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Abstract 1 

Platelet production, maintenance, and clearance are tightly controlled processes 2 

indicative of platelets’ important roles in hemostasis and thrombosis. Platelets are common 3 

targets for primary and secondary prevention of several conditions. They are monitored clinically 4 

by complete blood counts, specifically with measurements of platelet count (PLT) and mean 5 

platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic 6 

insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell 7 

Consortium (BCX) to perform a large-scale meta-analysis of exome chip association results for 8 

PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare 9 

coding variant enriched exome chip platform, we sought to identify genetic variants associated 10 

with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, 11 

we identified 32 PLT and 18 MPV associations not previously observed in the literature across 12 

the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, 13 

MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several 14 

variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet 15 

reactivity. In concurrent BCX analyses, there was overlap of platelet associated variants with red 16 

(MAP1A, TMPRSS6, ZMIZ2) and white blood cell (PEAR1, ZMIZ2, LY75) traits, suggesting 17 

common regulatory pathways with shared genetic architecture among these hematopoietic 18 

lineages. Our large-scale exome chip effort successfully identified numerous previously 19 

undocumented associations with platelet traits and further indicates that several complex 20 

quantitative hematological, lipid, and cardiovascular traits share genetic factors.  21 

Abstract Word Count: 243 22 

 23 
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Introduction 1 

 The number and size of circulating blood cells are determined by multiple genetic and 2 

environmental factors, and abnormal values are a common manifestation of human disease. The 3 

three major cell types—red blood cells (RBCs), white blood cells (WBCs), and platelets—have 4 

distinct biological roles, with platelets serving as important mediators of hemostasis and wound 5 

healing. Platelet count (PLT) and mean platelet volume (MPV), a measure of platelet size, are 6 

clinical blood tests that are used to screen for and diagnose disease. A number of well-described 7 

rare genetic disorders, including Bernard-Soulier Syndrome (MIM: 231200), Glanzmann’s 8 

Thrombasthenia (MIM: 273800), and Wiskott-Aldrich Syndrome (MIM: 301000), as well as 9 

common conditions such as acute infection are characterized by abnormalities in the number, 10 

size, and/or reactivity of circulating blood platelets. MPV has also been reported to be an 11 

independent risk factor for myocardial infarction (MI) in population-based studies
1
. Accordingly, 12 

anti-platelet medications including aspirin and ADP/P2Y12 receptor blockers such as clopidogrel 13 

and GIIb/IIIa inhibitors that reduce platelet reactivity are commonly used in the primary and 14 

secondary prevention of several cardiovascular conditions, including stroke and MI
2, 3

. 15 

Investigating the biological mechanisms that govern platelet number (PLT) and size (MPV) can 16 

provide insights into platelet development and clearance, and has the potential to enhance our 17 

understanding of human diseases.  18 

  Genome-wide association studies (GWAS) have successfully identified numerous loci 19 

where variants are associated with PLT and MPV
4-13

. To date, the largest GWAS of PLT 20 

(n=66,867) and MPV (n=30,194) identified 68 distinct loci
8
. Subsequent functional experiments 21 

of several identified genes, including ARHGEF3 (MIM: 612115), DNM3 (MIM: 611445), 22 

JMJD1C (MIM: 604503), and TPM1 (MIM: 191010), demonstrated their roles in hematopoiesis 23 
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and megakaryopoesis
8, 14

, as well as the potential of human genetic association methods to 1 

identify genetic factors that functionally contribute to platelet biology and dysfunction in disease.  2 

Despite these successes, much of the heritability of these traits remains unexplained
15

. 3 

GWAS of PLT and MPV have largely focused on more common (minor allele frequency [MAF] 4 

> 0.05) genetic variation, with many of the associated markers located in intronic or intergenic 5 

regions. The examination of rare (MAF < 0.01) and low-frequency (MAF: 0.01-0.05) variants, 6 

particularly those in protein coding regions, has the potential to identify previously unidentified 7 

causal variants. Indeed, recent studies reaching sample sizes of 31,340 individuals have 8 

identified rare to low-frequency coding variants associated with PLT in MPL (MIM: 159530), 9 

CD36 (MIM: 173510), and JAK2 (MIM: 147796), among others
16, 17

. Studies with larger sample 10 

size are needed to further characterize the contribution of rare and low-frequency genetic 11 

variation to PLT and MPV.  12 

To conduct such a study of platelet related traits, we formed the Blood Cell Consortium 13 

(BCX) to perform a large scale meta-analysis of exome chip association results of blood cell 14 

traits. In this report, we describe results from a meta-analysis of exome chip association data in 15 

157,293 and 57,617 participants for PLT and MPV, respectively. The exome chip is a 16 

customized genotyping platform enriched for rare to low-frequency coding variants, as well as 17 

common variants previously identified in GWAS of complex disorders and traits. With increased 18 

sample size and use of the exome chip array, our goal was to identify rare, low-frequency, and 19 

common variants associated with PLT and MPV. 20 

 21 

 22 

 23 
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Materials and Methods 1 

Study participants 2 

The Blood Cell Consortium (BCX) was formed to identify genetic variants associated 3 

with blood cell traits using the exome chip platform. As the BCX is interested in the genetics of 4 

common hematological measures, our collaborative group is divided into three main working 5 

groups: RBC, WBC, and platelet
18, 19

. For the platelet working group, our sample is comprised of 6 

157,293 participants from 26 discovery and replication cohorts of five ancestries: European 7 

(EA), African-American (AA), Hispanic, East Asian, and South Asian. Detailed descriptions of 8 

the participating cohorts are provided in the Tables S1-S4. All participants provided informed 9 

consent, and all protocols were approved by the participating studies’ respective institutional 10 

review boards. In the platelet working group, we analyzed two traits: PLT (x10
9
/L of whole 11 

blood) and MPV (fL) (Table S3).  12 

Genotyping and Quality Control  13 

Each participating study used one of the following exome chip genotyping arrays: 14 

Illumina ExomeChip v1.0, Illumina ExomeChip v1.1_A, Illumina ExomeChip-12 v1.1, Illumina 15 

ExomeChip-12 v1.2, Affymetrix Axiom Biobank Plus GSKBB1, or Illumina 16 

HumanOmniExpressExome Chip (Table S2). Genotypes were called either 1) using a 17 

combination of the Illumina GenomeStudio and zCall software or 2) the exome chip joint calling 18 

plan developed by the Cohorts for Heart and Aging Research in Genomic Epidemiology 19 

(CHARGE) Consortium (Table S2)
20

. Standard quality control criteria were applied by each 20 

study. Exclusion criteria included: 1) sample call rates, 2) excess heterozygosity rate, 3) Hardy-21 

Weinberg equilibrium p-values < 1x10
-6

, and 4) sex mismatch. Additionally, ancestry was 22 

confirmed through principal components or multi-dimensional scaling analyses using linkage 23 
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disequilibrium (LD) pruned markers (r
2
 < 0.2) with MAF > 1%. Scatter plots anchored using the 1 

1000 Genomes Project populations were visually inspected, and ancestry outliers excluded. We 2 

only included autosomal and X chromosome variants. All remaining variants (including 3 

monomorphic variants) were aligned to the forward strand and alleles checked to ensure that the 4 

correct reference allele was specified. We performed study specific level quality control on each 5 

trait association results using EasyQC
21

. We plotted variant allele frequencies from each study 6 

against ethnicity specific reference population allele frequencies to identify allele frequency 7 

deviations and presence of flipped alleles. Following all quality control procedures, each study 8 

generated an indexed variant call file (VCF) for subsequent analyses that was checked for allele 9 

alignment using the checkVCF package.  10 

Association analysis 11 

To assess the association between the blood cell traits and exome chip variants in the 12 

BCX, we considered blood cell traits measured in standard peripheral complete blood counts. 13 

When possible, we excluded individuals with blood cancer, leukemia, lymphoma, bone marrow 14 

transplant, congenital or hereditary anemia, HIV, end-stage kidney disease, dialysis, 15 

splenectomy, and cirrhosis, and those with extreme measurements of platelet traits. We also 16 

excluded individuals on erythropoietin treatment as well as those on chemotherapy. Additionally, 17 

we excluded women who were pregnant and individuals with acute medical illness at the time of 18 

complete blood count.   19 

For platelet traits, we used raw values of PLT (x10
9
/L) and MPV (fL). In each 20 

participating study, residuals for PLT and MPV were first calculated from linear regression 21 

models that adjusted for age, age
2
, sex, study center (where applicable), and principal 22 

components of genotype data. We then transformed these residuals using the rank-based inverse 23 
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normal transformation. To confirm proper implementation of this transformation in each cohort, 1 

a scatter plot of the median standard error versus study specific sample size was visually 2 

inspected for deviations using EasyQC
21

. Autosomal and X chromosome variants were then 3 

tested for association with each blood cell trait using either RvTests or 4 

RAREMETALWORKER. Within individual cohorts, we performed analyses in ancestry-5 

stratified groups: EA, AA, Hispanic, East Asian, and South Asian. Both statistical packages 6 

generate single variant association score summary statistics, variance-covariance matrices 7 

containing LD relationships between variants within a 1MB window, and variant-specific 8 

parameters including MAF, chromosome, position, strand, genotype call rate, and Hardy-9 

Weinberg equilibrium p-values.  10 

Discovery association meta-analysis  11 

We performed ancestry-stratified (EA and AA) and combined all ancestry (All) meta-12 

analyses of single variant association results using the Cochran-Mantel-Haenszel approach 13 

implemented in RareMETALS
22

. In the multi-ancestry meta-analyses (All), we combined 14 

individuals of EA, AA, Hispanic, South Asian, and East Asian ancestries. We included variants 15 

in the meta-analysis if the genotype call rate was ≥ 95%. For palindromic variants (i.e., A/T and 16 

C/G variants), we compared allele frequencies taken across the entire consortium in order to 17 

detect flipped alleles. We kept variants with an allele frequency difference < 0.30 or < 0.60 for 18 

race-specific (EA and AA) or combined all ancestry analyses, respectively
21

. Heterogeneity 19 

metrics (I
2
 and heterogeneity p-value) were calculated using METAL

23
. Using single variant 20 

score statistics and variance-covariance matrices of LD estimates, we performed two types of 21 

gene-based tests: (1) variable threshold (VT) burden test with greatest power when all rare 22 

variants in a gene are associated consistently with a trait
24

 and (2) sequence kernel association 23 
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test (SKAT)
25

 with better power than the burden approach when rare variants in a gene have 1 

heterogeneous effects. For all gene-based tests, we only considered missense, nonsense, and 2 

splice site SNVs with MAF ≤1%. Similar to the single variant meta-analyses, gene-based results 3 

were generated for each major ancestry group (EA and AA) and for the combined multi-ancestry 4 

(All) samples.  5 

Conditional analysis 6 

To identify independent signals around significant associations, we performed step-wise 7 

conditional analyses conditioning on the most significant single variant in a 1MB window in 8 

RareMETALS. This procedure was repeated until there was no new signal identified in each 9 

region, defined as a p-value that accounts for the number of markers tested in each ancestry 10 

group. For discovery and conditional single variant analyses, the threshold was: AA p<3.03x10
-7

, 11 

EA p<2.59x10
-7

, and All p<2.20x10
-7

. For gene-based tests, the significance threshold accounted 12 

for the number of genes tested: AA p<2.91x10
-6

, EA p<2.90x10
-6

, and All p<2.94x10
-6

. In 13 

regions like chromosome 12q24 with known extended LD structure spanning more than 1MB, 14 

we performed a step-wise conditional analysis in GCTA using the Montreal Heart Institute 15 

Biobank cohort to disentangle 7 independent PLT-associated SNVs (Table S9)
26

, conditioning on 16 

the most significant variant in the region.  17 

Replication meta-analysis 18 

We attempted to replicate PLT and MPV associations with independent SNVs that 19 

reached significance levels in 6 independent cohorts (Figure 1, Table S4). Single variant 20 

association results of the 6 independent cohorts were combined in RareMETALS. Contributing 21 

replication cohorts adhered to identical quality control and association analysis procedures 22 

described previously for the discovery phase. We combined results in EA (PLT n=19,939, MPV 23 
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n=15,519) and All (PLT n=35,436, MPV n=16,088) ethnicity groupings (Table S4). The results 1 

of discovery and replication phases were further combined using fixed effects inverse variance 2 

weighted meta-analysis in METAL
23

. 3 

Platelet Function Exome Chip 4 

 Two BCX cohorts, GeneSTAR and the Framingham Heart Study (FHS), measured 5 

platelet aggregation in a subset of genotyped participants. Platelet aggregation measures are 6 

described in detail elsewhere and briefly below (Table S18)
27

. Both studies isolated platelet-rich 7 

plasma from fasting blood samples and measured platelet aggregation after addition of agonists 8 

using a four-channel light transmission aggregometer (Bio/Data Corporation). FHS (Offspring 9 

Exam 5) tested aggregation for periods of 4 minutes after administration of ADP (0.05, 0.1, 0.5, 10 

1.0, 3.0, 5.0, 10.0, and 15.0 μM) and 5 minutes after administration of epinephrine (0.01, 0.03, 11 

0.05, 0.1, 0.5, 1.0, 3.0, 5.0, and 10.0 μM), as well as lag time(s) to aggregation with 190 μg/mL 12 

calf skin–derived type I collagen (Bio/Data Corporation). Threshold concentrations (EC50) were 13 

determined as the minimal concentration of agonist required to produce a >50% aggregation. The 14 

maximal aggregation response (% aggregation) was also determined for each participant at each 15 

concentration tested. GeneSTAR recorded maximal aggregation (% aggregation) for periods of 5 16 

minutes after ADP (2.0 and 10.0 μM) and 5 minutes after epinephrine administration (2.0 and 17 

10.0 μM), as well as lag time(s) to aggregation with equine tendon–derived type I collagen (1, 2, 18 

5, and 10 μg/mL). Exome chip genotyping, quality control, and association analyses adhered to 19 

methods described previously for PLT and MPV analysis. We queried independent SNVs 20 

associated with PLT (n=79) and/or MPV (n=38) in these platelet aggregation association results 21 

and report platelet aggregation associations with p<0.001. 22 

Further Variant Annotation 23 
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In addition to primary analyses completed in this investigation, we took advantage of 1 

several existing resources to annotate our associated SNVs. Associated variants were cross-2 

referenced with Combined Annotation Dependent Depletion (CADD) scores for exome chip
28

. 3 

The Global Lipids Genetics Consortium (GLGC), the CARDIoGRAM Exome Consortium, and 4 

Myocardial Infarction Genetics Consortium have each performed independent exome chip 5 

analysis of lipids traits and coronary heart disease (CHD)
29, 30

. The CHD phenotype reflected a 6 

composite endpoint that included MI, CHD, coronary artery bypass graft, and hospitalized 7 

angina, among others
29

. Similar to the platelet aggregation lookups, we queried our list of PLT 8 

and/or MPV associated SNVs against their exome chip association results for lipids and CHD. 9 

We report lipid and CHD associations with p<0.0001. From a curated collection of over 100 10 

separate expression quantitative trait loci (QTL) datasets, we conducted a more focused query of 11 

whether platelet loci were also associated with transcript expression in blood, arterial and 12 

adipose related tissues. A general overview of a subset of >50 eQTL studies has been published 13 

(Supplemental Note)
31

. Separately, we queried transcripts in loci corresponding to previously 14 

unreported associated variants and/or marginally associated variants showing further evidence of 15 

association in our replication analyses to assess their platelet expression levels using the largest 16 

platelet RNA-seq dataset to date (n=32 patients with MI)
32

. 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Results 1 

Discovery Meta-Analysis 2 

 In our discovery phase, we performed a meta-analysis of the associations of 246,925 3 

single nucleotide variants (SNVs) with PLT and MPV in 131,857 and 41,529 individuals, 4 

respectively (Figure 1, Figures S1-S2, Tables S1-S4). Following the initial meta-analyses, we ran 5 

conditional analyses to identify independent loci and found 79 independent PLT and 38 6 

independent MPV SNVs (Tables 1-2, Tables S5-S8). One association, rs12692566 in LY75-7 

CD302, with PLT in EA did not surpass the initial discovery statistical significance threshold but 8 

surpassed the threshold when conditioned on nearby rs78446341 (p=2.48x10
-7

). There were no 9 

associations unique to the AA ancestry group, which had a limited sample size (Tables S10-S11). 10 

Single variant meta-analysis results for each ancestry grouping that met our significance 11 

thresholds are available in the Supplement (Tables S10-S11). Additionally, full discovery meta-12 

analysis results are available online (Web Resources). 13 

Of these independently associated single variants, 32 PLT and 18 MPV variants were in 14 

loci not previously reported (Tables 1-2). Four of these 32 PLT loci had previously been 15 

identified as MPV loci (Table 1), while ten of the 18 MPV loci had previously been identified 16 

with PLT (Table 2)
8, 9, 17

. Of the independent loci in our study, 23 SNVs showed association with 17 

both PLT and MPV (Table 3, Figure 2). All but one (rs6136489 intergenic to SIRPA (MIM: 18 

602461) and LOC727993) had opposite directions of effect for PLT and MPV. Additionally, the 19 

observed effect sizes for PLT and MPV displayed strong negative correlations (Figure 2), 20 

indicative of the strong negative correlation between these traits. 21 

Associated variants ranged in allele frequency and included rare, low-frequency, and 22 

common SNVs. Most of the previously unreported associations were with common variants 23 
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(PLT n=25, MPV n=15), although associations with low-frequency (PLT n=6, MPV n=2) and 1 

rare (PLT n=1, MPV n=1) variants were observed. Rare (PLT n=6, MPV n=1) SNVs associated 2 

with PLT and MPV had larger effects compared to common and low-frequency SNVs (Tables 1-3 

2, Tables S5-S8). A large majority of associated SNVs did not exhibit heterogeneous effects; 4 

however, one previously unreported association with MRVI1 and a few known associated loci 5 

(e.g., MYL2/SH2B3/ATXN2, ARHGEF3, WDR66/HPD, and JAK2) did show moderate to 6 

substantial heterogeneity across discovery studies (Table S23). Gene-based tests of missense, 7 

nonsense, and splice-site rare variants that found significant results largely reflected rare and 8 

low-frequency single variant results, with variants in TUBB1 (MIM: 612901), JAK2, LY75 9 

(MIM: 604524), IQGAP2 (MIM: 605401), and FCER1A (MIM: 147140) showing associations 10 

(Tables S12-S13).  11 

Replication Meta-Analysis 12 

We attempted to replicate our associations in 6 independent cohorts (PLT n=25,436, 13 

MPV n=16,088) (Figure 1, Table S4). Of the loci not previously associated, 20/32 PLT and 14 

11/18 MPV variants showed evidence of replication with p<0.05 and the same direction of effect 15 

(Tables 1-2). In addition to the significant markers in our discovery analysis, we carried forward 16 

13 PLT and 10 MPV sub-threshold markers that approached discovery significance thresholds 17 

with p-values ranging from 2.47x10
-7

 to 1.99x10
-6

 (Tables S14-S15). Of these, 7/13 PLT and 18 

4/10 MPV showed associations in same direction of effect with p<0.05 and surpassed 19 

significance thresholds when discovery and replication results were combined (Tables S14-S15). 20 

Intersection with Other Cardiovascular and Blood Traits 21 

 As the BCX also completed analyses of RBC and WBC traits, we cross-referenced our 22 

list of PLT and MPV associated SNVs with the results of the other blood cell traits
18, 19

. Of our 23 
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replicated platelet loci previously unreported in the literature, six SNVs in TMPRSS6 (MIM: 1 

609862), MAP1A (MIM: 600178), PNPLA3 (MIM: 609567), FADS2 (MIM: 606149), 2 

TMEM50A (MIM: 605348), and ZMIZ2 (MIM: 611196) showed association with RBC-related 3 

traits (p<0.0001) (Table 4). Similarly, five replicated platelet SNVs previously unreported in the 4 

literature in PEAR1 (MIM: 610278), CD33 (MIM: 159590), SIRPA, ZMIZ2, and LY75 showed 5 

association with WBC-related traits (p<0.0001) (Table 4). To explore possible shared genetic 6 

associations of platelet size/number with platelet reactivity, we examined the association of 7 

PLT/MPV associated SNVs with platelet reactivity to collagen, epinephrine, and ADP in 8 

GeneSTAR and FHS. Eight SNVs associated with PLT and/or MPV were also associated with 9 

platelet reactivity (p<0.001) (Table 5, Tables S18-S19). The most strongly associated SNVs were 10 

located in genes implicated with platelet reactivity in prior GWAS, including PEAR1, MRVI1 11 

(MIM: 604673), JMJD1C, and PIK3CG (MIM: 601232)
27

. However, we did observe new 12 

suggestive relationships between platelet reactivity and SNVs in PTGES (MIM: 607061), 13 

LINC00523, and RASGRP4 (MIM: 607320) (Table 5). 14 

In addition to examining possibly shared genetic associations with blood cell specific 15 

traits, we queried our list of associated platelet SNVs against independent exome chip efforts in 16 

lipids and CHD by the GLGC, CARDIoGRAM Exome Consortium, and Myocardial Infarction 17 

Genetics Consortium exome chip studies
29, 30

. Numerous platelet associated SNVs (n=37), 18 

including those in GCKR (MIM: 600842), FADS1 (MIM: 606148), FADS2, MAP1A, APOH 19 

(MIM: 138700), and JMJD1C, showed association with one or more lipids traits (p<0.0001) 20 

(Table S20). Far fewer (n=4; MYL2 (MIM: 160781), SH2B3 (MIM: 605093), BRAP (MIM: 21 

604986), APOH)) showed association with CHD (p<0.0001) (Table S20).  22 

Annotation of Associated Variants 23 
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 We used various resources to annotate our platelet associated variants. First, we used 1 

CADD to predict the severity of associated variants
28

. As expected, rare and low-frequency 2 

coding SNVs were predicted to be more severe than common, non-coding variation (Tables 1-2, 3 

Tables S5-S8). To assess potential impact on gene expression, we queried our list of platelet 4 

associated SNVs against a collection of results from existing eQTL datasets
31

. Many (n=67) 5 

platelet-associated SNVs were also associated with gene expression in blood, arterial, or adipose 6 

tissues (Table S21). These included the reported trans-eQTL rs12485738 in ARHGEF3 with 7 

several platelet-related transcript targets (e.g., GP1BA, GP6, ITGA2B, MPL, TUBB1, and 8 

VWF)
33

, as well as eQTLs in newly identified PLT/MPV loci (e.g., rs1018448 with 9 

ARFGAP3/PACSIN2, rs1050331 with ZMIZ2, and rs174546 with FADS1/FADS2/TMEM258 10 

expression). Using platelet RNA-seq data from 32 subjects with MI, we found that almost all of 11 

the genes closest to our previously unreported associated SNVs or marginal SNVs with evidence 12 

of replication were expressed in platelets, indicating the feasibility of potential functional roles in 13 

the relevant target cell type (Table S22)
32

.  14 

 15 
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Discussion 1 

Here, we present a large-scale meta-analysis of exome chip association data with two 2 

clinical platelet measurements, PLT and MPV. By combining exome chip association results in 3 

157,293 and 57,617 participants, respectively, we detected numerous associations with rare, low-4 

frequency, and common variants. There was substantial overlap of our platelet associations with 5 

concurrent exome chip association findings for RBC and WBC traits, indicating shared genetic 6 

influence on regulatory and functional mechanisms among the three different blood cell 7 

lineages
18, 19

. More surprisingly, we observed shared associations of platelet and lipids loci. The 8 

identification of shared blood cell and lipids associations as well as identifying genes with 9 

entirely new associations reveal candidates for further examination in order to further elucidate 10 

the mechanisms underlying platelet development and function. 11 

Using Exome Chip to Identify Previously Unreported Genetic Associations 12 

Using the exome chip which has an emphasis on rarer and coding variation, we found 13 

associations of variants that ranged from common to rare in allele frequency. We attempted to 14 

replicate independent associations, although our replication cohorts were underpowered to 15 

associations of rare variants. To inform our replication criteria, we conducted a power analysis 16 

using a sample size of 20,000 and considering multiple combinations of allele frequencies and 17 

effect sizes. Based on allele frequency and effect size, our most difficult to replicate variant was 18 

rs56106611 (MAF=0.012, Beta=0.11). However, we still had approximately 80% power to 19 

detect this association in the replication stage. Despite this, replication of extremely rare variants 20 

remains a challenge. For example, there were associations with rare coding variants with large 21 

effect sizes in FCER1A, MPL, JAK2, SH2B3, TUBB1, and IQGAP2
16, 17

. The overall effect size 22 

of these rare variants must be validated in independent studies. The PLT associated and predicted 23 

deleterious variant rs200731779 in FCER1A (Leu114Val) had a large effect (β=-2.96) in 24 
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discovery analyses, but could not be replicated in available samples due to its extremely rare 1 

allele frequency (MAF=1.48x10
-5

 in EA). The affected amino acid is extracellularly positioned 2 

near the interface of two Ig-like domains, an area of the protein critical for FC-IgE interaction as 3 

shown through its crystal structure, biochemical data, and mutagenesis studies
34-37

. Other 4 

variants in FCER1A, a subunit of the allergy response IgE receptor and basophil differentiation 5 

factor, have previously been associated with IgE levels and monocyte counts
38, 39

. Increased 6 

platelet activation has been postulated to contribute to or be a consequence of allergic and 7 

inflammatory responses
40

. Our association of rare deleterious variation in FCER1A to reduced 8 

PLT provides a further link between platelet biology and allergy response.  9 

Although SNVs in IQGAP2 have previously been associated with PLT, we detected 10 

independent IQGAP2 low-frequency and rare missense variants associated with increased MPV 11 

(Table 2, Figures S3-S4)
8, 17

. Located proximal to thrombin receptor F2R (MIM: 187930), 12 

IQGAP2 functions in the cytoskeletal dynamics in response to thrombin-induced platelet 13 

aggregation
41

. We did not observe IQGAP2 associations with platelet aggregation, which may be 14 

due to the rare/low-frequency nature of the SNVs and the absence of thrombin-induced 15 

aggregation data in the available cohorts. Nonetheless, the associations of rare and low-16 

frequency variants in IQGAP2 further strengthen its contribution to platelet biology. In addition 17 

to IQGAP2, we observed other low-frequency associations, including nonsynonymous coding 18 

variants in ITGA2B (MIM: 607759), LY75, MAP1A, and APOH. The SNV rs76066357 in 19 

ITGA2B, a gene implicated in Glanzmann’s Thrombasthenia (MIM: 273800), was associated 20 

with decreased PLT (Table 1). Moreover, ITGA2B codes for the platelet glycoprotein alpha-IIb, 21 

which part of the target receptor of GIIb/IIIa inhibitors (e.g., eptifibatide and abciximab) used in 22 

the acute management of acute coronary syndromes. Although ClinVar lists rs76066357 as 23 
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pathogenic (ID: 216944) with limited evidence, rs76066357 is a non-rare, predicted benign 1 

variant that contributes to population variability in PLT in our study as opposed to a severe 2 

Mendelian disorder of platelet reactivity
42

. Previous studies do suggest a potential role for 3 

variants in ITGA2B and ITGB3 (MIM: 173470) leading to thrombocytopenia as well as 4 

abnormalities in platelet reactivity
43

. 5 

In addition to rare and low-frequency variant associations, we detected previously 6 

unreported associations for PLT and MPV at 25 and 15 common loci, respectively. For example, 7 

a common missense SNV rs1018489 in ARFGAP3 (MIM: 612439) showed association with 8 

decreased PLT and increased MPV. This variant is an eQTL for both ARFGAP3 and neighboring 9 

gene PACSIN2 (MIM: 604960) in blood tissues (Table S21, Figures S5-S6). Although the 10 

possible role of the androgen receptor (AR) gene target and cellular secretory factor ARFGAP3 is 11 

unknown in platelets
44-46

, PACSIN2 functions in the formation of the megakaryocyte 12 

demarcation membrane system during platelet production through interactions with FlnA
47

. 13 

Genetic variation that influences PACSIN2 expression may hinder the formation of the 14 

megakaryocyte demarcation membrane system and lead to the production of fewer, but larger 15 

and potentially more reactive platelets. We also observed several other novel associations with 16 

common variants, including those in SMG6 (MIM: 610963), a mediator of embryonic stem cell 17 

differentiation through nonsense mediated decay, and LY75 an endocytotic immunity-related 18 

receptor highly expressed on dendritic cells where it is involved in recognition of apoptotic and 19 

necrotic cells
48-50

.  20 

Overlap with other platelet and blood cell traits 21 

There was substantial overlap of variants associated with both PLT and MPV (n=23) as 22 

well as a strong negative correlation in effect sizes, consistent with the documented negative 23 
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correlation between the two traits in population studies (Figure 2)
51

. Only rs6136489, a reported 1 

eQTL for SIRPA, showed the same direction of effect for both PLT and MPV. SIRPA directly 2 

interacts with CD47, and SIRPA/CD47 signaling plays an important role in platelet clearance 3 

and the etiology of immune thrombocytopenia purpura
52-54

. Knockout Sirpa mice exhibit 4 

thrombocytopenia phenotypes, although have similar MPV to control animals
54

. How genetic 5 

variation in SIRPA influences MPV in addition to its demonstrated contribution to PLT remains 6 

to be characterized. In addition to shared associations of PLT and MPV, there was overlap in the 7 

parallel exome chip analyses of platelet reactivity. Largely mirroring results from previous 8 

GWAS, markers within PEAR1, JMJD1C, PIK3CG, and MRVI1 showed the strongest 9 

associations with PLT/MPV and platelet reactivity
27, 55-57

. Other PLT/MPV associated markers in 10 

PTGES3, LINC00523, and RASGRP4, showed marginal associations. Notably, PTGES3 is linked 11 

to prostaglandin synthesis and the RasGRP family has been shown to have functional roles in 12 

blood cells including in platelet adhesion
58

. The association of platelet reactivity genes, 13 

particularly PEAR1 and MRVI1, with PLT/MPV further supports a biological relationship 14 

between processes that control platelet function, megakaryopoiesis, and clearance
51, 59, 60

. 15 

However, these large-scale association analyses are unable to demonstrate whether these shared 16 

associations indicate shared biological mechanisms or simply reflect the epidemiological 17 

correlations among these traits.  18 

In addition to platelet traits, there was substantial overlap of genetic associations with 19 

RBC and WBC traits examined by the BCX
18, 19

. The shared genetic associations with the two 20 

other primary blood cell lineages further supports other studies proposing that mechanisms that 21 

govern platelet size and number also influence RBC and WBC traits
61

. In BCX analyses, 22 

rs1050331 in the 3’ untranslated region (UTR) of ZMIZ2 was associated with increased PLT, 23 
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mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV), as well as with 1 

decreased WBC count
18, 19

. rs1050331 is also an eQTL for ZMIZ2 expression in whole blood 2 

(Table S21)
62

. There are known sex differences in cell counts, with females consistently having 3 

higher PLT and mixed results on MPV
63, 64

. Similar to well-established PLT and MPV associated 4 

transcriptional regulator JMJD1C, ZMIZ2 directly interacts with AR to modulate AR-mediated 5 

transcription and influences mesodermal development, and thus genetic variation in ZMIZ2 could 6 

potentially contribute to hormonally mediate differences in PLT across genders
65-67

. Also 7 

associated with increased PLT and decreased RBC indices was rs55707100 in MAP1A
18

. Though 8 

typically examined in a neurological context, MAP1A is involved in microtubule assembly, a 9 

process important in blood cell development and function
68

. Our observed association of MAP1A 10 

and its expression in platelets and RBCs suggests that the known role of MAP1A in 11 

developmental and cytoskeletal processes in neural tissues may extend to blood cells (Table 12 

S22). How these shared genetic factors specifically influence the development, maintenance, or 13 

clearance of multiple blood cell types remains to be determined. 14 

Overlap with non-blood cell traits 15 

While the overlap with other blood cell traits may be intuitive, we also observed overlap 16 

with quantitative lipids traits. In cross-trait lookups, several known PLT/MPV loci confirmed in 17 

this study (e.g., JMJD1C, GCKR, and SH2B3) showed associations with lipids traits, and several 18 

known lipids loci showed association to PLT/MPV (e.g., FADS1, FADS2, APOH, and 19 

TMEM50A). Moreover, SH2B3, which is also expressed in human vascular endothelial cells 20 

where it modulates inflammation, has been associated with blood pressure and the risk of MI
69-71

. 21 

Our study further suggests that a regulation of platelets could also contribute to potential 22 

implication of SH2B3 in the development of cardiovascular diseases. The associated SNVs in the 23 
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FADS1/FADS2 locus (rs174546 and rs174583) are eQTLs for multiple lipids-related transcripts 1 

in blood-related tissues, including TMEM258, FADS1, FADS2, and LDLR (Table S21)
62

. 2 

Intriguingly, expression of TMEM258 has also been shown to be a transcriptional regulatory 3 

target of cardiovascular disease implicated CDKN2B-AS1 (MIM: 613149), a region marginally 4 

associated with PLT (Discovery EA p=1.00x10
-6

, Replication EA p=0.0577, Combined EA 5 

p=1.56x10
-7

) (Table S14)
72, 73

. Our genetic association results link the underlying genetic 6 

architecture of platelet and lipids traits as suggested by previous epidemiological, genetic, and 7 

animal studies
63, 74-77

. However, these observed shared genetic associations do not demonstrate 8 

whether these reflect direct genetic pleiotropy or indirect relationships. Several variants 9 

previously implicated in lipids (e.g., FADS1, FADS2, SH2B3, TMEM50A, and GCKR) have 10 

stronger associations with lipids traits relative to our platelet associations, suggesting that their 11 

primary effects are on lipids pathways (Table S20). Determining the directionality and causality 12 

among genetic variants, lipids, and platelets remains an important future step in dissecting which 13 

genetic variants may reveal new insights into platelet biology. 14 

Conclusions 15 

 By performing a large meta-analysis of exome chip association results, we identified rare, 16 

low-frequency, and common variants that influence PLT and MPV. Despite our ability to detect 17 

numerous associations with SNVs across a wide range of allele frequencies, the exome chip 18 

interrogated a limited fraction of genomic variation. Sequencing-based studies across the genome 19 

in large sample sizes will be necessary to fully assess the contribution of variants across the 20 

allele frequency spectrum, particularly of rare variants in intergenic regions. Nonetheless, our 21 

results identify several intriguing genes and genetic mechanisms of platelet biology. Many of 22 

these associations overlapped with related blood cell and lipids traits, pointing to common 23 
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mechanisms underlying their development and maintenance. As blood cells share developmental 1 

lineages and several of our platelet associated genes have known developmental or 2 

transcriptional regulatory functions, we hypothesize that the origins of these shared genetic 3 

associations are mainly in blood cell development in the bone marrow. How these genes function 4 

and interact in RBC, WBC, and platelet development will need to be tested in future experiments 5 

in both functional and human-based studies. Advances in these domains could provide key 6 

insights into genes that influence human blood disorders and reveal new mechanisms for the 7 

development of novel therapeutic applications. 8 

 9 
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 1 

Figures Titles and Legends 2 

Figure 1: Study Design and Flow. Individual study level association analyses were performed 3 

using RareMetalWorker or RVTests. To perform quality control of individual study association 4 

results, we used EasyQC v8.6 to ensure proper trait transformations, to assess allele frequency 5 

discrepancies, and to evaluate other metrics. We then combined results in meta-analysis with 6 

RareMETALS v5.9 in three groups: African ancestry (AA), European ancestry (EA), and 7 

combined all five (AA, EA, Hispanic-Latino, East Asian, South Asian) ancestries (All). 8 

Independent variants identified by conditional analysis in RareMETALS with a p-value less than 9 

the threshold corrected for multiple testing (All: p<2.20x10
-7

, EA: p<2.59x10
-7

, AA: p<3.03x10
-

10 

7
) were carried forward for replication. Markers showed replication if they had p<0.05 in the 11 

same direction of effect in the replication analyses. Associated markers were further annotated 12 

using various resources: (1) concurrent BCX exome chip analyses of RBC and WBC traits, (2) 13 

on-going exome chip analyses of platelet aggregation, quantitative lipids, and coronary heart 14 

disease (CHD) traits, (3) severity prediction by CADD, (4) an internal database of reported 15 

eQTL results, and (5) platelet RNA-seq data. 16 

 17 

Figure 2: Shared PLT and MPV genetic associations. A) Comparing PLT and MPV effects 18 

sizes (r=-0.84) in European ancestry (EA) analyses of all identified SNVs identified (n=124). 19 

Examined SNPs include all those from Tables 1-2, Table S5-S9, and Tables S14-S15. B) 56 20 

independent SNVs showed association to PLT only, while 15 independent SNVs were associated 21 

with MPV only. 23 independent SNVs were associated with both PLT and MPV. Named genes 22 

indicate that the association was not previously reported in the literature. 23 
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Table 1: Previously unreported associations (n=32) with PLT. We show variants in previously unreported loci and retained after conditional analyses in European Ancestry (EA) (p<2.59E-7) and All Ancestry (All) (p<2.20E-7) 

analyses. Associations in African Ancestry (AA) had previously been reported in the literature (Table S10). Bolded variants (20/32) showed evidence of replication (p<0.05, same direction of effect). If multiple genes/transcripts 

were annotated to a variant, the transcript most expressed in Eicher et al. 2015 (Table S22) was selected. Full results and annotations are available in the supplement (Table S5). 

 

    European Ancestry (EA) Combined All Ancestry (All) 

    Discovery (n=108,598) Replication (n=19,939) Combined Discovery (n=131,857) Replication (n=25,436) Combined 

rsID Ref/Alt Function Gene EAF Beta P-value Beta P-value P-value EAF Beta P-value Beta P-value P-value 

rs3091242 C/T intron TMEM50A 0.54 -0.026 9.68E-8 -0.017 0.124 3.85E-8 0.50 -0.02 1.03E-5 -0.0084 0.390 1.24E-5 

rs12566888 G/T intron PEAR1 0.094 0.040 1.42E-7 0.061 1.26E-3 1.17E-9 0.16 0.034 2.09E-8 0.047 4.31E-4 5.71E-11 

rs200731779 C/G missense FCER1A 1.5E-5 -2.96 2.48E-7 NA NA 2.48E-7 1.2E-5 -2.96 2.48E-7 NA NA 2.48E-7 

rs6734238 A/G intergenic IL1F10/IL1RN 0.41 0.022 9.55E-6 0.0075 0.487 1.64E-5 0.41 0.026 7.19E-9 0.015 0.117 3.77E-9 

rs12692566b C/A missense LY75-CD302 0.82 -0.029 9.19E-7 -0.042 2.50E-3 1.23E-8 0.83 -0.026 2.27E-6 -0.05 7.84E-5 3.65E-9 

rs78446341 G/A missense LY75-CD302 0.02 0.092 4.16E-9 0.14 5.01E-5 1.98E-12 0.018 0.094 3.06E-10 0.13 9.23E-5 1.97E-13 

rs56106611a T/G missense KALRN 0.012 0.11 3.51E-8 0.11 7.14E-3 8.51E-10 0.01 0.11 8.59E-8 0.11 7.37E-3 2.14E-9 

rs1470579 A/C intron IGF2BP2 0.32 -0.028 1.08E-7 -0.0073 0.562 2.82E-7 0.38 -0.023 6.07E-7 -0.012 0.272 5.15E-7 

rs1126673 C/T ncRNA LOC100507053 0.69 0.026 6.38E-8 0.019 9.63E-2 1.81E-8 0.71 0.025 1.87E-8 0.014 0.168 1.12E-8 

rs1473247a  T/C intron RNF145 0.27 -0.029 3.01E-8 -0.022 8.32E-2 7.28E-9 0.32 -0.026 1.32E-8 -0.025 1.85E-2 7.66E-10 

rs2256183 A/G intron MICA 0.56 0.03 6.78E-7 -0.022 0.104 2.60E-6 0.59 0.028 2.13E-7 0.011 0.389 3.20E-7 

rs1050331 T/G 3’UTR ZMIZ2 0.47 0.037 1.32E-15 0.036 5.80E-4 3.28E-18 0.48 0.035 3.09E-17 0.031 8.80E-4 1.26E-19 

rs755109 T/C intron HEMGN 0.37 0.028 2.87E-9 0.039 6.84E-4 1.17E-11 0.34 0.028 9.03E-11 0.044 2.18E-5 2.59E-14 

rs2068888 G/A nearGene-3 EXOC6 0.45 -0.023 2.81E-7 -0.012 0.266 2.47E-7 0.44 -0.022 1.19E-7 -0.012 0.212 8.61E-8 

rs3794153 C/G missense ST5 0.45 -0.027 7.28E-9 -0.026 1.53E-2 3.57E-10 0.40 -0.027 2.19E-9 -0.023 2.47E-2 1.74E-10 

rs174583 C/T intron FADS2 0.34 0.031 8.79E-9 0.048 1.22E-4 1.03E-11 0.34 0.028 4.72E-9 0.042 1.10E-4 4.42E-12 

rs45535039 T/C 3’UTR CCDC153 0.28 0.04 4.02E-10 0.071 5.31E-2 8.48E-11 0.28 0.04 2.5E-12 0.056 8.56E-2 6.25E-13 

rs11616188  G/A nearGene3 LTBR 0.42 -0.025 1.26E-8 -0.031 3.59E-3 1.81E-10 0.37 -0.025 7.57E-9 -0.033 1.07E-3 4.20E-11 

rs10506328a  A/C intron NFE2 0.64 0.033 5.63E-11 0.06 5.88E-8 2.01E-16 0.69 0.038 3.79E-15 0.059 2.33E-8 2.73E-21 

rs2279574 C/A missense DUSP6 0.54 -0.023 2.47E-7 -0.0082 0.442 4.28E-7 0.50 -0.021 1.57E-7 -0.006 0.531 4.04E-7 

rs61745424 G/A missense CUX2 0.025 -0.064 2.36E-6 -0.085 6.79E-3 6.49E-8 0.023 -0.068 1.37E-7 -0.073 1.43E-2 6.30E-9 

rs2784521 A/G nearGene-5 DDHD1 0.83 0.025 1.62E-5 0.0096 0.486 2.24E-5 0.76 0.028 2.92E-8 0.01 0.363 5.56E-8 

rs55707100 C/T missense MAP1A 0.032 0.095 7.03E-14 0.073 3.87E-2 9.53E-15 0.028 0.092 6.85E-14 0.082 1.62E-2 3.77E-15 

rs10852932 G/T intron SMG6 0.36 -0.024 1.82E-6 -0.042 8.93E-4 1.42E-8 0.39 -0.025 4.79E-8 -0.036 6.99E-4 2.15E-10 

rs76066357 G/C missense ITGA2B 0.014 -0.17 6.92E-16 -0.19 2.88E-5 1.05E-19 0.013 -0.16 1.92E-15 -0.18 6.00E-5 5.78E-19 

rs1801689 A/C missense APOH 0.036 0.083 6.34E-12 0.13 2.44E-5 1.82E-15 0.032 0.090 8.64E-15 0.12 2.03E-5 1.57E-18 

rs892055 A/G missense RASGRP4 0.34 0.029 5.30E-10 0.018 9.87E-2 2.01E-10 0.38 0.025 3.49E-9 0.017 8.13E-2 9.96E-10 

rs3865444 C/A 5’UTR CD33 0.32 -0.026 1.11E-6 -0.034 2.52E-3 1.27E-8 0.29 -0.026 2.10E-7 -0.032 3.03E-3 2.59E-9 

rs6136489a  T/G intergenic SIRPA 0.34 -0.033 8.69E-13 -0.028 1.24E-2 4.00E-14 0.39 -0.030 1.8E-12 -0.024 1.30E-2 8.78E-14 

rs855791 A/G missense TMPRSS6 0.56 -0.031 3.96E-11 -0.017 0.130 2.34E-11 0.60 -0.029 2.34E-11 -0.022 3.52E-2 2.97E-12 

rs1018448 A/C missense ARFGAP3 0.54 -0.028 4.02E-10 -0.0053 0.618 2.62E-9 0.59 -0.025 1.55E-9 -0.0065 0.515 6.13E-9 

rs738409 C/G missense PNPLA3 0.23 -0.042 1.49E-14 -0.042 1.75E-3 1.03E-16 0.22 -0.044 1.33E-18 -0.038 1.61E-3 9.73E-21 
aPrevious association with MPV, bSurpasses significance threshold after conditioning on rs78446341 (p=2.48E-7)  

Abbreviations: PLT, platelet count; MPV, mean platelet volume; REF, reference allele; ALT, alternate allele; EAF, effect allele frequency 
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Table 2: Previously unreported associations (n=18) with MPV. We show variants in previously unreported MPV loci and retained after conditional analyses in European Ancestry (EA) (p<2.59E-7) and All Ancestry (All) 

(p<2.20E-7) analyses. Associations in African Ancestry (AA) had previously been reported in the literature (Table S11). Bolded variants (11/18) showed evidence of replication (p<0.05, same direction of effect). If multiple 

genes/transcripts were annotated to a variant, the transcript more expressed in Eicher et al. 2015 (Table S22) was selected. Full results and annotations are available in the supplement (Table S7). 

 

    European Ancestry (EA) Combined All Ancestry (All) 

    Discovery (n=34,021) Replication (n=15,519) Combined Discovery (n=41,529) Replication (n=16,088) Combined 

rsID Ref/Alt Function Gene EAF Beta P-value Beta P-value P-value EAF Beta P-value Beta P-value P-value 

rs6687605 T/C missense LDLRAP1 0.53 0.046 8.27E-12 0.025 3.74E-2 1.80E-9 0.51 0.046 9.92E-11 0.024 3.58E-2 3.80E-11 

rs56043070a G/A splice GCSAML 0.069 0.094 1.30E-9 0.19 4.48E-16 1.12E-21 0.064 0.092 2.25E-10 0.19 3.66E-16 2.42E-22 

rs1339847a  G/A missense TRIM58 0.10 -0.10 1.47E-13 -0.037 5.44E-2 9.31E-13 0.10 -0.11 2.18E-17 -0.032 9.77E-2 1.06E-15 

rs34968964a  G/C missense IQGAP2 0.0049 0.32 7.65E-9 0.12 9.18E-2 1.99E-8 0.004 0.32 2.11E-9 0.11 0.106 8.18E-9 

rs34950321a  C/T missense IQGAP2 0.018 0.18 7.80E-10 0.14 1.49E-3 6.03E-12 0.016 0.17 2.61E-9 0.14 1.59E-3 1.86E-11 

rs34592828a  G/A missense IQGAP2 0.037 0.22 1.72E-27 0.16 2.73E-9 1.61E-34 0.032 0.23 1.68E-31 0.16 2.95E-9 2.98E-38 

rs1012899a  G/A missense LRRC16A 0.77 0.051 1.40E-7 0.012 0.417 1.24E-6 0.77 0.042 1.32E-6 0.016 0.273 2.50E-6 

rs664370 A/G missense PXT1 0.30 -0.034 8.03E-5 -0.025 5.61E-2 1.39E-5 0.35 -0.042 5.77E-8 -0.028 2.78E-2 7.23E-9 

rs2343596a  C/A intron ZFPM2 0.31 0.062 2.02E-13 0.012 0.357 3.32E-11 0.38 0.052 1.59E-11 0.012 0.339 4.35E-10 

rs55895668a  T/C missense PLEC 0.43 -0.042 5.94E-7 -0.013 0.350 2.19E-6 0.47 -0.041 1.23E-7 -0.011 0.409 5.97E-7 

rs4909945 T/C missense MRVI1 0.68 -0.048 1.25E-8 -0.035 8.41E-3 5.19E-10 0.71 -0.041 3.96E-7 -0.035 7.42E-3 1.06E-8 

rs11125 A/T missense LGALS3 0.078 -0.091 1.55E-8 -0.037 0.117 2.76E-8 0.07 -0.09 4.22E-9 -0.037 0.117 7.21E-9 

rs2010875a  C/T missense PLEKHO2 0.14 -0.076 1.33E-7 -0.042 1.62E-2 2.10E-8 0.15 -0.063 3.01E-7 -0.042 1.62E-2 2.43E-8 

rs10512472a  T/C missense SLFN14 0.18 -0.059 1.37E-8 -0.059 1.96E-4 1.12E-11 0.18 -0.058 3.15E-10 -0.059 1.20E-4 1.67E-13 

rs35385129 C/A missense PVR 0.16 -0.058 6.24E-8 -0.044 7.36E-3 2.01E-9 0.15 -0.055 3.00E-8 -0.043 7.13E-3 8.79E-10 

rs2243603 C/G missense SIRPB1 0.77 0.044 5.89E-6 0.077 0.167 2.62E-6 0.79 0.049 4.58E-8 0.088 7.78E-2 1.25E-8 

rs1018448 A/C missense ARFGAP3 0.55 0.056 1.13E-12 0.051 1.78E-5 1.04E-16 0.60 0.055 1.52E-13 0.05 2.16E-5 1.68E-17 

rs1997715 G/A 3’UTR ZXDB 0.26 0.048 1.93E-9 0.084 5.83E-2 4.26E-10 0.35 0.04 4.58E-8 0.08 3.99E-2 8.88E-9 
aPrevious association with PLT 

Abbreviations: MPV, mean platelet volume; PLT, platelet count; REF, reference allele; ALT, alternate allele; EAF, effect allele frequency 
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Table 3: Variants associated with both PLT and MPV. All variants listed here showed 

association with both PLT and MPV in the opposite direction of effect as indicated by the 

arrows, except for rs6136489 (denoted by asterisk) which showed association with decreased 

PLT and decreased MPV. 

 

rsID Gene PLT  MPV  

rs12566888 PEAR1 ↑ ↓ 

rs1668873 TMCC2 ↑ ↓ 

rs56043070 GCSAML ↓ ↑ 

rs12485738 ARHGEF3 ↑ ↓ 

rs56106611 KALRN ↑ ↓ 

rs34592828 IQGAP2 ↓ ↑ 

rs1012899 LRRC16A ↓ ↑ 

rs342293 PIK3CG ↓ ↑ 

rs2343596 ZFPM2 ↓ ↑ 

rs10761731 JMJD1C ↑ ↓ 

rs11602954 BET1L ↑ ↓ 

rs10506328 NFE2 ↑ ↓ 

rs2958154 PTGES3 ↓ ↑ 

rs7961894 WDR66 ↓ ↑ 

rs1465788 ZFP36L1 ↑ ↓ 

rs2297067 EXOC3L4 ↑ ↓ 

rs2138852 TAOK1 ↓ ↑ 

rs10512472 SLFN14 ↑ ↓ 

rs11082304 CABLES1 ↓ ↑ 

rs6136489* SIRPA/LOC727993 ↓ ↓ 

rs41303899 TUBB1 ↓ ↑ 

rs6070697 TUBB1 ↑ ↓ 

rs1018448 ARFGAP3 ↓ ↑ 

 

Abbreviations: PLT, platelet count; MPV, mean platelet volume 
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Table 4: Intersection of platelet associated variants with red blood cell (RBC) and white blood cell (WBC) traits (p<0.0001). 

We cross-referenced novel variants associated with platelet count (PLT) and/or mean platelet volume (MPV) in RBC and WBC 

association analyses in the Blood Cell Consortium (BCX). Here, we show RBC/WBC associated platelet variants with p<0.0001. Full 

details of RBC/WBC associations are shown in Table S16 and Table S17. Arrows denote direction of effect for the platelet and other 

blood cell trait(s). 

  

SNP MarkerName Gene PLT Trait Other Blood Cell 

rs855791 22:37462936 TMPRSS6 ↓ MCH, MCV, HGB MCHC, HCT ↑ 

rs855791 22:37462936 TMPRSS6 ↓ RDW ↓ 

rs55707100 15:43820717 MAP1A ↑ HGB, MCH, HCT, MCHC ↓ 

rs174583 11:61609750 FADS2 ↑ RDW ↓ 

rs174583 11:61609750 FADS2 ↑ HGB, RBC, HCT, MCHC ↑ 

rs738409 22:44324727 PNPLA3 ↓ HCT, HGB ↑ 

rs3091242 1:25674785 TMEM50A ↓ RDW ↑ 

rs1050331 7:44808091 ZMIZ2 ↑ MCH, MCV ↓ 

rs1050331 7:44808091 ZMIZ2 ↑ WBC ↑ 

rs6734238
a
 2:113841030 IL1F10/IL1RN ↑ MCH ↓ 

rs6734238
a
 2:113841030 IL1F10/IL1RN ↑ WBC, NEU ↑ 

rs12566888 1:156869047 PEAR1 ↑ WBC, NEU, MON ↓ 

rs3865444 19:51727962 CD33 ↓ WBC ↓ 

rs6136489 20:1923734 SIRPA/LOC727993 ↓ WBC, LYM ↓ 

rs2256183
a
 6:31380529 MICA ↑ BAS ↑ 

rs12692566 2:160676427 LY75-CD302 ↓ WBC ↓ 
a
Marker not replicated in platelet analyses 

 

Abbreviations: BCX, Blood Cell Consortium; RBC, red blood cell; WBC, white blood cell; PLT, platelet count; MCH, mean 

corpuscular hemoglobin; MCV, mean corpuscular volume; HGB, hemoglobin; MCHC, mean corpuscular hemoglobin concentration; 

HCT, hematocrit; RDW, red blood cell distribution width; PLT, platelet count; NEU, neutrophil; MON, monocyte; LYM, lymphocyte; 

BAS, basophil 
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Table 5: Overlap of associations of platelet count (PLT) and mean platelet volume (MPV) 

variants with platelet reactivity (p<0.001). Variants were examined using platelet reactivity 

phenotypes (Table S18) in GeneSTAR and the Framingham Heart Study (FHS). Arrows denote 

direction of effect for PLT, MPV, and platelet reactivity. Multiple arrows refer to direction for 

respective agonist for platelet reactivity. Detailed association results for platelet reactivity are 

given in Table S19.  

 

rsID Gene PLT MPV Agonist(s)
a
 Direction of Effects

b
 

rs12566886 PEAR1 ↑ ↓ Epi, ADP, Collagen ↓↓↓ 

rs10761731 JMJD1C ↑ ↓ Epi, ADP ↑↑ 

rs12355784 JMJD1C ↑ ns Epi ↑ 

rs342293 PIK3CG ↓ ↑ Epi ↓ 

rs4909945 MRVI1 ns ↓ Epi, ADP ↓↓ 

rs2958154 PTGES3 ↓ ↑ Collagen ↑ 

rs12883126 LINC00523 ↑ ns Epi ↑ 

rs892055 RASGRP4 ↑ ns Epi ↓ 
a
Platelet reactivity associations with p<0.001 

b
As collagen measurements reflect lag time to aggregation, direction of effect has been flipped to 

denote a negative direction of effect as less reactive and positive direction of effect as more 

reactive 

 

Abbreviations: PLT, platelet count; MPV, mean platelet volume; ns, not significant (p>0.05), 

Epi, epinephrine 
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Discovery Single Variant and Gene-Based Meta-Analysis  
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Quality Control with EasyQC v8.6 
Proper trait transformations 

Allele frequency discrepancies 

PLT Replication 
6 studies 

EA n=19,939 
All n=25,436 

MPV Replication 
2 studies 

EA n=15,519 
All n=16,088 

Lookups in concurrent RBC/WBC analyses in BCX 
Platelet function, CHD, & lipids exome chip lookups 

Annotation with CADD 
eQTL & platelet RNAseq lookups 

All: Variants with p<2.20x10-7 

EA: Variants with p<2.59x10-7 
AA: Variants with p<3.03x10-7 

Same direction of effect 

P<0.05 
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