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Platelets and Innate Immune Cells during Injury 

Platelets are key players in haemostasis and prevent excessive 

bleeding upon injury. In response to vessel damage, platelets ad-

here and get activated at sites of injury, leading to recruitment of 

further platelets and thrombus formation. As injury represents a 

risk for infection, platelets recruit and activate leukocytes via direct 

cell-cell contacts and indirectly via cytokines and platelet-derived 

microvesicles. Activated platelets directly interact with leukocytes 

via P-selectin (CD62P) interaction with P-selectin glycoprotein li-

gand 1 (PSGL-1). This initial binding is enhanced by interaction of 

various other receptors, depending on the leukocyte subtype, lead-

ing to mutual activation and local cytokine release (reviewed in 

[1]), which modulates immune responses. 

Upon activation platelets release a variety of α-granule-derived 

cytokines, chemokines and growth factors [2]. The mechanism of 

packaging inflammatory cargo into α-granules, however, is incom-

pletely understood [3]. Cytokines can be packaged into granules 

during megakaryopoiesis [4] either via biosynthesis in the mega-

karyocyte (e.g. platelet factor 4/CXCL4) or via endocytosis from 

the microenvironment (e.g. albumin) in the bone marrow [3]. De-

spite lacking a nucleus, platelets can splice and de novo synthesise 

proteins from megakaryocyte-derived (pre)mRNA as shown for 

IL-1β and IL-18 [5, 6]. Via their open canalicular system platelets 

also take up factors from the circulation. Further platelets can fuse 

with microvesicles, which leads to intercellular exchanges of chem-

otactic receptors such as C-C chemokine receptor type 5 (CCR5) 

and chemokine (C-X-C motif) receptor 4 (CXCR4) [7, 8]. Platelet 

cytokine levels have been demonstrated to be elevated in cancer 

patients [9, 10], indicating either an active uptake of these factors 

by platelets or disease-related changes in megakaryopoiesis. This 

suggests that underlying pathologies might influence not only 

platelet reactivity but also their potential to modulate immune 

responses.
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Summary

Beyond their traditional role in haemostasis and throm-

bosis, platelets are increasingly recognised as immune 

modulatory cells. Activated platelets and platelet-derived 

microparticles can bind to leukocytes, which stimulates 

mutual activation and results in rapid, local release of 

platelet-derived cytokines. Thereby platelets modulate 

leukocyte effector functions and contribute to inflamma-

tory and immune responses to injury or infection. Plate-

lets enhance leukocyte extravasation, differentiation and 

cytokine release. Platelet-neutrophil interactions boost 

oxidative burst, neutrophil extracellular trap formation 

and phagocytosis and play an important role in host de-

fence. Platelet interactions with monocytes propagate 

their differentiation into macrophages, modulate cytokine 

release and attenuate macrophage functions. Depending 

on the underlying pathology, platelets can enhance or di-

minish leukocyte cytokine production, indicating that 

platelet-leukocyte interactions represent a fine balanced 

system to restrict excessive inflammation during infec-

tion. In atherosclerosis, platelet interaction with neutro-

phils, monocytes and dendritic cells accelerates key steps 

of atherogenesis by promoting leukocyte extravasation 

and foam cell formation. Platelet-leukocyte interactions at 

sites of atherosclerotic lesions destabilise atherosclerotic 

plaques and promote plaque rupture. Leukocytes in turn 

also modulate platelet function and production, which ei-

ther results in enhanced platelet destruction or increased 

platelet production. This review aims to summarise the 

key effects of platelet-leukocyte interactions in inflamma-

tion, infection and atherosclerosis. 
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Platelet Interactions with Innate Immune Cells in 

Inflammation and Infection

Apart from vessel damage, a variety of pathogens as well as in-

flammation triggers the activation of platelets. While certain vi-

ruses and bacteria exploit platelet interactions to gain virulence 

advantages, platelets mediate anti-microbial effects, which are ei-

ther mediated via direct interaction with pathogens, or indirectly, 

by orchestrating leukocyte functions. Thus, platelets are important 

immune modulators during inflammation and infection. An over-

view of the effects of platelets during inflammation and infection is 

depicted in figure 1 and table 1. 

Anti-platelet agents not only affect platelet aggregation and 

thrombosis, but also target immune modulatory effects of platelets. 

Aspirin and novel P2Y12 receptor antagonists such as clopidogrel, 

prasugrel and ticagrelor reduce interaction of platelets with leuko-

cytes and attenuate leukocyte recruitment and effector functions. 

Thereby, anti-platelet medication modulates a wide range of path-

ologic conditions (reviewed in [1, 11]).

Leukocyte Extravasation

Platelets support leukocyte extravasation and tissue infiltra-

tion at sites of inflammation. Platelets adhere to the inflamed en-

dothelium and mediate leukocyte rolling via glycoprotein Ib 

(GPIb) [12] and GPIIb/IIIa [13, 14]. Platelets enhance neutrophil 

rolling and firm adhesion via CD62P and chemokine CXCR2 

[15-17]. 

Endothelial transmigration of neutrophils is elicited by bind-

ing of PSGL-1 [18] or CD11b/CD18 (MAC-1) to platelet CD62P 

[15], and is further enhanced by binding of CD40 to platelet- 

derived soluble CD40 ligand (sCD40L) [19]. Binding of activated 

platelets to adhering neutrophils results in polarised receptor 

 organisation, which represents a prerequisite for intravascular 

migration [20]. 

Activated neutrophils release a number of chemokines, which 

attract monocytes. Activated platelets further facilitate this process. 

Platelets directly interact with monocytes, leading to enhanced ex-

pression of CD40, PSGL-1, CD11b and CCR2 on the monocyte 

surface [21, 22]. This, in turn, enhances platelet-monocyte aggre-

gate formation and recruitment of further monocytes to the en-

dothelium [21, 23–25]. The initial interaction between platelets 

and monocytes is mediated by CD62P-PSGL-1 binding [1], which 

is further stabilised by CD40L-MAC-1, GPVI-CD147 or via inter-

action of intercellular adhesion molecule 1 (ICAM-1) with platelet-

bound fibrinogen [1, 25]. In addition to direct platelet-monocyte 

interactions, platelet-derived chemokines influence endothelial ad-

hesion of monocytes. CXCL4, chemokine (C-C motif) ligand 5 

(CCL5) and platelet-derived macrophage migration inhibiting fac-

tor (MIF) promote monocyte arrest on activated endothelial cells 

[26, 27]. Platelet-derived MIF and stromal cell-derived growth fac-

Fig. 1. Effects of plate-

lets on innate immune 

cell functions during in-

flammation and infec-

tion. 

Platelets promote mono-

cyte and neutrophil ex-

travasation via direct in-

teraction and various 

chemokines. They fur-

ther enhance leukocyte 

transmigration by en-

dothelial cell activation 

via serotonin (5-HT) re-

lease. Platelets augment 

neutrophil effector func-

tions by promoting 

phagocytosis and NETo-

sis. Activated platelets 

further enhance oxida-

tive burst and release of 

various inflammatory 

cytokines and enzymes 

of monocytes and neu-

trophils. Platelets direct 

monocytes towards a 

pro-inflammatory phe-

notype by inducing the expression of CD16 and CD86. However, platelets are also capable of dampening inflammatory responses by triggering IL-10 and down-

regulating IL-6 and TNF-α release by monocytes. Further, neutrophils can scavenge platelet mediated CCL3 and CCL5 and platelet-neutrophil aggregates generate 

Lipoxin A4 (LXA4) thereby eliciting anti-inflammatory responses. 

5-HT = serotonin; CCL3 = chemokine (C-C motif) ligand 3; CD16 = cluster of differentiation 16; CXCL2 = chemokine (C-X-C motif) ligand 2; LXA4 = Lipoxin 

A4; MCP-1 = monocyte chemoattractant protein 1; MIP-1β = macrophage inflammatory protein 1β; MMP9 = matrix metalloproteinase-9; MPO = myeloperoxi-

dase; ROS = reactive oxygen species.
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tor 1 (SDF-1/CXCL12) further increase monocyte recruitment via 

chemotaxis [28, 29]. 

Platelets also indirectly promote leukocyte migration via activa-

tion of endothelial cells. Platelet-derived serotonin, for example, 

induces secretion of endothelial Weibel-Palade bodies, leading to 

CD62P expression and release of IL-8, which triggers neutrophil 

rolling, adhesion and extravasation [30].

Phagocytosis, Neutrophil Extracellular Trap Formation and  

Bacterial Clearance

Platelets and platelet-derived microvesicles can directly interact 

with neutrophils and enhance phagocytosis of various bacteria, in-

cluding Aggregatibacter actinomycetemcomitans, Porphyromonas 

gingivalis, Neisseria meningitides and Streptococcus pyogenes [31–

34], thereby contributing to bacterial clearance. 

Platelets are further involved in neutrophil extracellular trap 

(NET) formation, an apoptotic process, leading to release of neu-

trophil DNA, which ensnares bacteria. Toll-like receptor 4 

(TLR4)-activated platelets bind to neutrophils, sticking to the en-

dothelium, and initiate NET formation [35]. Platelets mediate 

NETosis either via CD62P-PSGL-1 interactions [20, 36], platelet 

GPIbα [37] or neutrophil lymphocyte-function-associated-anti-

gen-1 (LFA-1) [38]. Additionally, platelet release products, like 

β-defensin [39], thromboxane A2 (TXA2), CXCL4, von Wille-

brand factor (vWF) [40] and high-mobility group box 1 protein 

(HMGB1) [41], trigger NET formation and increase bacterial 

clearance.

However, certain bacteria have overcome platelet-mediated 

host defence mechanisms. S. pyogenes, for example, induces large, 

fibrinogen-associated platelet-neutrophil complexes, which reduce 

neutrophil chemotaxis and phagocytosis, thus supporting bacterial 

survival [33]. Staphylococcus aureus α-toxin binds to platelet A-

disintegrin-and-metalloproteinase-domain-containing-protein-10 

(ADAM10) leading to proteolysis of the collagen receptor GPVI. 

This impairs collagen-induced platelet aggregation and endothelial 

repair, but also induces platelet degranulation and IL-1β produc-

tion by leukocytes. Thereby, S. aureus α-toxin exacerbates bacterial 

dissemination and accelerates pro-inflammatory responses, which 

lead to tissue damage and aggravate sepsis [42].

Oxidative Burst

Platelets modulate leukocyte oxidative burst by modulating the 

release of reactive oxygen species (ROS) and myeloperoxidase 

(MPO). 

Platelets enhance MPO levels and oxidative stress in experimen-

tal models of acute colitis and immunecomplex-mediated inflam-

mation [43, 44]. Moreover, direct interaction of platelets and neu-

trophils promotes MPO formation in murine models of pancreati-

tis [45] and lipopolysaccharide(LPS)-induced acute lung injury 

[46]. Viral and bacterial infections are associated with increased 

levels of circulating platelet-leukocyte aggregates [47], which could 

enhance oxidative burst also during infections [48]. Platelet-de-

rived soluble mediators are also involved in neutrophil oxidative 

burst formation. Platelet sCD40L stimulates neutrophils to pro-

duce ROS [49], and platelet-derived HMGB1 triggers the translo-

cation of MPO to the cell membrane [50].

Platelets further facilitate endogenous oxidative burst generation 

of monocytes to boost the destruction of phagocytosed pathogens. 

Platelet-induced ROS production in monocytes is modulated by 

 direct interaction as well as secreted factors. Preventing direct plate-

let-monocyte interaction by blocking CD40L-MAC-1 interaction 

reduces the release of MPO from mouse monocytes [23]. Moreover, 

CXCL4 stimulation of monocytes enhances the phagocytic ability 

and triggers a respiratory burst [51] via activation of phosphoinosi-

tol-3-kinase, Syk and p38 [52], indicating that direct cell-cell inter-

actions are not absolutely required for ROS induction. 

However, platelets are also capable of down-regulating neutro-

phil ROS generation and MPO release via release of ATP from 

their dense granules [53], while in some pathologies platelets have 

no effect on MPO release at all [44].

Monocyte Differentiation

Platelets regulate monocyte functions by modulating their acti-

vation, polarisation and differentiation. 

In humans, circulating monocytes can be classified in three sub-

groups, with distinct functions and phenotypes based on their 

CD14 and CD16 expression. Classical monocytes (CD14++, 

CD16–) are highly phagocytic cells and produce ROS, whereas the 

non-classical monocytes (CD14+, CD16++) patrol the endothe-

lium and are involved in autoimmune diseases. The role of inter-

mediate monocytes (CD14++, CD16+) is still controversial as they 

are associated with inflammatory diseases and release of IL-1β and 

TNF-α, but also with production of IL-10 [54, 55]. Platelets prefer-

entially bind to CD16+ monocytes and may also induce a pheno-

typical switch of classical monocytes towards CD16+ subsets [22]. 

The underlying mechanism of platelet-mediated modifications of 

monocyte phenotypes involves activation of the nuclear factor 

‘kappa-light-chain-enhancer’ of activated B cells (NF-κB) pathway 

and signal transduction via phosphorylation of Lyn kinase [56, 57]. 

Activated platelets release tumour-derived growth factor β 

(TGF-β) which also leads to up-regulation of CD16 on monocytes 

[58] and thus induces a switch towards intermediate and/or non-

classical monocytes. In vitro, platelet-derived TGF-β promotes an 

inflammatory monocyte response by inducing cyclooxygenase 2 de 

novo synthesis via activation of the p38 MAPK pathway [59]. 

Pro-Inflammatory Cytokine Expression

Both direct and indirect platelet-derived signals drive leukocyte 

expression of pro-inflammatory cytokines. CD62P-PSGL-1 bind-

ing as well as platelet release of CCL5 and tumour necrosis factor 

superfamily member 14 (TNFSF14) induce monocyte expression 

of monocyte chemotactic protein 1 (MCP-1), TNF-α, IL-1β, IL-6, 

IL-8, IL-12 and macrophage inflammatory protein 1β (MIP-1β) in 

vitro [56, 60, 61]. 

Platelet-induced intracellular signalling in monocytes or mac-

rophages is highly complex and still incompletely understood. Co-

incubation with activated platelets and platelet-derived microvesi-

cles enhances monocyte activation by inducing AKT signalling and 
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intracellular calcium flux [62] and leads to complement factor C5a 

and TNF-α release [63]. 

Platelet-monocyte interactions further activate the monocyte 

NFκB pathway to promote release of pro-inflammatory MCP-1, 

IL-8, TNF-α and IL-6 upon co-incubation in vitro [56, 64]. Platelet 

CXCL4 induces extracellular signal kinase 1 and 2 (ERK1/2) phos-

phorylation, which mediates survival and differentiation, and 

Janus kinase (JNK) signalling, which leads to production and re-

lease of cytokines and chemokines [52]. 

The effect of platelets on monocytic release of pro-inflamma-

tory molecules seems to depend on the type of pathogen, as plate-

lets differentially affect TLR4- and TLR2-mediated inflammation 

in vitro [65]. Platelets reduce the expression of monocyte IL-10 

upon stimulation with either TLR4 or TLR2 ligands. However, 

platelet TLR4 stimulation enhances IL-1β, IL-6 and TNF-α expres-

sion by isolated monocytes, whereas platelet stimulation via TLR2 

reduces monocyte expression of these cytokines [65]. In line with 

this observation, TLR2 agonist lipoteichoic acid from S. aureus re-

duces platelet degranulation and platelet-monocyte aggregate for-

mation [66]. The immune modulatory potential of platelets is 

therefore dependent on the underlying pathological conditions, as 

platelets from patients with dengue virus infection stimulate 

monocytes to produce MCP-1, IL-1β, IL-8 and IL-10, while co-in-

cubation of platelets and monocytes from healthy donors results 

only in increased MCP-1 release [47].

Platelets also confer pro-inflammatory effects on monocytes in 

vivo. Platelet inhibition reduces platelet-monocyte interaction and 

plasma levels of TNF-α during LPS-induced endotoxaemia in hu-

mans [67] and mice [68]. Platelet-derived CXCL4 and CCL5 are 

critical mediators of septic lung damage secondary to polymicro-

bial sepsis in a caecal ligation puncture (CLP) model as they trigger 

CXCL2 release of resident alveolar macrophages, thereby promot-

ing neutrophil infiltration and tissue damage [69, 70]. 

Platelets further enhance IFN-α secretion of immune complex-

stimulated plasmacytoid dendritic cells via CD40L-CD40 interac-

tion [71]. Platelets also enhance neutrophil activation and degran-

ulation, leading to an increase in matrix metalloproteinase 9 

(MMP9) release [44, 72]. Thereby, platelets facilitate degradation 

of basement membranes by neutrophils. 

During acute colitis platelet depletion is accompanied with de-

creased levels of CXCL2, CXCL5 and IL-6, indicating that platelets 

further influence inflammatory responses by acting on tissue mac-

rophages or epithelial cells [43].

Anti-Inflammatory Effects

However, platelet function appears more multifaceted, pointing 

towards a finely balanced system with negative feedback mecha-

nisms, to locally restrict inflammation. CXCL4 not only acts as an 

inflammatory mediator but also down-regulates the chemotactic 

receptors CCR1, CCR2 and CCR5 on isolated human monocytes, 

thereby interfering with monocyte migration [73]. Platelet-derived 

chrondroitin sulfate A blocks CCL5 binding to the endothelium, 

thereby suppressing firm monocyte adhesion in an in vitro flow 

model [74]. Furthermore, platelet-derived MIF has paracrine ef-

fects on platelets, by reducing ADP-induced intracellular calcium 

flux, thereby potentially interfering with secondary platelet activa-

tion [27]. Secretion of sCD40L also elicits anti-inflammatory ef-

fects on monocytes by increasing IL-10 expression while concomi-

tantly down-regulating TNF-α and IL-6 following in vitro stimula-

tion of human monocytes [75]. In line with this, co-incubation 

with murine platelets reduces the production and release of inflam-

matory nitric oxide, TNF-α and IL-6 of bone marrow-derived mac-

rophages in vitro, indicating that platelets and their release prod-

ucts may attenuate inflammation during endotoxaemia [76]. Di-

rect interaction of platelet-bound immunoglobulin G with mono-

cytic Fc receptors drives monocytes towards an anti-inflammatory 

phenotype, reducing the levels of released inflammatory IL-1β, 

IL-12 and IL-6 while at the same time elevating IL-10 production 

in vitro and in an LPS-induced mouse peritonitis model [77]. In 

vivo data supports the dampening effect of platelets during infec-

tion, as GPIbα-IX-deficient mice show enhanced inflammatory cy-

tokines and chemokines in a CLP sepsis model [78]. The anti-in-

flammatory modulation of monocyte function may prevent uncon-

trolled cytotoxic responses during infections. 

Also platelet interactions with neutrophils can lead to anti-in-

flammatory effects as platelet-neutrophil aggregate formation fos-

ters generation of lipoxin A4, which down-regulates neutrophil 

adhesion and extravasation [79]. 

Activated platelets stimulate survival of neutrophils by the re-

lease of TGF-β [80]. Apoptotic neutrophils express CCR5, which 

scavenges platelet-derived CCL3 and CCL5 [81], leading to down-

regulation of inflammatory responses.

Moreover, platelets are capable of preventing neutrophil-in-

duced tissue damage by sequestering neutrophil elastase [44]. 

Platelet-dendritic cell interactions can also diminish dendritic cell 

activation via scavenging heat shock protein gp96, which acts as a 

dendritic cell activator [82]. 

Considering the opposing immune modulatory effects of plate-

lets, their role in inflammation and infection is far more complex 

than previously thought. Depending on the underlying pathology, 

site of inflammation and experimental model employed, platelets 

exert either pro- or anti-inflammatory effects. The underlying 

mechanism, which drives platelets towards an immune enhancer 

or results in immune dampening effects, is currently incompletely 

understood. Further investigations to unveil the modality of the 

dual role of platelets in an inflammatory setting will be eagerly 

anticipated.

Atherosclerosis

Platelet-leukocyte interactions modulate initiation, develop-

ment and progression of atherosclerosis (summarised in fig. 2). 

Atherosclerosis is associated with increased platelet activation 

and enhanced release of platelet-derived pro-inflammatory cy-

tokines like IL-1β, sCD40L, CXCL4 and CCL5 [83], which promote 

activation of the endothelium. Activated platelets transiently adhere 

to endothelial cells and deposit CXCL4 and CCL5 [83], which en-



Kral/Schrottmaier/Salzmann/AssingerTransfus Med Hemother 2016;43:78–8884

hance monocyte adhesion and tissue infiltration [22]. The pro- 

inflammatory microenvironment at sites of endothelial dysfunction 

further promotes platelet adhesion and activation [84]. This en-

hances the release of platelet-derived chemokines like CCL5, MIF 

and CXCL7, which leads to neutrophil recruitment [85, 86]. The 

pro-inflammatory, pro-oxidative state at atherosclerotic sites leads 

to modification of low-density lipoproteins (LDL). LDL oxidation is 

furthered by platelet release of sCD40L, which induces ROS produc-

tion by neutrophils [49]. Thereby, platelets contribute to LDL oxida-

tion and endothelial dysfunction [85]. Oxidised LDL, in turn, acti-

vates platelets, leading to platelet-neutrophil aggregate formation, 

which accelerates neutrophil activation and transmigration [87]. 

Platelet-mediated adhesion of monocytes and dendritic cells via 

direct cell-cell interactions at sites of atherosclerotic lesions [83, 84, 

88] promotes atherogenesis [83, 89]. 

Platelet-derived CXCL4 prevents apoptosis of neutrophils [86] 

and monocytes, and induces monocyte CD86 expression and dif-

ferentiation into macrophages [90]. These CXCL4-induced mac-

rophages have distinct properties from classical M1 and alterna-

tively activated M2 macrophages and are thus defined as M4 polar-

ized macrophages, which exert a pro-atherogenic phenotype (re-

viewed in [91]). 

Platelets further accelerate lipid uptake and foam cell formation 

by enhancing cholesterol uptake by monocytes [92–94]. This pro-

cess is mediated by CXCL4, CXCL12, platelet-derived growth fac-

tor (PDGF) and phagocytosis of lipid-laden platelets, which have 

taken up modified LDL [22, 28, 95, 96]. 

Platelet depletion reduces foam cell formation [22], and CXCL4 

deficiency diminishes atherosclerotic lesion development and size 

[97], while mice with hyper-reactive platelets show increased ath-

erosclerotic lesion formation [84]. 

Plaque Rupture and Atherothrombosis

The stability of an atherosclerotic plaque is determined by in-

flammatory cytokines and cells present at sites of lesions. Activated 

platelets at atherosclerotic lesions recruit neutrophils, which se-

crete proteolytic enzymes like elastase, MMP8, MMP9, MPO or 

proteinase 3, thereby decreasing plaque stability [85, 98]. Activated 

platelets induce release of tissue factor-covered NETs by neutro-

phils at sites of plaque rupture, thus contributing to thrombus pro-

gression [85]. Lysophosphatidic acid within atherosclerotic plaques 

activates platelets in vitro, promoting platelet-monocyte aggregate 

formation, which may result in enhanced inflammatory and 

thrombotic stimulation in vivo [99]. Platelet-monocyte interac-

tions further enhance matrix MMP9 production, and thereby con-

tribute to plaque destabilisation [100, 101].

Immature myeloid dendritic cells interact with activated plate-

lets only under low shear conditions found at sites of atheroscle-

rotic lesions. Platelet-dendritic cell interaction damages plaque 

structure [102]. Neutrophils and dendritic cells can phagocytose 

activated platelets from preformed aggregates and thus may regu-

late inflammatory responses and atherothrombotic events [103, 

104].

Megakaryopoiesis

Platelets are produced by megakaryocytes in the bone marrow. 

Megakaryocytes derive from haematopoietic stem cells, and their 

differentiation process is strictly regulated by a plethora of cy-

tokines, including IL-1α, IL-1β, IL-3, IL-6, IL-8, IL-9, IL-11, granu-

locyte colony-stimulating factor (G-CSF), granulocyte-macrophage 

Fig. 2. Effect of plate-

lets on innate immune 

cell functions during 

atherogenesis (gray rec-

tangle) and plaque rup-

ture (white rectangle).  

Platelets and platelet- 

derived chemokines 

promote monocyte, neu-

trophil and dendritic cell 

adhesion to inflamed en-

dothelium and facilitate 

their extravasation 

Platelet CXCL4 further 

enhances survival of 

monocytes and neutro-

phils. Platelet CD40L 

 induces ROS generation 

by neutrophils, which 

contributes to oxidation of LDL. Platelets trigger monocyte differentiation and macrophage polarization into pro-atherogenic M4 macrophages. Via CXCL4 and 

CXCL12 platelets enhance oxLDL uptake by monocytes and macrophages, leading to foam cell formation. Platelets promote the release of proteolytic enzymes by 

neutrophils and monocytes, which leads to extracellular matrix degradation and plaque destabilization. Neutrophils and dendritic cells phagocytose activated 

platelets, which modulates leukocyte functions. Platelet-mediated NETs contribute to additional platelet trapping and thrombus formation.  

CCL5 = Chemokine (C-C motif) ligand 5; CD40L = cluster of differentiation 40 ligand; CXCL4 = chemokine (C-X-C motif) ligand 4; LDL = low density lipopro-

tein; MIF = macrophage migration inhibitory factor; oxLDL = oxidised LDL.
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colony-stimulating factor (GM-CSF) and thrombopoietin (TPO) 

[105-108].

A number of inflammatory states are associated with elevated 

platelet counts and increased blood TPO, which represents an im-

portant mediator of megakaryopoiesis and platelet production 

[109, 110]. The effects of innate leukocytes on megakaryopoiesis 

and the effect of megakaryocytes on innate leukocyte counts are 

summarised in table 2.

Via release of ROS, activated macrophages and neutrophils en-

hance haematopoietic stem cell commitment towards the mega-

karyocytic lineage and accelerate megakaryocyte maturation [111]. 

Activated leukocytes release GM-CSF, G-CSF, IL-1α, IL-1β, IL-6, 

IL-8, IL-11 and a unique natural killer (NK) cell peptide, thereby 

promoting megakaryopoiesis [105, 106, 109, 111–113]. Many leu-

kocyte-derived cytokines induce TPO expression as well as com-

mitment, maturation and/or rupture of megakaryocytes. This leads 

to increased platelet counts during acute inflammatory stimuli. 

Leukocytes can also diminish platelet production via release of 

TGF-β, which is a potent inhibitor of megakaryopoiesis and mega-

karyocytotic endomitosis [109].

Megakaryocytes, in turn, influence neutrophil blood counts via 

IL-8 and macrophage inflammatory protein 2 (MIP-2) release, 

which promotes neutrophil migration. Stimulation of megakaryo-

cytes induces the release of IL-8 and MIP-2, which bind to CXCR2 

to initiate vessel migration and subsequent release of neutrophils 

into the circulation [114]. Megakaryocyte-derived IL-1β, IL-3 and 

GM-CSF induce granulopoiesis [105, 115], and IL-6 treatment in-

creases not only neutrophil and platelet counts but also monocytes 

and NK cell levels [116].
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Leukocytes  megakaryopoiesis MKs/platelets  

leukopoiesis
stimulatory inhibitory

IL-1α [113]

IL-1β [105, 117] [105] 

IL-3 [106] 

IL-6 [112,117,118] [116] 

IL-8/KC [118] [114]

IL-9 [119]

IL-11 [106]

G-CSF [114,117]

GM-CSF [106,108] [115]

TGF-β  [109]

ROS [111]

Unique NK cell peptide [109]

aMacrophage and nuetrophil-derived interleukin-1α (IL-1α) induces megakaryocyte rupture, which results 

in rapid production of large amounts of platelets. Monocytes, macrophages, neutrophils and NK cells 

 release IL-1β, IL-6, IL-8, IL-9, IL-11, granulocyte colony-stimulating factor (G-CSF), granulocyte- 

macrophage colony-stimulating factor (GM-CSF) and reactive oxygen species (ROS), which stimulates 

 haematopoietic stem cell proliferation and megakaryocyte maturation. IL-2 stimulated NK cells secrete a 

unique peptide that stimulates megakaryopoiesis independent of thrombopoietin (TPO). Transforming 

growth factor-β (TGF-β)-derived from NK cells can inhibit megakaryopoiesis. Megakaryocytes also 

 influence  leukocyte blood counts by enhancing neutrophil mobility and release into the circulation or via 

the release of IL-1β, IL-3, IL-6, IL-8 and GM-CSF.

Table 2. Effect of innate immune cells on mega-

karyopoiesis and effects of megakaryocytes and 

platelets on leukocyte productiona
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