a) (b) (c) (d) (e)

Figure 3. Various views of a scene. All views were synthesized using only a single texture image and a corresponding
depth map.

3. DEPTH IMAGE MODELING

In this section, we present a novel approach for depth image coding using the piecewise-linear functions mentioned
in Section 1. The concept followed is to approximate the image content using modeling functions. In our
framework, we use two classes of modeling functions: a class of piecewise-constant functions and a class of
piecewise-linear functions. For example, flat surfaces that show smooth regions in the depth image can be
approximated by a piecewise-constant function. Secondly, planar surfaces of the scene like the ground plane and
walls, appear as regions of gradually changing gray levels in the depth image. Hence, such a planar region can
be approximated by a single linear function. To identify the location of these surfaces in the image, we employ a
quadtree decomposition (see Figure 4) which recursively divides the image into blocks, i.e. nodes of different size.
In some cases, the depth image within one block can be approximated with one modeling function. If no suitable
approximation can be determined for the block, it is subdivided into four smaller blocks. To prevent that many
small blocks are required along a discontinuity, we divide the block into two regions separated by a straight line.
Each of these two regions is coded with an independent function. Consequently, the coding algorithm chooses
between four modeling functions for each leaf in the quadtree:

• Modeling function f̂1: Approximate the block content with a constant function;

• Modeling function f̂2: Approximate the block content with a linear function;

• Modeling function f̂3: Subdivide the block into two regions separated by a straight line and approximate
each region with a constant function (a wedgelet function);

• Modeling function f̂4: Subdivide the block into two regions separated by a straight line and approximate
each region with a linear function (a platelet function);

The decision for each modeling function is based on a rate-distortion decision criterion that is described in
Section 5.1.

4. MODELING FUNCTIONS

In this section, we first define the four different modeling functions f̂j j ∈ {1, 2, 3, 4} used to approximate each
quadtree block. Secondly, we describe a set of techniques that computes the coefficients of the modeling functions.
In the sequel of this paper, we denote the depth value at pixel position (x, y) ∈ S by f(x, y), where S is the area
support of an n× n pixels quadtree block.

4.1. Modeling functions

To model the depth signal within each block, we focus on finding a compression scheme that can compactly
represent smooth blocks as well as boundaries (contours) of objects. First, to approximate smooth blocks, we

(a) (b)

f̂1 f̂1 f̂1

f̂1 f̂1
f̂3 f̂3

f̂1 f̂3 f̂3 f̂3 f̂3 f̂3 f̂1 f̂3 f̂1 f̂3f̂4

f̂3

(c)

Figure 4. Example of quadtree decomposition. Each block, i.e. nodes, of the quadtree is approximated by one modeling
function.

employ a simple constant function f̂1(x, y) = α0. Second, to approximate smooth object surfaces, we use a

piecewise-linear function f̂2 defined by

f̂2(x, y) = (β0 + β1x + β2y), for (x, y) ∈ S.

Third, to properly approximate blocks with sharp edges, we separate those blocks into two regions A and B
divided by a straight line. Each region is subsequently approximated by one modeling function. To define the
subdivision-line, we connect two pixels, P1 and P2, located at a different sides of the block. For coding this line,
instead of saving the coordinates of both marker points, we use two indexes I1 and I2 addressing the location of
P1 and P2. The index is defined such that all pixels directly surrounding the block are scanned in a clockwise
fashion (see Figure 5). To determine if a pixel belongs to region A or B, we use a numerical test known as the

A B

P1

P2

0 1 2 3 4 5 6

7

8

9

10

11

1213151617181920

21

22

23

14

24

25

26

Figure 5. An example edge line that divides a quadtree block into two regions A and B, using pixels P1 (index 3) and
P2 (index 17) as marker points.

orientation test in computational geometry applications.

The two resulting regions A and B can be approximated by either a wedgelet function, or a platelet function.
A wedgelet function is composed of two piecewise-constant functions over two regions A and B, separated by a
straight line and can be defined as

f̂3(x, y) =

{

f̂3A(x, y) = γ0A for (x, y) ∈ A,

f̂3B(x, y) = γ0B for (x, y) ∈ B.

Similarly, a platelet function is defined by

f̂4(x, y) =

{

f̂4A(x, y) = θ0A + θ1Ax + θ2Ay for (x, y) ∈ A,

f̂4B(x, y) = θ0B + θ1Bx + θ2By for (x, y) ∈ B.

Figure 6 depicts example patterns for each modeling function f̂1, f̂2, f̂3 and f̂4.

(a) (b) (c) (d)

Figure 6. Figures 6(a)–6(d) depict examples of functions f̂1, f̂2, f̂3 and f̂4, respectively.

4.2. Estimation of model coefficients

The objective of this processing step is to provide the model coefficients that minimize the approximation error
between the original depth signal in a block and the corresponding approximation.

4.2.1. Coefficient estimation for modeling functions f̂1 and f̂2

For f̂1(x, y), only one coefficient α0 has to be computed. Practically, the coefficient α0 that minimizes the error

between f and f̂1 simply corresponds to the mean value of the original data, so that α0 = 1
n×n

∑

x,y∈S f(x, y).

Secondly, it was indicated earlier that we use a linear function f̂2 to approximate blocks that contain a
gradient. In order to determine the three coefficients β0, β1 and β2 of the linear function f̂2(x, y) = β0+β1x+β2y,
a least-squares optimization is used. This optimization minimizes the sum of squared differences between the
depth image f(x, y) and the proposed linear model. Accordingly, coefficients β0, β1 and β2 are determined such
that the error

e2(β0, β1, β2) =
n

∑

x=1

n
∑

y=1

(β0 + β1x + β2y − f(x, y))2

is minimized, where n denotes the node size expressed in pixels. This error function e2(β0, β1, β2) is minimal
when the gradient satisfies ||∇e2|| = 0. When taking the partial derivatives with respect to β0, β1 and β2 of this
equation, we find a set of linear equations specified by





t u v
u t v
v v n2









β1

β2

β0



 =





∑n

x=1

∑n

y=1 xf(x, y)
∑n

x=1

∑n

y=1 yf(x, y)
∑n

x=1

∑n

y=1 f(x, y)



 ,

with
t = n2(n+1)(2n+1)

6 , u = n2(n+1)2

4 , and v = n2(n+1)
2 .

Since the matrix at the left side of the equation system is constant, it is possible to pre-compute and store the
inverse for each size of the square (quadtree node). This enables to compute the coefficients β0, β1, β2 with a
simple matrix multiplication.

4.2.2. Coefficient estimation for functions f̂3 and f̂4

For the wedgelet f̂3 and platelet f̂4 functions, we have to determine not only the model coefficients, but also
the separating line. For each model, we aim at approximating the depth value f(x, y) with two functions in the
supporting areas A and B. Each area is delineated by a subdividing line P1P2, defined by points P1 and P2 (see

Figure 5). The best set of coefficients for the wedgelet f̂3 and platelet f̂4 functions are those coefficient values
that minimize the approximation errors

e3 = ||f − f̂3A||
2 + ||f − f̂3B ||

2 and e4 = ||f − f̂4A||
2 + ||f − f̂4B ||

2,

respectively. These optimization problems cannot be solved directly for the following reason. Without knowing
the subdivision boundary between the two regions, it is not possible to determine the model coefficients. On the
other hand, it is not possible to identify the subdivision line as long as the region coefficients are unknown. We

propose to first identify the separation line. For this reason, the coefficient estimation is initialized by testing
every possible line that divides the block into two areas. This step provides a candidate subdivision line P c

1P c
2

and two candidate regions Ac and Bc. Subsequently, the wedgelet and platelet coefficients are computed over
the candidate regions using the average pixel value and a least-squares minimization, respectively. At the end of
the exhaustive search for each function f̂3 and f̂4, the best fitting model is selected. The major advantage of this
technique is that it provides the optimal set of coefficients minimizing the least-squares error between the model
and the image data. However, such a full search is computationally expensive. Therefore, we also investigated a
fast sub-optimal coefficient-estimation algorithm.10

4.3. Summary of modeling functions and estimation of model coefficients

Table 1 shows a summary of possible modeling functions to approximate each block of the quadtree and their
corresponding coefficient-estimation techniques.

Modeling function Coefficient-estimation technique

f̂1(x, y) = α0 Average value of pixel (x, y) ∈ S.

f̂2(x, y) = β0 + β1x + β2y Compute least-squares minimization.

f̂3(x, y) =

{

f̂3A(x, y) = γ0A (x, y) ∈ A

f̂3B(x, y) = γ0B (x, y) ∈ B
Average pixel values over regions A and B
where A and B are obtained through an ex-
haustive search.

f̂4(x, y) =

{

f̂4A(x, y) = θ0A + θ1Ax + θ2Ay (x, y) ∈ A

f̂4B(x, y) = θ0B + θ1Bx + θ2By (x, y) ∈ B
Compute least-squares minimization over re-
gions A and B where A and B are obtained
through an exhaustive search.

Table 1. Summary of modeling functions and their corresponding coefficient-estimation techniques.

5. BIT-ALLOCATION STRATEGY

In this section, we aim at providing details about the bit-allocation strategy that optimizes the coding in a
rate-distortion sense. Lossy compression is a trade-off between rate and distortion. Considering our lossy
encoder/decoder framework, our aim is to optimize the compression of a given image to satisfy an objective
Rate-Distortion (R-D) constraint. In our practical case, there are three parameters that influence this trade-off.

• Quadtree decomposition. To accurately approximate a block that shows fine details, the quadtree
decomposition recursively subdivides the block into smaller blocks. However, additional subdivisions lead
to a higher bit-rate. Therefore, an appropriate subdivision criterion which prevents that many small blocks
are created, is required.

• Selection of modeling functions. There are four different modeling functions f̂j j ∈ {1, 2, 3, 4} to
approximate a given block. Each modeling function has a different approximation accuracy, but also
different complexity (thus rate). Therefore, an appropriate model that balances both rate and distortion
has to be selected.

• Quantization step-size. Each function coefficient is quantized so that the quantization step-size should
be adapted to the required R-D constraint.

Thus, our central problem is to adjust each of the above parameters such that the objective R-D constraint is
satisfied. To optimize these parameters in an R-D sense, a possible approach is to define a cost function that
combines both rate Ri and distortion Di of the image i. Typically, the Lagrangian cost function

J(Ri) = Di(Ri) + λRi (1)

D

R

slope − λ

optimal R-D point to encode at slope − λ

R-D points on the convex hull

R-D points not on the convex hull

Figure 7. Rate-distortion plane and convex hull of the R-D points.

is used, where Ri and Di represent the rate and distortion of the image, respectively, and λ is a weighting factor
that controls the rate-distortion trade-off. For example, for λ = 0, we obtain a signal reconstructed at the lowest
distortion and highest bit-rate achievable. At the opposite, for λ =∞, the signal is compressed at lowest rate and
highest distortion. To achieve an optimal encoding, the Lagrangian cost function J(Ri) should be minimized.
This cost function is minimized when the derivative is set to 0, which yields

λ = −
∂D(Ri)

∂Ri

.

Thus, the optimal encoding is obtained when compressing the image at an operation point which has a constant
slope −λ in the convex hull of the R-D points (see Figure 7). Additionally, it can be shown that for an optimal
encoding, not only the image must be encoded at constant slope −λ, but also each independent sub-image. As
a consequence, the key principle followed in the discussed bit-allocation strategy is to adjust parameters (i.e.
the quadtree decomposition, the model selection and the quantizer step-size), such that the image and also each
quadtree block is encoded at a constant slope −λ.

However, optimizing all parameters in a single step is complicated. For example, without a given quadtree
segmentation, it is not possible to select an appropriate modeling function for each quadtree block. To simplify
the optimization problem, let us first assume that an optimal quadtree segmentation and quantizer step-size is
provided. Using this information, the selection of modeling functions for each quadtree block can be performed.

5.1. Modeling function selection

In Section 4, it was explained that a quadtree block can be approximated by four different modeling functions
f̂1, f̂2, f̂3 and f̂4. The objective is not only to select the most appropriate modeling function, but also to
incorporate this choice in the overall R-D constraint. The function mentioned in Equation (1) represents the
global cost function for the image i. However, the objective is now to select for each block the modeling function
f̂j, j∈{1,2,3,4} that minimizes the global coding cost Di(Ri) + λRi.

Since the rate and distortion are additive functions over all blocks, an independent optimization can be
performed for each block. Therefore, for each block, the algorithm selects the modeling function that leads to
the minimum coding cost. More formally, for each block, the algorithm selects the best modeling function f̃ in
an R-D sense according to

f̃ = arg min
f̂j∈{f̂1,f̂2,f̂3,f̂4}

(Dm(f̂j) + λRm(f̂j)), (2)

where Rm(f̂j) and Dm(f̂j) represent the rate and distortion resulting from using one modeling function f̂j . In
the implementation, the applied distortion measure is the squared error and the rate for each modeling function
is derived from the quantizer step-size.

5.2. Quadtree decomposition

Let us now provide more details about the quadtree decomposition. The objective is to obtain an optimal
quadtree decomposition of an image in the R-D sense. Because the quadtree segmentation is not known in

if
∑

4

k=1
(DNk

+ λRNk
) > (DN0

+ λRN0
)

then prune nodes N1, N2, N3, N4.

N1

N0

N3

N2

N4

N1

N0

N3N2 N4

DN0
+ λRN0

DN2
+ λRN2 DN3

+ λRN3

DN4
+ λRN4

DN1
+ λRN1

Figure 8. Illustration of a bottom-up tree pruning procedure.

advance, the algorithm first segments the image into a full quadtree decomposition up to the pixel level. From
this full tree, the algorithm aims at deriving a sub-tree that optimally segments and approximates the image in
the R-D sense. To obtain an optimal tree decomposition of the image, a well-known approach is to perform a
so-called bottom-up tree-pruning technique.11 The guiding principle is to parse the initial full tree from bottom
to top and recursively prune nodes (i.e. merge blocks) of the tree according to a decision criterion. We have
adopted from earlier work, to base the decision criterion on the Lagrangian cost function.

The algorithm is illustrated by Figure 8 and can be described as follows. Consider four children nodes
denoted by N1, N2, N3 and N4 that have a common parent node which is represented by N0. For each node k,
a Lagrangian coding cost (DNk

+ λRNk
) k ∈ 0, 1, 2, 3, 4 can be calculated. Using the Lagrangian cost function,

the four children nodes should be pruned whenever the sum of the four coding cost functions is higher than the
cost function of the parent node. More formally written, the children nodes are pruned whenever the following
condition holds

4
∑

k=1

(DNk
+ λRNk

) > (DN0
+ λRN0

). (3)

When the children nodes are not pruned, the algorithm assigns the sum of the coding costs of the children nodes
to the parent node. Subsequently, this tree-pruning technique is recursively performed in a bottom-up fashion.
It has been proved11 that such a bottom-up tree pruning leads to an optimally pruned tree, thus in our case to
an R-D optimal quadtree decomposition of the image.

To estimate the bit-rate at block level, we also include the side information required to code the node of the
quadtree, the modeling function index and the bit-rate resulting from using the modeling function. We adress
all three elements briefly. For the side information, we assume that the quadtree structure can be coded using
one bit per node (one bit set to “1” or “0” to indicate that the node is subdivided or not). For the index, two
bits per leaf are necessary to indicate which modeling function is used. The previous two aspects contribute to
the bit-rate. Hence, the rate RNk

that is required to code one given node Nk can be written as

RNk
= 1 + 2 + Rm(f̃),

where Rm(f̃) is the bit-rate necessary to code the best modeling function f̃ (see Equation (2)). The distortion
DNk

for one node Nk corresponds to the distortion introduced by the selected modeling function f̃ .

5.3. Quantizer selection

A criterion that selects the optimal quantizer is now described. Up till now, we have described a scheme that
subdivides the image into a full quadtree decomposition. For each node of the full tree, an appropriate modeling
function f̃ is selected using the criterion of Equation (2). The full quadtree is then pruned by applying a bottom-
up tree pruning technique. So far, we have assumed that the coefficients of the modeling functions are scalar
quantized prior to model selection and tree-pruning. However, no detail has been provided about the selection
of an appropriate quantizer. Therefore, the problem is to select the optimal quantizer, denoted q̃, that yields
the desired R-D trade-off. We propose to select the quantizer q̃ out of a given set of possible scalar quantizers
{q2, q3, q4, q5, q6, q7, q8}, operating at 2, 3, 4, 5, 6, 7 and 8 bits per level, respectively. To optimally select the

quantizer, we re-use the application of the Lagrangian cost function and select the quantizer q̃ that minimizes
the Lagrangian coding cost of the image i

q̃ = arg min
ql∈{q2,q3,q4,q5,q6,q7,q8}

Di(Ri, ql) + λRi(ql). (4)

Here, Ri(ql) and Di(Ri, ql) correspond to the global rate Ri and distortion Di(Ri) in which the parameter ql

is added to represent the quantizer selection. To solve the optimization problem of Equation (4), the image is
encoded using all possible quantizers {q2, q3, q4, q5, q6, q7, q8} and the quantizer q̃ that yields the lowest coding
cost Ji(Ri, q̃) = Di(Ri, q̃) + λRi(q̃) is selected.

5.4. Algorithm summary

The algorithm requires as an input the depth image and a weighting factor λ that controls the R-D trade-
off. The image is first recursively subdivided into a full quadtree decomposition. All nodes of the tree are
then approximated by four modeling functions f̂0, f̂1, f̂2, f̂3. In a second step, the coefficients of the modeling
functions are quantized using one scalar quantizer ql. For each node of the full tree, an optimal modeling function
f̃ can now be selected using Equation (2). Employing the tree-pruning technique described in Section 5.2, the full
tree is then pruned in a bottom-up fashion. The second step of the algorithm is repeated for all quantizers ql ∈
{q2, q3, q4, q5, q6, q7, q8} and the quantizer that leads to the lowest global coding cost is selected (see Equation (4)).
Subsequently, for each leaf of the tree, the quantized zero-order coefficients (α0, β0, γ0A, γ0B , θ0A, θ0B) are saved
and because they are uniformly distributed, they are fixed-length coded. However, the first-order coefficients
(β1, β2, θ1A, θ2A, θ1B , θ2B) satisfy a Laplacian distribution. For this reason, we encode these coefficients using
an adaptive arithmetic encoder. The pseudo-code of the algorithm is summarized in Algorithm 1.

Algorithm 1 Encode depth image - algorithm summary

Require: A depth image and a weighting factor λ to control the R-D trade-off.
Step 1:

1. Recursively subdivide the image into a full quadtree decomposition.

2. Approximate each node of the full tree by four modeling functions f̂0, f̂1, f̂2, f̂3 (see Table 1).

Initialize l ← 2, q̃ ← q2.
Step 2:

1. For each node of the full tree, quantize coefficients of the modeling functions with quantizer ql, and select
a best modeling function f̃ using the criterion of Equation (2).

2. Prune the tree in a bottom-up fashion.

3. If the global coding cost Ji(Ri, ql) ≤ Ji(Ri, q̃), then update the best R-D quantizer, i.e. q̃ ← ql.

Step 3: l ← l+1, if l ≤ 8, go to Step 2.

6. EXPERIMENTAL RESULTS

Prior to discussing the coding performance of the algorithm, it is important to notice that the coding efficiency
is affected by the quality of the depth image. For example, a noisy depth image results in a low compression
factor. For this reason, we first conducted experiments using a high-quality ground-truth depth image “Teddy”
(450 × 375 pixels). Experiments have revealed that the proposed algorithm can approximate large smooth
areas as well as sharp edges with a single node (see Figure 9). Examples are the top center node and the left
vertical edge in Figure 9(c). Furthermore, the approximation capabilities were evaluated with the depth image
“Breakdancing”12 (1024 × 768 pixels) ∗. Subsequently, the resulting R-D performances were compared to a

∗“Breakdancing” depth image number 0 of camera 0.

(a) (b) (c)

Figure 9. Figure 9(a) shows the original depth image “Teddy”. The corresponding reconstructed depth image is depicted
on Figure 9(b) and the superimposed nodes of the quadtree are portrayed by Figure 9(c). Coding for the depth image
“Teddy” is achieved at a bit-rate of 0.12 bit/pixel for a PSNR of 36.1 dB.

JPEG-2000 encoder.13 Figures 10(a) and 10(b) show that the described encoder consistently outperforms the
JPEG-2000 encoder. For example, improvements over JPEG-2000 are as high as 2.8 dB at 0.1 bit per pixel for
the “Teddy” image. For the “Breakdancing” image, a gain of 1.3 dB can be obtained at 0.025 bit per pixel.
Perceptually, our algorithm reconstructs edges of higher quality than the JPEG-2000 encoder. For example, the
horizontal edge in Figure 11(d) is accurately approximated when compared to the JPEG-2000 encoded signal
(see Figure 11(c)).

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 0.05 0.1 0.15 0.2 0.25 0.3

P
S

N
R

 (
d

B
)

Bit-Rate (bpp)

R-D performance for Teddy depth image

Piecewise linear functions
JPEG-2000

(a)

 34

 36

 38

 40

 42

 44

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

P
S

N
R

 (
d
B

)

Bit-Rate (bpp)

R-D performance for the breakdancing image

Piecewise linear functions
JPEG-2000

(b)

Figure 10. Rate-distortion curves for the “Teddy” 10(a) and “Breakdancing”10(b) depth images, both for our algorithm
and JPEG-2000.

7. CONCLUSIONS

We have presented a new algorithm for coding depth maps that exploits the smooth properties of depth signals.
Regions are modeled by piecewise-linear functions and they are separated by straight lines along their boundaries.
The algorithm employs a quadtree decomposition to enable the coding of small details as well as large regions
with a single node. The performance of the full coding algorithm can be controlled by three different aspects:
the level of the quadtree segmentation (variable block size), the overall coefficient-quantization setting for the
image and the choice the modeling function. All three aspects are controlled by a Lagrangian cost function, in
order to impose a global rate-distortion constraint for the complete image. For typical bit-rates (i.e. between

(a) (b) (c) (d)

Figure 11. (a) Original “Breakdancing” depth image, (b) Magnified view of the marked area, (c) Marked area coded with
JPEG-2000 at 38.7 dB of PSNR, and (d) with piecewise-linear functions at 40.0 dB of PSNR Both results are obtained
at 0.025 bit per pixel.

0.01 bit/pixel and 0.25 bit/pixel), experiments have shown that the coder outperforms a JPEG-2000 encoder
by 1 − 2 dB. The proposed algorithm is intended to be used in a 3D video coding system. We think that this
proposal is more suitable for handling the typical characteristics of a depth signal than conventional transform
coders, because the modeling functions comply with the geometrical structures in depth images. However, further
study is needed to reduce the algorithm complexity.

REFERENCES

1. S. Roy and I. J. Cox, “A maximum-flow formulation of the n-camera stereo correspondence problem,” in
IEEE Int. Conf. on Comp. Vision, pp. 492–502, 1998.

2. D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light.,” in IEEE Comp.
Society Conf. on Comp. Vision and Pattern Recognition (CVPR), 1, pp. 195–202, June 2003.

3. R. Krishnamurthy, B.-B. Chai, H. Tao, and S. Sethuraman, “Compression and transmission of depth maps
for image-based rendering,” IEEE Int. Conf. on Image Proc. 3, pp. 828–831, October 2001.

4. C. Fehn, K. Schuur, P. Kauff, and A. Smolic, “Coding results for EE4 in MPEG 3DAV.” ISO/IEC JTC
1/SC 29/WG 11, MPEG03/M9561, March 2003.

5. D. Tzovaras, N. Grammalidis, and M. Strintzis, “Disparity field and depth map coding for multiview image
sequence,” in IEEE Int. Conf. on Image Proc., 2, pp. 887–890, 1996.

6. B.-B. Chai, S. Sethuraman, and H. S. Sawhney, “A depth map representation for real-time transmission
and view-based rendering of a dynamic 3D scene,” in First Int. Symposium on 3D Data Proc. Visualization
and Transmission, pp. 107–114, June 2002.

7. D. Donoho, “Wedgelets: nearly minimax estimation of edges,” Annals of Statistics 27, pp. 859–897,
March 1999.

8. R. M. Willett and R. D. Nowak, “Platelets: a multiscale approach for recovering edges and surfaces in
photon-limited medical imaging,” IEEE Transactions on Medical Imaging 22, pp. 332–350, March 2003.

9. R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, “Rate-distortion optimized tree-structured compres-
sion algorithms for piecewise polynomial images,” IEEE Transactions on Image Proc. 14, pp. 343–359,
March 2005.

10. Y. Morvan, D. Farin, and P. H. N. de With, “Novel coding technique for depth images using quadtree
decomposition and plane approximation,” in Visual Communications and Image Proc., July 2005.

11. P. A. Chou, T. D. Lookabaugh, and R. M. Gray, “Optimal pruning with applications to tree-structured
source coding and modeling.,” IEEE Transactions on Information Theory 35(2), pp. 299–315, 1989.

12. C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality video view interpolation
using a layered representation,” ACM Transactions on Graphics 23(3), pp. 600–608, 2004.

13. M. Adams and F. Kossentini, “Jasper: A software-based JPEG-2000 codec implementation,” in IEEE Int.
Conf. on Image Proc., 2, pp. 53–56, October 2000.

