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Abstract Platelets primarily mediate hemostasis and

thrombosis, whereas leukocytes are responsible for

immune responses. Since platelets interact with leukocytes

at the site of vascular injury, thrombosis and vascular

inflammation are closely intertwined and occur consecu-

tively. Recent studies using real-time imaging technology

demonstrated that platelet–neutrophil interactions on the

activated endothelium are an important determinant of

microvascular occlusion during thromboinflammatory dis-

ease in which inflammation is coupled to thrombosis.

Although the major receptors and counter receptors have

been identified, it remains poorly understood how hetero-

typic platelet–neutrophil interactions are regulated under

disease conditions. This review discusses our current

understanding of the regulatory mechanisms of platelet–

neutrophil interactions in thromboinflammatory disease.
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Introduction

Cardiovascular disease is the number one killer in Western

society. Activated platelets, leukocytes, and endothelial

cells (ECs) contribute to the pathogenesis of the disease.

During vascular inflammation, neutrophils roll over the

activated ECs through the interaction between selectins and

their ligands, followed by adhesion to the ECs, which is

mediated by the interaction between b2 integrins and

ICAM-1 [1]. Subsequently, activated aLb2 and aMb2

integrins interact with intercellular adhesion molecule-1

(ICAM-1) on the activated endothelium, thereby inducing

neutrophil adhesion and crawling, respectively [2, 3]. In the

presence of chemotactic stimuli, adherent neutrophils rap-

idly transmigrate across ECs. It was reported that several

EC surface molecules, including platelet-EC adhesion

molecule-1 (PECAM-1), CD99, EC-selective adhesion

molecule (ESAM), and junctional adhesion molecules

(JAMs), control this process [3–7]. Recent intravital

microscopic studies have provided compelling evidence

that activated neutrophils adherent to inflamed ECs can

support homotypic and heterotypic cell–cell interactions

and that platelet–neutrophil aggregation on activated ECs

is the crucial determinant of microvascular occlusion dur-

ing vascular inflammation (Fig. 1) [8, 9]. The heterotypic

platelet–neutrophil interactions are mainly mediated by

binding of neutrophil P-selectin glycoprotein ligand-1

(PSGL-1) and aMb2 integrin to platelet P-selectin and

glycoprotein Iba (GPIba), respectively [8–12]. While

neutrophils attach to the inflamed venules under low blood

shear, platelets adhere to activated ECs and sub-endothelial

matrix proteins such as collagen and von Willebrand factor

(vWF) under high blood shear and then support neutrophil

rolling and adhesion as well as platelet accumulation fol-

lowing arterial injury [13–15]. Although neutrophils and
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platelets preferentially adhere to the site of vascular injury

under low and high shear conditions, respectively, the

receptors and counter receptors for heterotypic cell–cell

interactions are similar under both conditions [16].

Tissue and vascular injuries activate ECs, resulting in

not only the expression of adhesion molecules including P-

and E-selectins, ICAMs, and vascular cell adhesion mole-

cule-1 (VCAM-1) but also the production and release of

vWF, reactive oxygen species (ROS), and inflammatory

cytokines [3, 17–19]. Neutrophil recruitment to inflamed

ECs is critical for vascular inflammation since activated

neutrophils are the main source of ROS [19] and numerous

enzymes including peptidylarginine deiminase 4 (PAD4),

elastase, and cathepsin G [20, 21], thereby linking

inflammatory and thrombotic responses and aggravating

the disease conditions. Our recent studies showed that in

addition to neutrophil adhesion to ECs, platelet–neutrophil

interactions play a crucial role in slowing blood flow rates

and mediating occlusion of inflamed venules [8]. Activated

and adherent platelets express numerous surface receptors

(GPIba, aIIbb3, CD40, and toll-like receptors) and release

diverse granular molecules (P-selectin, ADP, and platelet

factor 4) and cytokines (interleukin-1, RANTES, platelet-

derived growth factor, transforming growth factor-b, and

epidermal growth factor) [22–25], which enhance inflam-

matory responses. Further, platelets are enriched with

numerous chemokines (CXCL4, CXCL8, and CCL2) and

express their corresponding receptors [25, 26]. Therefore,

platelets and neutrophils cooperate to propagate the path-

ogenesis of thromboinflammation.

Fig. 1 Heterotypic cell–cell interactions during vascular inflamma-

tion. a During vascular inflammation, neutrophil rolling over and

adhesion to the activated ECs are mediated by selectins-their ligands

and b2 integrins-ICAM-1, respectively. These adherent and crawling

neutrophils allow for platelet adhesion and accumulation. b During

arterial thrombosis, platelets adhere to vWF and collagen through

GPIb/IX/V complex and GPVI, respectively, thereby inducing

platelet aggregation. The adherent platelets support neutrophil rolling

and adhesion via the receptor–counter receptor interaction. c The

receptor and counter receptors of heterotypic neutrophil–platelet

interactions. Heterotypic interactions are mainly mediated by the

interactions of P-selectin with PSGL-1 and aMb2 integrin with

GPIba. Other molecules also contribute to heterotypic interactions,

such as platelet JAM-3 binding to neutrophil aMb2 integrin. Platelet

aIIbb3 integrin can interact with neutrophil aMb2 integrin through

fibrinogen. d Heterotypic EC–neutrophil–platelet interactions can

lead to occlusion in microvessels during thromboinflammation. In

addition to EC–neutrophil–platelet interactions, RBCs may be trapped

and incorporated into cell–cell aggregates
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Unlike arterial thrombosis, which is primarily mediated

by platelet aggregation and well inhibited by antagonists of

aIIbb3 integrin [27], preclinical and clinical studies have

suggested that coagulation cascades, platelets, and leuko-

cytes should be considered for intervention in

thromboinflammatory disease [28–34]. Since thrombosis

and inflammation occur in numerous vessels and organs

under several pathological conditions, including vascular

inflammation [8, 35], ischemia/reperfusion injury [36, 37],

transfusion-related acute lung injury [38], atherosclerosis

[39, 40], and cell transplantation and therapies [41],

understanding of the detailed mechanisms mediating

thromboinflammation could lead to the identification of an

effective therapeutic target. In this review, we will focus on

major surface receptors and signaling pathways that regu-

late heterotypic platelet–neutrophil interactions under

thromboinflammatory conditions and also summarize how

the platelet–neutrophil interaction participates in the initi-

ation and propagation of the disease.

Surface receptors mediating platelet–neutrophil

interactions

P-selectin and PSGL-1

As an important marker of platelet activation, P-selectin is

stored in a-granules of resting platelets and exposed on the

surface upon agonist stimulation [42]. Binding of platelet

P-selectin to neutrophil PSGL-1 is required for the initial

contact between both cells. In addition, neutrophil PSGL-1

interacts with EC P- and E-selectins, which mediates

tethering and rolling of neutrophils and induces activation

of protein kinases such as Syk and phosphoinositide-3-

kinase (PI3K), integrin activation, and cytoskeletal

remodeling [43]. Furthermore, circulating microparticles

mainly derived from monocytes binds to platelet P-selectin

through PSGL-1, thereby accumulating tissue factor and

generating thrombin [44]. Studies with mice producing

high levels of soluble P-selectin demonstrated that binding

of P-selectin to leukocyte PSGL-1 enhances the plasma

concentration of procoagulant microparticles [45]. These

results suggest that the interaction between P-selectin and

PSGL-1 is critical for promoting thrombus formation.

Biochemical studies revealed that the sulfation of the

N-terminal Tyr 46, 48, and 51 residues and O-glycosylation

of Thr 57 in PSGL1 are important for the interaction with

the C-type lectin domain of selectins [46, 47]. The sialyl

Lewis X moiety synthesized by fucosyltransferase VII is

also required for the binding of PSGL-1 to selectins [48].

Further, the phosphorylation of the N-terminal Tyr residues

is important for PSGL-1 binding to selectins under shear

conditions [49].

Intravital microscopic studies with P-selectin- or PSGL-

1-deficient mice demonstrated that the P-selectin–PSGL-1

interaction is crucial for leukocyte rolling over platelet

thrombi at the site of arteriolar injury [15] and that EC

P-selectin also mediates initial rapid rolling of leukocytes

through PSGL-1 [10, 50]. Consistently, in vitro studies also

suggested that inhibition and deletion of P-selectin and

PSGL-1 abolish the initial interaction between neutrophils

and platelets and the subsequent activation of signaling

molecules in both cells [51–54]. Studies with P-selectin-

deficient mice revealed that monocyte-derived microparti-

cles incorporate into the developing thrombus through the

P-selectin–PSGL-1 interaction following arteriolar injury

[55], which further mediates fibrin generation. Recently,

Sreeramkumar and colleagues [35] have reported that

inhibition and deletion of PSGL-1 impair platelet attach-

ment at the uropod and that platelet–neutrophil interactions

through PSGL-1 and P-selectin are critical for triggering

vascular disease such as ischemic stroke. Therefore, there

is no doubt that platelet P-selectin and neutrophil PSGL-1

contribute to the initial association between both cells,

thereby transducing signaling pathways and activating

other surface molecules such as integrins during throm-

bosis and vascular inflammation.

Glycoprotein Iba (GPIba) and aMb2 integrin

The GPIb/IX/V complex is a key platelet receptor binding

to vWF at the site of vascular injury, thereby initiating

platelet adhesion and accumulation under high shear con-

ditions [56, 57]. It comprises four transmembrane proteins:

GPIba, GPIbb, GPIX and GPV (2:2:2:1 ratio). The N-ter-

minal region of GPIba binds to several ligands including

vWF, aMb2 integrin, thrombin, and P-selectin [12, 58–61].

Neutrophil aMb2 (macrophage-1 antigen, Mac-1) is a

promiscuous integrin interacting with numerous ligands

including ICAMs on ECs, plasma proteins (fibrinogen and

factor X), complement pathway product (C3bi), extracel-

lular matrix proteins (fibronectin, laminin, collagen, and

vitronectin), and platelet GPIba [62]. aMb2 integrin reg-

ulates a variety of neutrophil functions such as crawling

[63, 64], chemotaxis [65], survival [66], apoptosis [67], and

neutrophil extracellular trap (NET) formation [68]. The

major binding site for most ligands is located in the

inserted (I) domain in the aM subunit. Consistently,

in vitro studies suggested that the N-terminal region

(Phe201-Gly268) of GPIba binds to the I domain of aMb2

integrin, thereby inducing stable and firm association

between platelets and neutrophils [12]. In vitro and in vivo

studies demonstrated that deletion or inhibition of aMb2

integrin and GPIba abolishes the interaction of platelets

with neutrophils or monocytes under inflammatory condi-

tions [9, 12, 69]. Recently, we demonstrated using real-
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time intravital microscopy that aM deletion improves

blood flow rates during TNF-a-induced cremaster venular

inflammation [8]. Thus, GPIba–aMb2 association is criti-

cal for platelet–neutrophil interactions and microvessel

occlusion during vascular inflammation. Although the

ligand binding and downstream signaling pathway through

the GPIb/IX/V complex and aMb2 integrin have been

studied [58, 62, 70, 71], it remains elusive how the ligand-

binding function of both molecules is regulated during

thromboinflammatory disease.

aIIbb3 integrin

aIIbb3 integrin is the most abundant platelet receptor

(80,000–100,000 copies per platelet) and necessary for

platelet aggregation via interaction with fibrinogen. Studies

with blocking antibodies and platelets from a patient with

Glanzmann’s thrombasthenia revealed that the interaction

of aMb2 integrin with fibrinogen bound to aIIbb3 integrin

mediates neutrophil adhesion to adherent platelets under

flow conditions [72]. However, we and others showed that

inhibition of aIIbb3 integrin does not reduce neutrophil–

platelet interactions under static and stirring conditions [8,

52, 73]. Thus, despite its necessity during platelet thrombus

formation, it is controversial whether platelet aIIbb3 inte-

grin is required for platelet–neutrophil interactions under

inflammatory conditions.

Junctional adhesion molecule-3 (JAM-3)

JAM-3 (also known as JAM-C) is expressed on human

platelets and ECs in the vasculature [74–76]. It was

reported that inhibition of platelet JAM-3 with blocking

antibodies impairs its binding to leukocyte aMb2 integrin

[76]. Interestingly, a combination of anti-GPIba and anti-

JAM-3 antibodies showed additive inhibitory effects on

platelet–neutrophil interactions under static conditions,

suggesting that both JAM-3 and GPIba are important for

the interaction with neutrophil aMb2 integrin. Intravascu-

lar JAM-3 also regulates leukocyte recruitment and

transmigration during inflammation, arthritis, and athero-

sclerosis [75, 77–80].

CD40 ligand (CD40L) and CD40

CD40L (also known as CD154), a transmembrane protein

of the TNF-a family, plays a critical role during inflam-

mation and thrombosis upon the interaction with CD40, a

member of the TNF receptor family [81, 82]. CD40L and

CD40 are expressed in many cell types including leuko-

cytes and ECs [83]. Because of the enrichment in platelets,

most circulating CD40L is derived from activated platelets

through shedding by an unidentified enzyme(s) [84, 85].

Since soluble CD40L is biologically active and retains the

ability to bind CD40, it has been thought to be a biomarker

for vascular diseases [86, 87]. It was reported that circu-

lating soluble CD40L mediates neutrophil–platelet

interactions in acute coronary syndrome [88]. Consistently,

studies using blocking antibodies and CD40L-deficient

mice revealed that the interaction of soluble CD40L with

platelet and neutrophil CD40 enhances the expression of

P-selectin and aMb2 integrin [89–91] and mediates plate-

let–neutrophil aggregation. Further, the interaction

between platelet CD40L and neutrophil CD40 enhances

ROS generation and thus aggravates oxidative stress [92].

Previous studies demonstrated that platelet CD40L also

binds to EC CD40, thereby up-regulating the expression of

E-selectin, VCAM-1, and ICAM-1 and inducing the

secretion of chemokines such as interleukin-8 [81]. Thus,

the CD40L–CD40 interactions increase the surface

expression of P-selectin and aMb2 integrin via granular

secretion, thereby regulating platelet–neutrophil associa-

tion during thromboinflammatory disease.

Toll-like receptors (TLRs)

Toll-like receptors are a family of innate immune system

receptors that mediate the host response to infection [93].

Among many isoforms, previous studies using a TLR4

receptor antagonist and blocking antibodies suggested that

platelet TLR4 is required for LPS-induced platelet–neu-

trophil interactions and that this interaction enhances

neutrophil activation and NET formation, thereby trapping

bacteria in the vasculature [94].

Consistently, other studies showed that Shiga toxin and

LPS induce tissue factor expression and platelet–leukocyte

aggregation in hemolytic uremic syndrome [95]. LPS–

TLR4 binding causes the release of sCD40L from platelets

[96, 97], which is inhibited by blocking anti-TLR4 anti-

bodies [97]. However, earlier studies by Montrucchio and

colleagues [98] suggested that LPS directly binds to leu-

kocytes but not platelets and that LPS-induced platelet–

leukocyte interactions are mediated by leukocyte

activation.

It was also reported that platelet TLR2 is important for

platelet–neutrophil aggregation in response to gram-nega-

tive bacteria and periodontitis [99, 100]. Recent studies

suggested that injection of a TLR7 agonist into mice results

in platelet–neutrophil aggregation through activation of

platelet TLR7 [101]. In neutrophils, most TLRs except

TLR3 are expressed [102]. Similar to platelet TLRs, neu-

trophil TLR isoforms recognize numerous microbial

molecules including LPS (for TLR4) or peptidoglycans (for

TLR2), thereby enhancing the production of ROS, cyto-

kines, and chemokines [103]. Although each platelet and

neutrophil TLR isoform may play a distinct role during
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inflammatory diseases, the detailed mechanisms of TLR

signaling in inducing platelet–neutrophil interactions

remains to be determined.

aLb2 integrin

aLb2 integrin is a key receptor for neutrophil adhesion to

and emigration across activated ECs during inflammation

[63, 104]. In vitro studies using blocking antibodies

showed that binding of neutrophil aLb2 integrin to platelet

ICAM-2 regulates neutrophil-platelet attachment under

flow conditions [105]. Nevertheless, the importance of

aLb2-ICAM-2 binding for platelet–neutrophil interactions

has not yet been determined in vivo.

CD24

CD24 is a mucin-type glycosylphosphatidylinositol-linked

protein expressed on the surface of neutrophils and tumor

cells [106, 107]. While one study showed that neutrophil

CD24 is not essential for the initial binding to P-selectin

[108], other studies implicated that neutrophil and tumor

cell CD24 bind to platelet or EC P-selectin in a manner

dependent on divalent cations and that CD24-P-selectin

binding may cause platelet–neutrophil interactions under

disease conditions such as inflammation and cancer

metastasis [106].

Molecules regulating the function of surface receptors

required for platelet–neutrophil interactions

Following vascular injury, platelets and neutrophils are

activated by soluble agonists and adhesive proteins via

their surface receptors (Figs. 2, 3) [102, 109]. Ligand–

receptor interactions stimulate diverse signaling pathways

such as activation of G-proteins, phospholipase C, protein

and lipid kinases, Ca2? mobilization, and cytoskeletal

rearrangement. Importantly, those signaling molecules

regulate the function of surface receptors, thereby affecting

platelet–neutrophil interactions. Thus, understanding how

intracellular signaling modulates platelet–neutrophil inter-

actions will help identify novel therapeutic targets to

prevent and treat vascular occlusion in thromboinflamma-

tory disease.

Src family kinases (SFKs)

It is known that there are 7–8 members of SFKs in human

platelets and neutrophils [110, 111]. Inhibition of SFKs

with PP2, a broad-spectrum SFK inhibitor, partially

impaired thrombin-mediated P-selectin exposure and

aIIbb3 integrin activation [112]. Further, studies with SFK

inhibitors and isoform-specific KO mice suggested that

SFKs such as Lyn and Fyn affect vWF-GPIba binding and

thus regulate platelet activation including Ca2? mobiliza-

tion and cytoskeletal reorganization [113–115]. SFKs are

also activated by the initial platelet–neutrophil attachment,

and activated SFKs stabilize the cell–cell interaction [116,

117]. Studies with mice lacking double (Hck and Fgr) or

triple (Hck, Fgr, and Lyn) SFKs suggested that the SFK-

Pyk2 signaling axis modulates aMb2 integrin function and

thus is important for neutrophil accumulation to adherent

platelets in vitro and in vivo [118]. More recent studies

demonstrated that mice deficient in Hck, Fgr, and Lyn

show remarkable defects in neutrophil recruitment as

shown in b2 integrin-null mice, suggesting the critical role

of the three SFKs in neutrophil adhesive function [119].

Inhibition of SFKs with PP1 impaired aMb2 integrin

clustering and cytoskeletal reorganization in neutrophils

[116]. Further, P-selectin-mediated crosslinking of PSGL-1

results in aMb2 integrin activation in a SFKs-dependent

manner [117]. Interestingly, it was reported that the plasma

levels of soluble P-selectin increases in patients with

arterial occlusive disease [120], which would enhance

platelet–neutrophil aggregation during vascular disease.

Although SFKs play important roles in regulating the

function of platelet and neutrophil surface receptors, most

studies have been carried out using non-specific inhibitors.

Therefore, studies using isoform-specific and multiple KO

mice are required to determine the distinct and redundant

role of each isoform in platelet–neutrophil interactions.

Phospholipase (PLC)

Phospholipase hydrolyzes membrane PIP2 into IP3 and

diacylglycerol, thereby increasing the cytosolic Ca2? level

and activating PKC, respectively [121]. Among PLC iso-

forms that are activated by an agonist, PLCb2/3 and PLCc2

are the major isoforms and are activated by Gqa/Gibc- and

immunoreceptor tyrosine-based activation motif (ITAM)-

regulated signaling pathways, respectively, which have

been described extensively in other reviews [122, 123]. In

platelets, binding of thrombin and TXA2 to their receptors

activates PLCb2 through Gqa, whereas the collagen–GPVI

interaction stimulates PLCc2 through scaffold proteins and

numerous tyrosine kinases [122]. Due to the effect on

cytosolic Ca2? levels, PLC is critical for regulating the

early events of platelet activation. Previous studies sug-

gested that PLCb-regulated AKT activity may mediate

P-selectin exposure on thrombin-stimulated platelets [124]

and that PLCc2 activation through GPVI signaling is crit-

ical for the increase in cytosolic Ca2? and aIIbb3 integrin

activation [125, 126]. Furthermore, studies using PLCc2

KO mice showed the important role of PLCc2 in increasing

cytosolic Ca2? through the vWF-GPIb/IX/V interaction

Platelet–neutrophil interactions during vascular occlusion
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[114]. In neutrophils, binding of an agonist, such as fMLF,

to the receptor mediates PLCb2/3 activation through Gibc

[123]. Previous studies demonstrated that deletion of

PLCb2 and/or PLCb3 abrogates IP3 production, increase in

cytosolic Ca2?, PKC activation, aMb2 up-regulation, and

ROS generation following fMLF stimulation [127, 128].

Although the importance of PLC for platelet and neutrophil

activation has been clearly reported, it remains unclear how

each PLC isoform regulates platelet–neutrophil interactions

during thromboinflammatory disease.

Phosphatidylinositol 3-kinase (PI3K)-AKT

Phosphatidylinositol 3-kinase phosphorylates PI on the

third carbon and is composed of three different classes,

class I-III, based on the structure, lipid substrate speci-

ficity, and regulation [129, 130]. PI-3,4,5-trisphosphate

(PIP3) is one of the PI3K products which is required for the

membrane association and activation of AKT and PLCc2

[131, 132]. Phosphatase and tensin homolog (PTEN) and

SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)

regulate the levels of PI3K products [133–135]. Previous

studies with PI3K inhibitors revealed that PI3K does not

affect P-selectin exocytosis and the kinetics of actin

assembly during platelet activation [136–138]. However,

PI3K p85a-null platelets showed a defect in P-selectin

exposure induced by GPVI- but not Gq- and Gi-mediated

signaling [139]. Other studies revealed that PI3K plays an

important role in vWF-GPIba binding, intracellular Ca2?

mobilization, and platelet activation under shear but not

static conditions [140], suggesting the important role of

PI3K under in vivo pathological conditions. Studies with a

cell membrane-permeable, dominant-negative form of the

class IA PI3K p85a suggested that PI3K regulates aMb2-

mediated neutrophil adhesion and NADPH oxidase 2

(NOX2) activity [141]. Consistently, inhibition of PI3K

with LY294002 significantly impairs neutrophil

ROS generation and fMLF-induced neutrophil–platelet
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Fig. 2 Receptor-mediated signaling pathways in neutrophils. Under

inflammatory conditions, neutrophils can be activated by initial

rolling on activated endothelium and by soluble ligands such as TNF-

a. TNFR signaling stimulates NF-jB-mediated gene transcription,

regulating the expression of numerous pro-inflammatory proteins.

GPCR stimulation leads to inhibition of adenylyl cyclase (AC)

through Gai and activation of PI3K and PLCb through Gbci. Rac1/2

activity and activated Akt and PKC phosphorylate p47phox, inducing

ROS generation through the NOX2 complex. PLCb hydrolyzes PIP2

to form IP3 and DAG which in turn mediates calcium release from the

ER and DAG-sensitive PKC activation, respectively. Depletion of ER

calcium induces STIM1 clustering at the ER-PM junction, interacting

with ORAI1, and allowing calcium influx. FccR signaling leads to

ITAM- and Syk-mediated PLCc2 activation that induces similar

downstream effects to those seen from GPCRs. TLR activation leads

to NF-jB activation, as seen in TNFR activation. The signaling

pathways of GPCRs, FccR, and TLR enhance MAPK activity and

cytosolic calcium levels. During cell activation, exocytosis-mediated

granular secretion also induces the membrane translocation of aMb2

integrin. Neutrophil activation further release histones and form

neutrophil extracellular traps (NETs). In addition to DNA and

histones, NETs form a scaffold for proteases and trap circulating

bacteria and platelets
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interactions [92]. It was reported that PSGL-1-mediated

neutrophil rolling over E-selectin activates the spleen

tyrosine kinase (Syk), and Syk-mediated integrin function

in part requires the PI3Kc-AKT signaling [142]. Further

studies are required to determine the role of each PI3K

isoform in regulating P-selectin exposure and aMb2

integrin function.

AKT is a well-known downstream molecule of PI3K.

Each AKT isoform, AKT1-3, plays an overlapping and

distinct role during platelet activation [143–145]. Platelet

AKT1 regulates thrombin-induced P-selectin exposure and

intracellular Ca2? release, thereby affecting aIIbb3 inte-

grin activation [8, 143]. Similarly, platelet AKT2 and 3 are

important for P-selectin exposure and aIIbb3 integrin

activation induced by low concentrations of thrombin or

U46619 [8, 144, 145]. It is of interest to note that platelet

AKT isoforms, but not PI3K, regulate P-selectin exposure

following thrombin stimulation [8, 136, 138, 143, 144],

suggesting that platelet a-granule secretion is differentially

regulated by PI3K and AKT. Unlike platelets, neutrophils

express only AKT1 and 2, and previous studies showed

that AKT2 modulates NOX2 activity and ROS generation

during neutrophil activation [146]. PI3K-AKT signaling

also mediates P-selectin exposure induced by stimulation

of platelet TLR2, thereby affecting platelet–neutrophil

interactions [99]. Importantly, our recent studies using Akt

isoform-specific KO mice and their bone marrow chimera

demonstrated that neutrophil AKT2 plays a critical role in

intracellular Ca2? release and the membrane translocation

and activation of aMb2 integrin, thereby controlling neu-

trophil–platelet interactions during vascular inflammation

[8]. These results indicate that platelet and neutrophil AKT

are critical for regulating platelet–neutrophil interactions

during vascular disease.

Fig. 3 Receptor-mediated signaling pathways in platelets. Numerous

agonists stimulate platelets through their receptors. Gqa is able to

stimulate both Lyn and PLCb. Lyn then phosphorylates PI3K, leading

to PIP3 generation and AKT phosphorylation. Activated AKT

stimulates NOS-PKG-MAPK signaling. PLCb activation allows for

generation of DAG and IP3 from PIP2. IP3 then binds to the IP3R on

the dense tubular system, inducing calcium release into the cytosol.

Both DAG and calcium can activate PKC, leading to aIIbb3 integrin

activation. Increases in cytosolic calcium also lead to integrin

activation through activation of CalDAG-GEF1. Other GPCRs on

the platelet membrane are the P2Y receptors for ADP, the 5-HT

receptor for serotonin, and the thromboxane receptor for TXA2.

Stimulation of these receptors also induces platelet aggregation

through their corresponding G-proteins. Platelet ITAMs, such as

FccR and GPVI, signal through Syk-SLP-76-ADAP and Lyn/Fyn,

respectively. Both of these receptors lead to activation of PLCc2, thus

generating IP3 and DAG and inducing platelet aggregation and

granule secretion as described above
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Protein kinase C (PKC)

The PKC family is composed of three subfamilies based on

the requirement for second messengers (Ca2?, diacylglyc-

erol, and phospholipids) [147]. A broad-spectrum PKC

inhibitor, Ro-31-8220 partially inhibited P-selectin expo-

sure and aIIbb3 integrin activation in AYPGKF-stimulated

P2Y12-deficient platelets [112]. Studies using isoform-spe-

cific PKC inhibitors suggested that some of the novel and

atypical PKC isoforms regulate P-selectin exposure on

thrombin-activated platelets and platelet–neutrophil inter-

actions [138]. Atypical PKCf colocalizes with aMb2

integrin in neutrophils and mediates soluble CD40L-

induced activation and clustering of the integrin and neu-

trophil–platelet interactions [90]. Interestingly, PKCd

deletion differentially regulates P-selectin exposure;

decreased through PAR4 signaling but increased via GPVI

signaling [148]. Moreover, inhibition of PKCd with a

dominant-negative TAT peptide blocks ERK recruitment

to p47phox and delays the initiation of TNF-a-induced O2
�-

generation through NOX2 in neutrophils [149]. Since PKC

isoforms play a distinct role in regulating platelet and

neutrophil functions, future studies using isoform-specific

and multiple KO mice are required to determine how each

isoform regulates neutrophil–platelet interactions.

Mitogen-activated protein kinases (MAPKs)

Activated MAPKs are crucial for regulating thromboxane

A2 production, granule secretion, and aIIbb3 integrin acti-

vation [109]. It was reported that p38 MAPK is not

important for Ca2? mobilization, P-selectin exposure and

aIIbb3 integrin activation in response to thrombin [150]. In

contrast, recent studies showed that inhibition of extracel-

lular signal-regulated kinases (ERK) and p38 MAPK

significantly impairs P-selectin exposure and aIIbb3 integrin

activation in histone-stimulated platelets [151]. Treatment of

neutrophils with platelet-activating factor (PAF) up-regu-

lates aMb2 integrin expression and stimulates b2 integrin-

dependent adhesion through ERK, but not PI3K [152].

Phosphodiesterase 4 (PDE4)

Recent studies using isoform-specific inhibitors suggested

that PDE4, but not PDE3 or PDE5, is important for

P-selectin-mediated aMb2 integrin activation, thereby

inducing the formation of platelet–neutrophil aggregates

in vitro and in vivo [153].

Nuclear factor-jB (NF-jB) signaling

Activation of NF-jB is mediated by the signal-induced

phosphorylation and degradation of IjB and regulates

transcription of many genes involved in inflammation,

immunity, cell proliferation, and survival [154]. It was

reported that IjBa is phosphorylated and degraded in

thrombin-activated platelets and that IjB kinase inhibitors

impair P-selectin exposure, aIIbb3 integrin activation,

and ERK phosphorylation in activated platelets [151, 155,

156]. Recent studies suggested that treatment of platelets

with TLR2 and 4 agonists triggers P-selectin exposure

through NF-jB signaling [157]. Moreover, the interaction

of platelets with hepatic ECs induces activation of NF-jB

signaling and promotes adhesion of neutrophils and

lymphocytes to P-selectin on both platelets and ECs

[158]. Previous studies implicated that inhibition and

knockdown of the NF-kB subunits suppress the surface

expression of aMb2 integrin in PMA-stimulated neutro-

phil-like HL60 cells [159]. Thus, gene regulation through

NF-jB signaling plays a crucial role in modulating

platelet–neutrophil interactions under inflammatory

conditions.

Small GTPases

Small GTPases are important signaling mediators

involved in numerous cellular functions [160]. Among

several family members, Rho family GTPases including

Rac1, Cdc42, and RhoA are the best studied and have

been shown to control cytoskeletal rearrangement [161].

Since GTPases are activated and inactivated by binding of

GTP and GDP, respectively, they are regulated by

GTPase activating proteins (GAPs) and guanine nucleo-

tide exchange factors (GEFs) [162]. It is known that

Cdc42 and Rac control the formation of finger-like fi-

lopodial protrusions and lamellipodia, respectively,

whereas RhoA mediates actin stress fiber formation. In

platelets, studies using mice lacking Rac1, Cdc42, or both

demonstrated the importance of each GTPase for throm-

bopoiesis, P-selectin exposure, and aIIbb3 activation

following agonist stimulation [163–165]. Further, Cdc42-

null platelets showed defects in platelet GPIb signaling

[166, 167]. Deletion of another small GTPase, Rap1b

impairs P-selectin exposure on activated platelets [168].

In neutrophils, engagement of PSGL-1 activates Ras

activity [169], which may regulate b2 integrin activation.

Rap1 is activated by cytosolic Ca2? and diacylglycerol

through PLC activation [170] and controls aMb2 integrin

activation induced by LPS and TNF-a [171]. Studies

using Cdc42-null mice suggested that aMb2 clustering is

regulated by Cdc42 during neutrophil migration [172].

Rac1/2, components of the NADPH oxidase 2 complex,

regulate ROS generation [173]. Further studies are

required to determine the role of each small GTPase and

its GAP/GEF in regulating platelet–neutrophil interac-

tions during vascular disease.
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Reactive oxygen species (ROS)

Reactive oxygen species are signaling molecules which

play important roles during vascular disease and homeo-

stasis [174]. ROS are produced under hypoxic

inflammatory conditions [175]. Both ROS and hypoxia can

transcriptionally and non-transcriptionally regulate

hypoxia-induced factor-1a/2a (HIF-1a/2a) and NF-jB in

intravascular cells [176–178], thereby resulting in the

expression of vasoactive substances and pro-inflammatory

molecules. Previous studies demonstrated that hypoxia

significantly induces the gene expression of b2 integrins in

leukocytes in a manner dependent on HIF-1 [179]. Bio-

chemical studies with HIF-1-deficient myeloid cells

revealed that hypoxia-induced HIF-1a regulates neutrophil

survival through NF-jB activity [180]. Conversely, NF-jB

also regulates the gene transcription of HIF-1a [181],

suggesting the intimate link between the two signaling

pathways during hypoxia–ischemia and inflammation.

The major source of ROS is membrane NADPH oxi-

dases (NOXs). Combination studies with a NOX1 inhibitor

and NOX2 KO mice implicated that platelet-derived ROS

do not regulate P-selectin exposure on collagen-related

peptide-activated platelets [182]. Interestingly, it was

reported that incubation of platelets with H2O2

([50–100 lM for 1 h) induces shedding of GPIba by

activating TNF-a-converting enzyme (TACE) [183].

Although this in vitro study provides evidence that oxida-

tive stress may attenuate the thrombotic function of

platelets and inhibit platelet–neutrophil interactions, it is

unclear how much ROS, such as H2O2, would be produced

at the site of vascular injury. Platelets from patients with

chronic granulomatous disease (X-CGD) that is genetically

deficient in NOX2 (gp91phox), showed defects in CD40L

expression induced by various agonists [184]. Compared

with platelets [182, 185], neutrophils produce larger

amounts of extracellular ROS via NOX2 during cell acti-

vation [186]. Studies using neutrophils of X-CGD patients

and NOX2 KO mice demonstrated that neutrophil NOX2-

generated ROS are crucial for killing microbial pathogens

[187, 188] and function as signaling molecules that regu-

late the activity of kinases and phosphatases [189]. Despite

the importance of NOXs-generated ROS for thromboin-

flammation including ischemic stroke [190, 191], it

remains poorly understood how ROS mechanistically

contribute to the pathogenesis.

Pathological role of platelet–neutrophil interactions

under thromboinflammatory conditions

Thromboinflammation is pathological conditions under

which thrombotic and immune responses occur together.

Previous studies suggested that platelets, leukocytes, and

coagulation factors should all be considered to prevent and

treat thromboinflammatory diseases [29, 30, 32–34, 192].

Because of the involvement of leukocytes, extracellular

ROS produced from activated neutrophils would be a

critical factor distinguishing thromboinflammation from

arterial thrombosis that results from platelet aggregation

[27]. We will briefly summarize how platelet–neutrophil

interactions influence thromboinflammatory conditions,

focusing on vascular occlusion during ischemic stroke and

sickle cell disease (SCD).

Ischemic stroke

Ischemic stroke occurs when an artery to the brain becomes

too narrow or is occluded. If fresh blood is not provided to

the brain cells for more than a few minutes, ischemic

responses are initiated, resulting in necrosis of the cells.

The damaged brain tissue rapidly releases a large amount

of ROS and proinflammatory mediators including IL-1b

and MCP-1 [193]. The cytokines and chemokines trigger

the expression of adhesion molecules on cerebral ECs and

thus promote adhesion and transendothelial migration of

leukocytes [194]. During ischemic stroke, the transmi-

grated leukocytes also generate an excessive amount of

ROS, thereby augmenting the activation and damage of

resident cells and amplifying the inflammatory condition

[193, 195]. Following ischemic events, changes in micro-

RNA levels in circulating leukocytes may contribute to

increased leukocyte activation and thrombus formation

[196]. Kleinschnitz and colleagues [29] reported that

inhibition of aIIbb3 integrin has no inhibitory effect on the

size of ischemic stroke, but causes intracerebral hemor-

rhage in the mouse model of transient middle cerebral

artery occlusion. Moreover, clinical studies showed that

antagonists of aIIbb3 integrin, abciximab and tirofiban,

result in fatal intracerebral hemorrhage in patients with

ischemic stroke [30, 197]. Instead, ischemic stroke is ini-

tiated by platelet GPIb–IX–V complex and GPVI, causing

the interaction between platelets and vessel walls and

allowing for further neutrophil recruitment. Binding of

platelet GPIba to vWF on activated/damaged ECs mediates

platelet tethering on the vessel wall, and subsequent

interaction between GPVI and collagen induces robust

platelet activation and platelet thrombus formation [198].

Further, P-selectin expressed on activated platelets and ECs

is able to bind to PSGL-1 on neutrophils, leading to neu-

trophil–platelet–ECs interactions and occluding the

microvasculature [199]. We and others found that integrilin

potentiates neutrophil-platelet aggregation under in vitro

shear conditions [8, 52, 73]. Instead, inhibition of GPIba

with Fab fragments of a blocking anti-GPIba antibody was

a favorable approach to treat ischemic events in a mouse
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model [29], implicating that the interaction of GPIba with

vWF and/or aMb2 integrin is crucial for cerebral ischemia/

reperfusion injury [8, 200]. Thus, these results indicate that

ischemic stroke is not simply mediated by platelet aggre-

gation but by other intravascular cells including

neutrophils. Nevertheless, it still remains unclear whether

the direct interaction between platelets and neutrophils is

critical for the pathogenesis of ischemic stroke. Previous

studies showed that platelets also indirectly induce neu-

trophil recruitment into the ischemic region and thus

promote inflammatory conditions. Using IL-1a/b KO mice

and isoform-specific antibodies, the authors found that

platelets activate brain ECs through secreted IL-1a and

enhance ICAM-1 and VCAM-1 expression and CXCL1

release, thereby inducing neutrophil transendothelial

migration during ischemic stroke [22]. Further, other

studies using NOX inhibitors and KO mice suggested that

NOX2-derived ROS are likely to be critical for mediating

ischemic stroke [201, 202], and that hematopoietic cell

NOX2 contributes more to the pathogenesis of stroke than

brain and EC NOX2 [203]. In addition, the importance of

NOX4 during oxidative stress induced by ischemic stroke

has been reported [204]. Nonetheless, the regulatory

mechanisms of oxidative stress in ischemic stroke remain

to be determined.

Sickle cell disease (SCD)

Sickle cell disease, an inherited hematological disorder,

results from the Glu 6 Val mutation in the b-globin chain

[205]. When sickle hemoglobin (HbS) is deoxygenated, it

aggregates into large polymers. The polymerized HbS

causes a distortion of the shape of red blood cells (RBCs)

and a remarkable decrease in its deformability. The sickle-

shaped red cells become rigid and stick to the vessel wall.

Inflammation is induced by the exposure of negatively

charged phospholipids, such as phosphatidylserine, on the

abnormal erythrocytes and the presence of chronic hemo-

lysis [206]. Studies using SCD patients and mouse models

demonstrated that recurrent vaso-occlusive events are the

hallmark of the disease and induced by intravascular cell–

cell aggregates [206]. Such vaso-occlusion is the main

cause of pain crises and acute chest syndrome, which

increase the morbidity and mortality in SCD patients [207].

Since hydroxyurea, the only drug approved by the Food

and Drug Administration, minimally alleviates vaso-

occlusion, novel therapies are required for SCD patients.

Hypoxia/reoxygenation in SCD mice increases platelet–

neutrophil interactions in a manner dependent on P-selectin

[208]. Studies from Paul Frenette’s group have demon-

strated that targeting selectins, PDE9, and NETs have

benefits on vaso-occlusive events in a mouse model of

SCD [209–211]. Indeed, rivipansel (GMI-1070, a pan

selectin inhibitor) significantly decreased levels of bio-

markers of endothelial and leukocyte activation and

reduced vaso-occlusive events in clinical trials [212, 213].

Nevertheless, selectin inhibitors would block neutrophil

rolling over and adhesion to the inflamed endothelium and

thus may impair innate immune responses against bacterial

pathogens. Since NETs induced by PAD4-citrullinated

histones have been recognized as a critical component for

venous and arterial thrombosis through the activation of the

coagulation cascade and platelet adhesion [214–216],

inhibition of NET formation may be beneficial for the

intervention of vaso-occlusive events in SCD. Other stud-

ies showed that inhibition of histone deacetylase and

induction of heme oxygenase-1 reduce vaso-occlusive

events in sickle mice [217–219]. Recently, we have dem-

onstrated that AKT2 is a critical regulator for the

heterotypic cell–cell interaction and thus could be a

potential target for vaso-occlusive events in SCD [8].

Using real-time intravital microscopy in SCD mice, infu-

sion of a selective AKT2 inhibitor resulted in a significant

reduction in cell–cell aggregation and improvement of

blood flow rates. Importantly, we found that in addition to

neutrophil–EC interactions, neutrophil–platelet interactions

slow down blood flow rates and induce microvascular

occlusion [8]. Further studies are necessary to determine

which therapies would efficiently prevent vaso-occlusive

events potentially in combination with hydroxyurea.

Concluding remarks

The pathological role of platelet–neutrophil association

during vascular disease has long been speculated to be

important. Recent in vivo intravital microscopic studies

have shown that the interaction between activated neutro-

phils and platelets is tightly regulated and induces

microvascular occlusion during thromboinflammatory dis-

ease. Because of the multiple signaling pathways

regulating the receptor-counter receptor interaction, the

detailed mechanism of the heterotypic cell–cell interaction

still remains elusive. Recent results raise the following

questions. How would intracellular signaling molecules

sequentially and differentially regulate the function of

platelet and neutrophil receptors during vascular disease?

In addition to the intracellular signaling pathways, are any

extracellular molecules required for the ligand-binding

function of surface receptors under oxidative stress? Does

ROS-mediated oxidative stress affect platelet–neutrophil

interactions during thromboinflammation? How are the

processes linking thrombosis and inflammation initiated?

To answer these questions, specific inhibitors and KO mice

are required to investigate the role of signaling molecules

including protein kinases during thromboinflammation.
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Importantly, due to the difficulties of mimicking oxidative

stress conditions in vitro, real-time intravital microscopy

will be a powerful technique to visualize platelet–neutro-

phil–EC interactions in microvessels of live animals. A

better understanding of the mechanisms mediating the

heterotypic platelet–neutrophil interactions could lead to

the identification of novel therapeutic targets for the pre-

vention and treatment of thromboinflammatory diseases.
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