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Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues

in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells,

adipose-derived stem cells and periodontal ligament stem cells can be successfully

applied in the field of tissue regeneration. PRP, a natural product isolated from whole

blood, can secrete multiple growth factors (GFs) for regulating physiological activities.

These GFs can stimulate proliferation and differentiation of different stem cells in

injury models. Therefore, combination of both agents receives wide expectations in

regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we

thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs

with stem cells, and assessed their functions in cell differentiation for musculoskeletal

regeneration.
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INTRODUCTION

Musculoskeletal regeneration requires growing development of stem cell technology. The supply
of necessary cells derived from sterile sources in physiological conditions has provided us with an
unlimited and sustainable pattern in the field of cell replacement treatment and other applications
(Deshpande et al., 2013). The stem cell therapy contributes to proliferative sustainability,
multidirectional differentiation and anoxia endurance (Wang et al., 2016). Different tissues have
been used as stem cells sources. Doctors have succeeded in making progress in many cells, such
as bone marrow mesenchymal stem cells, adipose-derived stem cells and peripheral blood stem
cells (Jeevanantham et al., 2012; Delewi et al., 2013). For instance, adipose-tissue derived stem
cells (ADSCs) have vast therapeutic potential. On occasion, they have been applied clinically,
for example, in maxillary reconstruction, critical limb ischemia or insulin-dependent diabetes
mellitus. Besides, its self-renewing and differentiation in different cellular lines, including tendon
and bone tissue is very important in many aspects (Ahmad et al., 2012). In vivo studies showed
that mesenchymal stem cells (MSCs) can self-renew or differentiate into multiple lineages and
regenerate bone, cartilage, muscle, blood, and cardiac tissue (Longo et al., 2013). They found that
the transplanted cells improved the function of injured organs by attracting the host’s repair cells to
the damaged site by releasing certain factors (i.e., VEGF) that indirectly helped in the repair process.
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However, the exact source of these host repair cells was not fully
elucidated. Besides, researchers have concentrated on the part of
MSCs as an important trauma-related factor in vasculogenesis
and osteogenesis (Gawlitta et al., 2012; Askarinam et al., 2013). In
other words, MSC is directed to the damaged site and functions
as a regulator for vasculogenesis and osteogenesis (Levi et al.,
2011). Moreover, scientists believe that stem cells have huge
potential in the course of cell recombination. Human stem cells
can proliferate infinitely in vitro, thereby providing samples with
reproducible characteristics (Thangarajah et al., 2009).

Although the therapeutic effect of stem cell is very promising,
its low efficiency has compromised its potential applications in
many aspects (Kang et al., 2012). People tried their best to use
priming for improving the therapeutic efficacy of stem cell, but
failed due to setbacks like low efficient improvement and an
immune deficiency of certain proteins. Bone marrow has been
identified as an excellent source of MSCs and can be accessed
readily by surgeons intraoperatively. Nevertheless, scientists also
attempted to obtainMSCs from fatty tissue (Angeline and Rodeo,
2012). During the last decades, scientists used a variety of
different vehicles for the local delivery of MSCs, including type I
collagen gels, collagen sponges and fibrin, to the Achilles, patellar,
or RC tendons in animal models (Majewski et al., 2009).

In addition to stem cell therapy, blood derived products
such as autologous conditioned serum and the latest orthopedic
panacea, platelet rich plasma (PRP) has also been widely
researched on its plentiful applications in various fields. Bone
defects in the oral cavity and maxillofacial region are the
major fields (Mehta, 2010); Soon later its applications extended
across many fields including periodontal (Moghe et al., 2012;
Morikuni et al., 2013) and oral and maxillofacial surgery
(Albanese et al., 2013; Daif, 2013), aesthetic plastic surgery
(Cervelli et al., 2009), spinal surgery (Okamoto et al., 2012),
cardiac bypass surgery (Gravlee, 1994) and treatment of soft-
tissue wounds or ulcers (Akhundov et al., 2012; Jiritano et al.,
2013). The early introduction of PRP into clinical practice was
suggested by Ferrari et al. (1987). PRP is an autologous platelet
concentrate obtained from fresh whole blood by centrifugation.
To be applied at the surgical site, PRP must be activated to
induce platelet degranulation and fibrin polymerization, thus
obtaining a clot usually called platelet gel (PG). PRP is naturally
heterogeneous for various factors that exist in PRP preparation
protocols including: (1) the initial quantity of platelets, (2) the
applications of anticoagulants, (3) the use of leukocytes, and
(4) the inclusions of activators resulting in different biological
outcomes. Apart from naturally autologous state, and no risk of
pathogen transmission or immunological rejection, PRP contains
the appropriate proportion of certain factors necessary for wound
healings (Marques et al., 2015) (referred to in Figure 1).

The biological characteristics of PRP rely on the concentration
in platelets. Proper preparations can help PRP secrete many
growth factors (GFs) at high concentrations, including
transforming growth factor-β, platelet-derived growth factor,
insulin-like growth factor, vascular endothelial growth factor
and epidermal growth factor. Therefore, standardization for
PRP is very important. But variation in PRP concentration
usually leads to decreased and unstable repairing effect in

tissue regeneration. There are a few dozens of protocols and
purification systems for PRP isolation in the world. Different
methods result in different PRP contents and concentrations as
well as variant clinical outcomes. Most researches indicated that
five times content of normal platelets can contribute to effective
regeneration by PRP. And higher concentration does not induce
a better result (Marx, 2004). The best concentration of PRP
has not been decided yet. But different purification facilities
and methods will result in different biological characteristics
and variance in clinical outcomes (Yu et al., 2011). Kreuz and
colleagues used different isolation kits and centrifugation for PRP
preparation. The results turned out that Dr.PRP Kit could most
effectively promote mesenchymal progenitor cell proliferation,
compared with other methods. Moreover, some protocols could
even exhibit a higher chondrogenic differentiation potential
than others (Kreuz et al., 2015). Masoudi and colleagues also
mentioned different modes of PRP preparation affected other
aspects, like extended viability under low temperature and
increased platelet yields with longer centrifugation period
(Masoudi et al., 2016). Scientists have expected to combine
PRP and stem cell in the field of tissue regeneration, especially
bone, cartilage and tendon repair for a long time. However, the
relationship between PRP preparation and stem cell activity
is very controversial. There are a few important applications
of PRP and stem cells in musculoskeletal regeneration in
recent years. Rubio-Azpeitia and colleagues used platelet-rich
plasma (PRP) three dimensional printing scaffold to induce
mesenchymal stem cells differentiation, and found increased
expression of collagen 1 and 3 in this model. Besides, other
articular genes were upregulated as well in mesenchymal stem
cells stimulated by PRP (Rubio-Azpeitia et al., 2017). Tang and
colleagues experimented on rabbit derived PRP for chondrogenic
induction of adiposed stem cells. Collagen II was significantly
increased accompanied by aggrecan expression (Tang et al.,
2015). However, Huber and colleagues discovered thrombin
was effective in helping production of PRP, with an easier and
faster style in comparison with other activation and purification
method. However, they tested GFs like PDGF-AA, VEGF and
VEGF, and found this kind of isolation method had no positive
effects in promoting GFs secretion (Cares et al., 2016). PRP
is vital for advancing proliferation of bone precursor cells
in different animals, including rabbits and goats (Lin et al.,
2013; Kim et al., 2014). In spite of rich potentials of direct
applications of PRP for wound healings, combining PRP with
bone marrow mesenchymal stem cells (BMSCs) for tissue
regeneration applications becomes a rising interest for a long
time. PRP is a significant supplement for PRP-gel delivery carrier
for cell transplantation. In addition, it is mentioned that PRP can
contribute to the proliferation of BMSCs and their differentiation
into osteoblasts (Montgomery et al., 2011). The GFs in PRP
have many functions, including accelerating angiogenesis and
promoting collagen formation, thus leading to wound healing
and tissue formation. Hence, PRP is thought to be an ideal origin
of GFs for many applications.

According to the aspects discussed above, GFs originate from
PRP and cooperate with stem cells in bone healing and soft tissue
repair. This review is mainly aimed at the interaction of PRP
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FIGURE 1 | Advantages, applications, and problems of platelet-rich plasma.

derived growth factors with stem cells in various differentiation
into mature somatic cells in musculoskeletal regeneration.

GROWTH FACTORS

Growth factors derived from PRP can contribute to tissue
regeneration, by assisting cell migration, proliferation,
differentiation and extra-cellular matrix synthesis (Gulotta
et al., 2011; Isaac et al., 2012). However, the varying GF
concentrations may have different biologic effects, resulting
in the fact that individual differences in GF levels should be
considered for reliable interpretation of the biologic functions
and standardized application of PRP. Numerous GFs, including
the basic fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF), and transforming growth factor-β
(TGF-β), which are released from PRP, can be detected during
the early phase of wound healing (referred to in Table 1). Many
of these GFs have a unique temporal expression profile and
are thought to play an important role in the musculoskeletal
regeneration. Generally, GFs are delivered locally to the bone
and soft tissue regeneration site with tissue-engineered scaffolds,
covered sutures, or dissolved in a fibrin-like encapsulation (Losi
et al., 2013). Successful strategies to biologically augment tissue
repair will require appropriate combination of GFs, responding
host cells to the growth factor signaling and an optimal delivery
method (Gulotta et al., 2011).

Basic Fibroblast Growth Factor (bFGF)
PRP derived basic fibroblast growth factor (bFGF) is actively
involved in osteogenesis and angiogenesis. Recombinant bFGF
has been used for supporting BMSCs expansion, and it is
able to induce an abundant calcium deposition (Cheng et al.,
2014). Preclinical researches suggest that bFGF may be useful
to promote bone healing (Kawaguchi et al., 2010; Hata et al.,
2013). The use of recombinant bFGF after nailing of tibial
fractures significantly improves fracture healing (Granchi et al.,
2013).Recently, it has been demonstrated that bFGF circulating
level predicts the outcome of a severe bone lesion (Clendenen
et al., 2010). Besides, polymorphonuclear neutrophils (PMN)
from healthy individuals’ express different levels of FGF

receptors in their cytosol (FGFR-1 and FGFR-4) and cytoplasmic
membrane (FGFR-2) (Chamberlain et al., 2011). These receptors
may capture bFGF, therefore explaining the inverse relation
between bFGF and PMN number in leukocyte platelet rich
plasma (L-PRP) samples at all-time points. In addition, PRP
concentrates contain lymphocytes and sustain the production of
new bFGF after the initial release. The effect of leukocytes is still
controversial and can be either positive or negative, depending on
tissue and underlying disease. Some authors have demonstrated
that the presence of PMN can result in proinflammatory cell
signaling and local tissue catabolism, whereas others have shown
that macrophages are essential for debridement of damaged
ligamentous tissue and for cytokine release mediating the repair
process (Dines et al., 2007).

Insulin-Like Growth Factor 1 (IGF-1)
IGF-1 is able to stimulate proliferation and migration of
fibroblasts and other local cells, and serves as a crosslink
between muscle and bone with certain physical and biochemical
cues (Bikle et al., 2015). Kabiri et al. reported that the PRP
has rich concentration of a few GFs like IGF-1 TGF-βand
bFGF, they also discussed its potential role in chondrogenic
regeneration, especially in promoting chondrocyte proliferation
and attachment as well as MSC differentiation. However, the
direct role of PRP derived IGF-1 in bone andmuscle regeneration
is not illustrated (Kabiri et al., 2014). Creaney reported that
PRP derived mechano growth factor (MGF), an isoform of
IGF-1, could stimulate myoblast proliferation and it might
have a potential role in improving musculoskeletal restoration.
However, the short half-life limited its systemic applications.
Therefore, MGF was only effective for regional use. Besides,
the concentration of IGF-1 isoforms in PRP cannot sufficiently
produce a promoting effect in muscle regrowth, which requires
large quantification of raw material in bone and muscle repair
(Creaney and Hamilton, 2008).

TGF-β
TGF-β, one of the most abundant GFs released from PRP, is
demonstrated to promote tendon healing in the absence of
scar formation. Therefore, it is considered as a good candidate
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TABLE 1 | Platelet-rich plasma derived Growth factors and their applications in musculoskeletal regeneration.

Growth

factors

tissue Stem

cells

species functions References

bFGF bone

bone

BMSC

BMSC

human

rat

to induce calcium deposition; to support BMSCs

expansion; to indicate severe bone lesion; to stimulate

BMSCs differentiation into bone

Dines et al., 2007; Clendenen et al., 2010;

Kawaguchi et al., 2010; Hata et al., 2013;

Bai et al., 2014; Cheng et al., 2014

IGF muscle

bone

/

PDLSC

human

human

to stimulate skeletal muscle regeneration

to stimulate proliferation and osteogenic differentiation

Creaney and Hamilton, 2008; Kleplová

et al., 2014; Martínez et al., 2016

TGF-β bone

bone

cartilage

bone

ADSC

ADSC

BMSC

BMSC

human

rabbit

human

dog

to stimulate bone deposition for successful fracture

healing; osteogenic differentiation of ADSC;

to stimulate chondrogenesis of BMSC;

to stimulate new bone formation and angiogenesis.

Yamada et al., 2004; Zurita et al., 2010;

Wang et al., 2012; Busilacchi et al., 2013;

Elder and Thomason, 2014

VEGF bone

bone

bone

BMSC

BMSC

BMSC

mouse/rabbit

rat

rat

to stimulate both angiogenesis, vasculogenesis and

bone regeneration;

To increase blood flow

Kim et al., 2010; El Backly et al., 2013; Bai

et al., 2014

PDGF bone

bone

bone

tendon

BMSC

BMSC

PDLSC

/

rat

dog

human

human

to promote blood vessel and bone healing;

to stimulate new bone formation and angiogenesis.

to stimulate proliferation and osteogenic differentiation;

to enhance tenocyte proliferation and promote synthesis

of ECM

Yamada et al., 2004; Hu et al., 2009;

Scheibel et al., 2011; Kleplová et al.,

2014; Martínez et al., 2016.

bFGF, basic Fibroblast Growth Factor; IGF, Insulin-Like Growth Factor; TGF-β, Transforming Growth Factorβ; VEGF, Vascular Endothelial Growth Factor; PDGF, Platelet Derived Growth

Factor; MSCs, muscle derived stem cells; BMSCs, bone marrow stem cells; ADSCs, adipose derived stem cells; PDLSCs, periodontal ligament stem cells.

to reproduce a tendon-bone insertion site. Studies about the
delivery of TGF-βat bone injury site are controversial. It was
reported that high expression of TGF-β could lead to pathologic
bone formation and collagen secretion. Therefore, it resulted
in abnormal fibrotic synthesis and failure of ideal bone repair
(Shehata et al., 2004). Busilacchi et al. found that PRP could
be regulated by synthetic materials and secrete various GFs for
adipose derived stem cell differentiation. Among them, TGF-β
was obviously elevated and could stimulate bone deposition for
successful fracture healing (Busilacchi et al., 2013).

Vascular Endothelial Growth Factor (VEGF)
VEGFs are a family of signaling proteins that function to
stimulate both angiogenesis and vasculogenesis through a
tyrosine kinase receptor–mediated signaling cascade (Kang
et al., 2012). Several studies have examined VEGF augmentation
of bone repairs, in different stages of bone healing, including
inflammation, endochondral ossification, intramembranous
ossification (Hu and Olsen, 2016). El Backly and colleagues
designed a PRP based scaffold in combination with mesenchymal
stem cells and they found VEGF secretion from PRP contributed
to migration of endothelial cells, thus leading to angiogenesis
and osteogenesis (El Backly et al., 2013). Kim used PRP for rat
cranial bone defect model and discovered blood flow increase
accompanied by upregulated VEGF expression in vivo (Kim
et al., 2010).

Platelet Derived Growth Factor (PDGF)
Platelet-derived growth factor–BB (PDGF-BB) has been shown to
improve healing in bone repair models. Recombinant PDGF can
reduce osteogenic differentiation of mesenchymal cells in vitro.

Hee et al. (2011) implanted a recombinant human PDGF-BB
(rhPDGF-BB) together with a type I bovine collagen matrix, in
order to improve the biomechanical function and morphologic
appearance of the rotator cuff repair in an ovine model.
2 weeks results showed an augmentation in biomechanical
strength and anatomic appearance. Platelet derived growth
factors (PDGF), could be used after a rotator cuff tear, to
induce proliferation and synthesis of tenocytes with appropriate
ECM proteins(Scheibel et al., 2011). In a tendon injury, the
supraspinatus tenocytes are not able to synthesize normal
fibrocartilaginous extracellular matrix (ECM) or collagen II,
but only collagens I and III (Venneri et al., 2007). In an in
vitro study, PDGFs seemed to enhance tenocyte proliferation
and promote synthesis of ECM (Scheibel et al., 2011). Hu and
colleagues found that PRP could upregulate VEGF and PDGF
expression and stimulate BMSCs differentiation into bone (Hu
et al., 2009).

INTERACTION OF PRP DERIVED GROWTH
FACTORS WITH STEM CELLS

Growth Factors and Adipose-Derived Stem
Cells (ADSCs) in Musculoskeletal
Regeneration
The use of adipose-derived stem cells (ADSCs) in bone
regeneration requires a sound knowledge of optimized cell
isolation and handling procedures as well as culture conditions
because these can significantly affect their proliferative capacity,
differentiation potential and gene expression. ADSCs express
surface markers likeCD44, CD73, CD90, and CD105, but are
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negative for CD14, CD34, and CD45 (Gaiba et al., 2012; Khan
et al., 2012).

There are a few in vitro studies about the potential effects
of PRP released GFs on stem cell and their cooperation in
tissue regrowth. Wang et al. discovered that PRP could efficiently
improve proliferation and differentiation of adipose derived stem
cells with secretion of TGF-1 and PDGF-AB. And the effect of
PRP was more long-lasting than platelet-rich fibrin (Wang et al.,
2012).

Besides, the ADSCs could also be strongly induced into
chondrogenic differentiation by 20% PRP derived growth factors
in a cartilage alike microenvironment (Shen et al., 2015).

The combined influence of PRP derived growth factors and
ADSCs was also discussed for in vivo research. Van Pham et al.
noticed that activation of PRP could significantly contribute to a
certain differentiation of ADSCs and improve articular cartilage
regeneration in vivo (Van Pham et al., 2013).

Growth Factors and Bone Marrow Derived
Stem Cells (BMSCs) in Musculoskeletal
Regeneration
Mesenchymal stromal cells (MSCs) derived from a variety of
sources possess the potential to be used in cell-based therapies.
However, due to low proportion of primary MSCs present
in bone marrowplastic adherence and in vitro expansion are
essentialto proliferateBMSCs prior to clinical application.

There are a couple of important in vitro studies in this
field. With the help ofchondroinductive TGF-β3, PRP and
alginate contributed equally to chondrogenic development with
their own characteristics. TGF-β3 was not a necessary factor
for chondroinduction of BMSCs, but this processcould be
hugely accelerated at the presence of TGF-β3 (Zurita et al.,
2010). The alginate bead culture system is indicated to greatly
improve successful chondroinduction of hBMSCs in vitro,
and was therefore used to compare with PRP. Those cells
which do not interact with alginate molecules remain rounded
shapes until a pericellular matrix is created for connections
(Elder and Thomason, 2014). This spherica shape contributes
todifferentiation into chondrogenic tissues. In addition, integrin
dependent cell-ECM reaction stimulated by PRP can greatly
improve chondrogenic differentiation stimulated by TGF-β3.
Besides, the expression of Col-2, Sox-9, and AGC could be
upregulated at the presence of PRP and low TGF-β3 expression
to stimulate BMSC chondrogenic differentiation, which was
possibly affected by joint efforts of various GFs from PRP in
cartilage regeneration (Elder and Thomason, 2014).

In addition, the combined effect was also evaluated in some
in vivo studies. The PRP of 2-5% concentration could better
increase BMSC osteogenic differentiation. In this process, the
expression of PDGF and TGF-β released from PRP were greated
increased, which contributed to a efficient and successful bone
repair (Yamada et al., 2004). Bai et al. discovered that a joint
application of VEGF and bFGF in BMSCs could significantly
stimulate the osteogenesis and increased bone regeneration in a
rat model. The addition of GFs could further contribute to the
differentiation at the beginning of proliferation (Bai et al., 2014).

Growth Factors and Periodontal Ligament
Stem Cells (PDLSCs) in Musculoskeletal
Regeneration
The research on human periodontal ligament stem cells has also
attracted the attention of many scientists. It is very easy to isolate
the PDLSCs for its rich content from the teeth (Yeasmin et al.,
2014). Moreover, the extraction and purification procedures are
commonly adopted, which leads to no major harm to patients
(Xiong et al., 2016).

Previous researches have reported potential impacts of
PDLSCs on combination with PRP in bone regeneration in vitro,
with increased ALP activity and osteogenic differentiation. Some
scientists found that the ALP activity of PDLSCs increased
following treatment with umbilical cord blood-platelet rich
plasma (UCB-PRP) in a dose dependent manner up to a
concentration of 2%. ALP activity decreased with higher
concentration of UCB-PRP. The effects of UCB-PRP on
calcium deposition were similar to those on proliferation and
ALP activity (Lee et al., 2011). Treatment with 2% UCB-
PRP resulted in the highest calcium depositions in HPDLSCs.
The concentrations of platelet-derived growth factor-AB and
transforming growth factor-β1 in UCB-PRP were investigated
and found to be comparable to the amounts in peripheral
blood. Besides, platelet derived growth factors isoforms (PDGF-
AA, PDGF-BB, PDGF-AB), Insulin-like Growth Factor Binding
Proteins 2 and 6 (IGFBP-2, IGFBP-6) were also closely involved
in the process. Overall, UCB-PRP had beneficial effects on
the proliferation and osteogenic differentiation of human
periodontal ligament stem cells (Kleplová et al., 2014). Xu and
colleagues also discovered that a significant enhancement of cell
differentiation in a combined use of PDLSCs and PRP. Various
GFs released from PRP contributed to improved cell sheet
reconstruction, elevated osteogenic gene expression, including
ALP, Runx2, Col-1, and OCN. All of these results displayed
a stronger periodontal tissue regenerative capacity (Xu et al.,
2014).

Martinez also found similar results from in vivo research.
They used PRP and platelet-poor plasma in bone defect model.
Increased expression of PDGF isoforms, including PDGF-AA,-
BB, and AB as well as IGF isoforms, from both platelet
concentrates could stimulate PDLSCs osteogenic stimulation and
calcium deposition at a relatively low concentration (Martínez
et al., 2016).

CONCLUSION

Stem cells have becomemore andmore important in regenerative
medicine and can be isolated easily and reproducibly from
human tissues. They have many advantages such as easy and
long-term proliferation, multi-lineage potential and tolerance
toward hypoxic environments. The application of stem cells from
various tissues in diverse diseases and anti-aging treatments is
very promising in regenerative medicine. PRP is most often
considered as a bio-aggregate of GFs and used to supplement
biomaterials. It can also be prepared with fibrinogen, which can
be easily activated to form fibrin gel with thrombin or calcium.
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Soon later its applications extended across many fields including
periodontal and oral and maxillofacial surgery, treatment of
soft-tissue wounds and so forth. Further investigation will be
focused mainly on the exact signaling pathways in the interaction
between genetic molecules mediated or released from GFs
derived from PRP and their effects in modification, migration,
and differentiation of stem cells. Primary questions lie in: (1)
how to isolate certain GFs that influence a specific stem cell.
We know that PRP derived growth factors can induce stem
cell differentiation, proliferation and adhesion. However, a few
GFs are upregulated at the same time. Therefore, it is hard to
confirm the exact effecting growth factor in the process. (2)
how to control and prolong the effective time of each growth
factor for the best use. Normally, GFs are active under certain
conditions for a short period of time. Proteins can be inactivated
by many physical and chemical cues. It brings some difficulty
to clinical scenario applications. (3) how to successfully prepare
a desired PRP with a specific isolation protocol. There are
many isolation methods with different facilities under varies
temperature, humidity, and blood origin. It is hard to reach a
consensus for the best PRP purification protocol. More emphasis
will be laid on this aspect in preclinical and clinical researches.
Once we can elucidate the underlying mechanism completely,

we will illuminate the road ahead and create more miracles in
musculoskeletal regeneration.
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