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Abstract

The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit
the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came
under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the
ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote
MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated
freezing–thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2.
PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared
with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to
increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited
availability of platelet donors. Expired units might represent an alternative, but further data are needed to define
safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions
concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL
batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL
and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting
cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an
agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
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Background
Mesenchymal stem/stromal cells (MSCs) are defined as
self-renewing, multipotent progenitor cells able to differ-
entiate into other cell types of mesodermal origin, such
as adipocytes, osteocytes, and chondrocytes [1].
MSCs isolated from culture medium show consistent

phenotypic characteristics such as adherence to plastic
surfaces, positivity for cell-surface molecules CD105,
CD73, and CD90, and negativity for hematopoietic

markers and HLA-DR [2]. As well as this shared marker
profile, different MSC subpopulations may feature
phenotypical and functional heterogeneity [3, 4].
MSCs exert potent immunosuppressive and anti-

inflammatory activities [5] by suppressing T-cell prolifer-
ation in vitro [6–8], via direct cell-to-cell contact [9] and
by the production of soluble factors, including nitric
oxide [10], hepatocyte growth factor (HGF) and trans-
forming growth factor (TGF)-β1 [8], and indoleamine
2,3-dioxygenase (IDO) [11].
The use of fetal bovine serum (FBS) and other animal

derivatives for the ex-vivo expansion of MSCs has been
discouraged by regulatory authorities [12–14] to reduce
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the risk of transmitting prions and other zoonoses and
to avoid xenogeneic immune reactions in the host. How-
ever, the lack of standardization of FBS preparations
leads to inconsistency in cell culture performance [15]
and FBS production has come under scrutiny because of
animal welfare concerns [16, 17].
Platelet lysate (PL) was initially proposed as an alterna-

tive to animal serum for the ex-vivo expansion of MSCs
by Doucet et al. [18]. Bioactive molecules and growth
factors contained in PL support the expansion of MSCs
derived from bone marrow (BM) [19–22], umbilical cord
blood (UCB) [23, 24], and adipose tissue (AT) [25–27],
showing favorable results compared with FBS. In addition,
MSCs expanded with PL-enriched medium have been
used for the treatment of patients with steroid-refractory
acute graft versus host disease (GVHD) [28–33] after
hematopoietic stem cell transplantation and of patients
suffering from several orthopedic disorders, mainly mod-
erate to severe osteoarthritis of the knee [34].
The isolation and expansion of MSCs in xeno-free

conditions using PL could thus represent a valuable
alternative to FBS.

Review
Production and use of animal serum in cell cultures
Animal serum, used historically for culturing cells [35],
is a composite combination of biomolecules with differ-
ent growth-promoting and inhibiting activities. Its major
function in culture media is to deliver trophic factors
stimulating cell proliferation and to provide transport
proteins, minerals, trace elements, lipids, attachment
factors, and stabilizing and detoxifying elements needed
for maintaining pH or to inhibit proteases and other
toxic molecules [36]. FBS is obtained in slaughterhouses
from fetuses of healthy dams destined for human con-
sumption. FBS is superior to serum from adult animals
because of its reduced γ-globulin content, thereby redu-
cing the risk of possible antibody interactions with cell
cultures.
In this context, a case of fraud came up in 2013 [37]

when it was discovered that some lots of FBS produced
between 2003 and 2011 were subject to label nonconfor-
mances [38].
In the last 10 years substantial efforts have been made

to identify substitutes of animal serum, including serum-
free media [19, 39] and byproducts obtained from the
lysis or the activation of human platelets. However, the
use of alternative media still remains largely unexplored
and animal serum is still an essential component, for
instance, in the production of vaccines.

Human PL preparation
Release of growth factors from platelets can be achieved
by repeated freezing–thawing cycles of the platelet-rich

plasma (PRP) obtained from platelet apheresis or from the
buffy coat (Fig. 1). Briefly, the PRP bags are frozen over-
night at –80 °C and then thawed at +37 °C; this cycle is re-
peated one to three times. After pooling and one or more
centrifugation/filtration steps in order to remove cellular
debris, PL is ready to be added to the growth media
(reviewed in [40]). Preparation procedures adopted in dif-
ferent laboratories may vary with regard to the use of fresh
or expired platelets, the number of freezing–thawing cy-
cles, pathogen reduction (PR), and filtration steps, causing
variations in the concentration and integrity of the growth
factors released that are likely related to the efficacy of the
platelet granules’ disruption [18].
Sonication to produce PL has been described previ-

ously by Hara et al. [41] alone or in combination with a
freezing–thawing cycle [42]. Ultrasounds are sounds
having a frequency ≥20 kHz. Their effect is based on the
transmission of ultrasounds in a liquid where they gen-
erate thermal and nonthermal effects. For the latter,
ultrasound waves act on the gas dissolved, where the
compression of the liquid is followed by its rarefaction.
As a consequence, the micro bubbles expand with each
cycle of the applied ultrasonic energy until they reach an
unstable size, and then they collide and/or violently col-
lapse in a process called “cavitation” [43, 44].
We have described previously the production of PL

from fresh PRP using ultrasounds at a frequency of
20 kHz [45]. The efficiency of the lysis was estimated
after quantification of the platelet-derived growth factor-
AB (PDGF-AB). After 30 minutes of sonication, 74 % of
PDGF-AB was released from the platelet granules in the
medium.
Platelet factors can be also released by physiological

stimuli as thrombin, collagen, adenosine diphosphate,
epinephrine, and thrombin receptor-activating peptide
[46], CaCl2 [47], or tri-n-butyl phosphate and Triton X-
45 [48] in order to obtain the so-called platelet releasate
(reviewed in [49]). The methods used to release the
platelet factors are an important variable leading to lot-
to-lot variations of the final product, but few studies
have addressed this topic.
It has been observed that PL obtained after platelet ac-

tivation with thrombin (platelet releasate) and PL ob-
tained by platelet freezing/thawing stimulate different
proliferation rates of BM-derived MSCs [20]. In particu-
lar, the platelet releasate significantly accelerated BM-
MSC proliferation to yield cell numbers clinically rele-
vant within the first two passages. MSC quality and
functionality including cell surface marker expression,
adipogenic and osteogenic differentiation, and immuno-
suppressive action were similar in MSCs from all culture
conditions.
We expanded BM-MSCs in medium containing 10 %

platelet releasate produced by CaCl2 activation, observing
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that the cumulative population doubling time of cells at
passage 8 was about twice that of the same cells expanded
in medium containing 10 % PL obtained by repeated
freezing–thawing cycles. We did not observe any differ-
ences in phenotype and immunomodulation properties of
the cells expanded in the two conditions [50]. Also,
previous studies reported that repeated freezing and
thawing cycles have rather negative effects on growth
factor content [51, 52]. Further studies are needed to
investigate the possible effects of different PL manu-
facturing technologies on cell expansion, differentiation,
and immunomodulation.

Use of expired platelet units for PL production
The use of fresh platelet units for the production of PL
raises concerns due to the limited availability of donors
in the context of demand for platelet units in the clinic.
Expired platelet units may represent an alternative
source since there is evidence that platelets obtained
from expired units can be used without compromising
the quality of the final product [53].
In an Italian region of 3.8 million inhabitants, about

100,000 buffy coat units from single donors were

produced in 2014. Of these, about 60 % were discarded
after the expiration date. Considering a mean buffy coat
volume of 50 ml, about 3000 L of PL could have been
produced using only the expired buffy coat units.

Platelet-derived factors
Platelets contain bioactive molecules and growth factors
that are released from α-granules after platelet destruc-
tion by physical or physiological methods. Among these
are coagulation factors, adhesion molecules, protease
inhibitors and proteoglycans, basic fibroblast-derived
growth factor (bFGF), epidermal growth factor (EGF),
HGF, vascular endothelial growth factor (VEGF), insulin-
like growth factor-1 (IGF-1), TGF-β1, soluble CD40L,
vascular cell adhesion molecule-1, intercellular adhesion
molecule-1, PDGF-AA, PDGF-AB, PDGF-BB, chemokine
(C-C) ligand 5, and chemokine (C-X-C) ligand 1/2/3
[54, 55]. All of these molecules influence cell prolifer-
ation and function [56] and could promote prolifera-
tion in comparison with FBS [20, 57].
The role of these factors in cell expansion is only

partially understood. Neutralization experiments indi-
cated that some platelet factors are essential for MSC

Fig. 1 Procedure for PL and platelet releasate preparation

Astori et al. Stem Cell Research & Therapy  (2016) 7:93 Page 3 of 8



proliferation, and thus inhibition of PDGF-BB and bFGF
decreases MSC proliferation by about 20 % and 50 %,
respectively [55].
Extensive functional and differential proteomic ana-

lysis to identify platelet-derived factors affecting ex-vivo
expansion of MSCs was performed by Kinzebach et al.
[58] using MALDI-TOF and western blotting and by
Horn et al. [59] using human cytokine antibody arrays.
In Horn et al.’s study, the chemokine profiles of eight
PLs were correlated with proliferation activity showing a
significant positive effect of increasing concentrations of
PDGF-AB.
The content of platelet factors could be different for

platelet releasate produced from cord blood (CB) or per-
ipheral blood (PB) [60]. Using a wide proteomic array,
the authors discovered that several hormones strongly
supporting fetal tissue formation like prolactin, proges-
terone, and α-fetoprotein were present only in platelet
releasate obtained from CB. Moreover, in CB releasate
the authors identified higher concentrations of factors
known to promote angiogenesis, such as VEGF. On the
contrary, the proteomic analysis showed that platelet
releasate obtained from PB contained more proinflam-
matory factors such as chemokine CC4, metalloprotein-
ase 3, and chemokine (C-C motif ) ligand 5.
Using high-throughput proteomic array analysis, an

accurate proteomic dissection of PL was performed by
Crespo-Diaz et al. [61]. Within the extracellular signal-
ing molecules of PL, FGF/EGF, TGF-β/bone morpho-
genic protein (BMP), and VEGF/PDGF were highly
represented.

Isolation and ex-vivo expansion of MSCs in PL-enriched
medium
In their seminal study Doucet et al. [18] expanded MSCs
in FCS or in a medium supplemented with PL, demon-
strating that the latter promoted MSC expansion and
thus decreased the time required to reach confluence
while increasing the fibroblastoid colony-forming unit
(CFU-F) size when compared with FCS cultures. MSCs
cultured in the presence of PL maintained their triline-
age differentiation potential and their immunosuppres-
sive activity.
Schallmoser et al. [62] provided evidence that PL

could replace FBS for clinical-scale expansion of MSCs.
PL was more efficient than FBS in supporting MSC ex-
pansion and, although morphologically distinct, MSCs
did not differ significantly in terms of immunopheno-
type, differentiation potential, and lack of tumorigenicity
in mice.
Capelli et al. [63] demonstrated that PL allowed

clinical-grade production of MSCs starting from diag-
nostic samples of BM aspirates or using the bag and fil-
ter remnants at the end of BM infusions. A significantly

faster expansion was obtained with PL, compared with
FBS. No differences were observed in terms of morph-
ology, differentiation potential, surface markers, and im-
munological properties. The same authors demonstrated
that umbilical cord derived-MSCs can also be expanded
in PL [64].

Alterations of the immune-regulatory effect of MSCs
expanded in PL
PL may alter the expression of some relevant MSC
surface molecules, impairing their inhibitory capacity on
T-cell proliferation to alloantigen and NK-cell prolifera-
tion and cytotoxicity [65]. Diminished immunosuppres-
sive properties for both resting and interferon-γ-primed
BM-MSCs and AT-MSCs was also reported [66], to-
gether with attenuated expression levels of IDO-1 com-
pared with FBS.
On the contrary, our group [57] demonstrated a stron-

ger inhibitory effect on lymphocyte proliferation with
AT-MSCs expanded in PL when compared with AT-
MSCs expanded in FBS or in human platelet-poor
plasma (hPPP). Moreover, Flemming et al. [67] evi-
denced that BM-MSCs expanded in PL had comparable
inhibitory effect on lymphocyte proliferation compared
with their FCS cultured counterparts. The data were fur-
ther confirmed by Bernardo et al. [68].

PL biosafety
The risk of cell transformation during MSC ex-vivo ex-
pansion was addressed by Crespo-Diaz et al. [61] by
evaluating chromosomal stability of BM-MSCs after
long-term culture in PL or FBS. Notably, no clonal
karyotypic abnormalities were observed at passage 12.
Our group investigated whether the increased MSC

proliferation achieved with PL could induce chromo-
somal instability. Reassuringly, as showed by our group
[69], micronuclei formation in Chinese Hamster Ovarian
K1 cell lines exposed to increasing concentrations of PL
was unchanged. The senescence of MSCs cultured for
up to 16 passages in medium containing FBS or PL was
assessed by endogenous β-galactosidase expression [70].
MSCs cultured with FBS for different numbers of pas-
sages were switched to PL conditions to evaluate the
ability of PL to “rescue” the proliferative capacity of
MSCs. Interestingly, PL culture of aged and senescent
MSCs demonstrated cellular rejuvenation, reflected by
decreased doubling time and smaller cell size. At this
point, the mechanisms behind this observation have not
been elucidated—but it may be speculated that a specific
growth factor such as EGF or, more likely, a combin-
ation of growth factors in the PL may mediate its benefi-
cial effects on aged MSC cultures.
Gene expression changes after FBS or PL culture were

investigated by Schallmoser et al. [71]. Surprisingly, all
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BM-MSC preparations revealed significant gene expres-
sion changes upon long-term culture; in particular, genes
involved in cell differentiation apoptosis and cell death
were upregulated whereas genes involved in mitosis and
proliferation were downregulated, indicating that long-
term expansion induced similar gene expression changes
in BM-MSCs irrespective of isolation and expansion
conditions.
Lohmann et al. [72] analyzed the impact of the donor

age on PL functionality, observing that MSC prolifera-
tion was significantly higher in PL derived from younger
donors, and PL from older donors increased activity of
senescence-associated β-galactosidase.

Pathogen reduction
Strategies for pathogen reduction
In addition to viral contamination, platelet units are at
particular risk of bacterial contamination by adventitious
pathogens at the site of venipuncture or bacteremia of
donors. PR can therefore be implemented in the manufac-
turing process to lower bacterial and viral loads [73–75].
Current PR technologies comprise solvent detergent treat-
ment, methylene blue/light, riboflavin/ultraviolet light, or
amotosalen/ultraviolet light (Intercept™) [76].
Although PR can likely reduce the transmission risk of

known and as yet unknown infectious diseases, recent
studies reporting on the effects of PR on transcriptomes
and proteomes of platelets [77, 78] highlight the need
for further studies to evaluate the effect of PR in the
manufacturing process of PL.
Shih et al. [79] compared FBS with inactivated PL for

expansion of AT-MSCs, concluding that the treatment
did not alter the differentiation capacity or the cell
immunophenotype.
Systems for pathogen inactivation of platelet donations

have been developed based on the disruption of nucleic
acids by a photoactivation process using psoralens plus
ultraviolet light, and the PL produced with inactivated
donations was able to sustain BM-MSC expansion and
immunoregulation [80, 81].
The functionality of PL prepared starting from ex-

pired units treated and untreated with a PR system
(Intercept™) was also tested by evaluating immunomo-
dulation, immunophenotype, proliferation, and trilineage
differentiation of MSCs. Interestingly, the conclusion was
that PL prepared from expired and pathogen-reduced
platelets supported MSC differentiation and immunosup-
pression better than untreated PL [82].

Conclusion
A substantial quantity of laboratory data on the prepar-
ation modalities and on the characterization of PL have
been produced, suggesting that MSCs expanded in PL
grow faster when compared with MSCs expanded in

FBS-enriched media. If the use of PL could be escalated
to the manufacturing of other cell therapeutics or bio-
pharmaceutical products, the demand for PL is likely to
increase dramatically. In this future scenario, several
questions should be addressed.

Supply
The annual FBS availability is estimated to be around
500,000–600,000 L/year [36, 83], of which about 1/3 is
suitable for Good Manufacturing Practices (GMP) pro-
duction. In recent years, the annual demand of serum
has decreased mainly because the production of vaccines
has switched to the use of serum-free microbial or mam-
malian cell cultures [84]. In parallel, animal serum
production and availability has decreased worldwide be-
cause of a diminished demand from the vaccine industry
and the huge number of cattle reared for beef and dairy
[84], thus limiting the accessibility of this product. The
decline in request and production of bovine serum has
occurred in parallel with increasing demand for cell
therapeutics and regenerative medicine products. The
worldwide availability of blood donations therefore
needs to cover clinical demand, cell manufacture, and
research [40]. In this context, expired platelet units may
emerge as the main source for PL, even with the lack of
agreed quality criteria. The process of PL production,
characterization, and testing, mainly driven by academia
and increasingly blood banks, could hardly compete with
industrial manufacturers that now offer PL produced
under GMP.

Processing
Several methods have been proposed to release growth
factors from platelets resulting in different release effi-
ciency and PL efficacy. A consensus should be obtained
on the standardization of the method(s) used.

Release criteria
Even if some studies suggest a major role for some spe-
cific cytokines in PL, a consensus has not so far been
found. One question is whether or not the same cyto-
kine content is critical for different cell types. In this
sense, one of the fundamental steps in PL definition
would be the designation of release criteria.
The PL or releasate production method seems to play

a role in the final composition of the product, possibly
modulating the quantity and quality of factors released
from platelet granules. The final concentration of cyto-
kines and growth factors in PL is also likely linked to the
number of platelet units pooled and the final platelet
concentration.
Since PL contains both plasma and platelet proteomes,

the concentration of human immunoglobulin G (IgG) in
a preparation could vary between 8 and 12 mg/ml [40]
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and could also be related to the production process and
the plasma concentration in the final product. In order
to reduce the risk of side effects in the patient caused by
a high concentration of allogeneic IgG in the cell prepar-
ation, the IgG concentration in the PL preparation
should be defined.
Before releasing the product, the ability to expand a

reference MSC preparation to a predefined level at least
comparable with FBS might be a measure to assess PL
quality. The immunomodulatory properties of MSCs ex-
panded in PL or releasate should be maintained and it
would be favorable to develop a standard assay to evalu-
ate this function. Release criteria should also include the
endotoxin content and viral and bacterial safety.
In conclusion, we have identified substantial need to

define PL and to understand the mechanisms that medi-
ate the beneficial effects of PL on cell growth. Collabora-
tive efforts of scientific societies, end users, blood
centers, and industry are urgently needed to improve
our knowledge.
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