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Besides mediating hemostatic functions, platelets are increasingly recognized as

important players of inflammation. Data from experiments in mice and men revealed

various intersection points between thrombosis, hemostasis, and inflammation, which

are addressed and discussed in this review in detail. One such example is the intrinsic

coagulation cascade that is initiated after platelet activation thereby further propagating

and re-enforcing wound healing or thrombus formation but also contributing to the

pathophysiology of severe diseases. FXII of the intrinsic pathway connects platelet

activation with the coagulation cascade during immune reactions. It can activate

the contact system thereby either creating an inflammatory state or accelerating

inflammation. Recent insights into platelet biology could show that platelets are equipped

with complement receptors. Platelets are important for tissue remodeling after injury has

been inflicted to the endothelial barrier and to the subendothelial tissue. Thus, platelets

are increasingly recognized as more than just cells relevant for bleeding arrest. Future

insights into platelet biology are to be expected. This research will potentially offer novel

opportunities for therapeutic intervention in diseases featuring platelet abundance.
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INTRODUCTION

In recent years, an increasing body of evidence demonstrates that platelets have several functions
beyond hemostasis (1, 2). For instance, abundant evidence highlights the role of platelets for
atherosclerosis, inflammation, and tissue regeneration. For example, platelets contribute to vascular
inflammation of the brain during stroke or experimental autoimmune encephalitis (EAE) (2, 3).
As a consequence, the question was raised whether platelets may even be considered as immune
cells, despite the fact that they are not equipped with a nucleus (4). Most of the data available
today originate from studies performed in small animal disease models and, thus, require validation
in the course of the aforementioned diseases in patients. This is especially true in the context of
immunology, since there are distinct differences between species (5). In this review, we seek to
highlight the role of platelets for immune responses during thromboinflammation. In particular, we
will address the relevance of platelet-associated mechanisms directly affecting the course of diseases
in patients, as well as translational approaches.
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PLATELETS ORIGINATE FROM
MEGAKARYOPOIESIS LOCATED IN THE
BONE MARROW

Like other hematopoietic cells, platelets are produced in the
bone marrow (4). They are characterized by a small cell
size and are missing a nucleus (4). Mean platelet volume
in healthy individuals usually is in a range of 7 to 13
femtoliter (6). In the bone marrow, platelets derive from
megakaryocytes. So far, one of the most important, but also best
investigated factors known to be involved in megakaryopoiesis
and platelet development is the cytokine thrombopoietin (TPO)
(7). After binding of thrombopoietin to its counterreceptor
Myeloproliferative Leukemia Virus Oncogene (c-MPL) on
the megakaryocyte surface, intracellular signaling through
Janus Kinase 2 (JAK2) is triggered (8, 9). The process of
megakaryopoiesis is still incompletely understood, so far. For
example, when thrombopoietin or the respective counterreceptor
c-MPL is missing, the total amount of platelets is reduced
to 10% of the normal platelet count (7). At the same time,
platelet function as well as platelet morphology are not altered
under these conditions (7) indicating that redundant factors
besides thrombopoietin are involved in the process of terminal
megakaryocyte maturation (10). Of note in myeloproliferative
neoplasias (MPN), megakaryocytes are part of the malignant
clone and source of inflammatory cytokines (11, 12), leading to
chronic inflammation, constitutional symptoms and induction
of fibroblast proliferation and bone marrow fibrosis (13) which
are characteristic for primary and secondary myelofibrosis. In
addition, this chronic inflammatory state might drive clonal
evolution, cardiovascular disease and thrombohemorrhagic
complications in these patients (14). The JAK1/2 inhibitor
ruxolitinib attenuates inflammatory cytokines in myelofibrosis
and clinical responses correlate with cytokine attenuation
(15). Furthermore, there are hints pointing toward a role of
megakaryocytes in antigen presentation through MHC-I leading
to CD8 T-cell activation (16). Additionally, transfer of antigen
loadedMHC-I frommegakaryocytes to proplatelets has also been
described (16). Vice versa, the inflammatory cytokine IL-6 was
shown to be linked to increased plasma levels of thrombopoietin
and an ultimately increased platelet number in a murine and
human setting (17) and TPO was shown to augment platelet
P-selectin (CD62P) expression stimulating platelet-leukocyte
associations (18).

PLATELET RECEPTORS AND
INTERACTIONS

Despite being small particles, platelets are equipped with a
multitude of receptors to interact with themselves, with other
cells, e.g., endothelial cells and cells of the immune system and,
of course, with the extracellular matrix (Figure 1). In general,
four types of receptors can be found on platelets: integrins,
glycoproteins, selectins and receptors of the immunoglobulin
type (Figure 2). First, after injury to the vessel wall has occurred,
GPIbα on the platelet surface binds von Willebrand factor

(VWF). This is especially important under conditions of high
shear stress such as in the arterial branch of the vascular
system (19). In addition, platelets bind to exposed subendothelial
collagen fibers through glycoprotein VI (GPVI) (20–22), finally
leading to a high affinity state of GPIIb/IIIa (23) (Figure 2).
Subsequently, fibrinogen can be bound to GPIIb/IIIa on the
platelet surface thereby crosslinking platelets with platelets and
platelets with endothelial cells (24). Inhibiting GPIIb/IIIa was
shown to be beneficial in myocardial infarction (25), however
in stroke, clinical studies revealed an increased risk of bleeding
(26). Ongoing thrombus formation is further supported by
interaction of integrins on the platelet surface with fibrinogen
and components of the extracellular matrix such as collagen and
laminin. Interaction with fibrinogen is mediated through integrin
α5β1 on the platelet surface, binding to laminin is mediated
through integrin α6β1 (27). In addition, binding to collagen
also involves integrin α2β1, which brings about platelet filopodia
and lamellipodia formation (28). After platelet activation has
happened, mediators from platelet granules are released further
fueling platelet activation (29). Among these are P-selectin, VWF
and fibrinogen from α-granules and ADP, calcium and serotonin
from dense granules (30–32). Selectins were shown to be involved
in platelet-endothelial and platelet-leukocyte interactions as well
especially under conditions when the endothelial barrier is
not disrupted (Figure 3). For instance, in ischemia-reperfusion
injury platelets were shown to be involved in leukocyte
recruitment since both adherent leukocytes as well as emigrated
leukocytes were significantly reduced when either platelets were
depleted through administration of platelet depleting serum
or platelet receptors were blocked through administration of
blocking antibodies (33). Besides platelets, P-selectin as well
as VWF are stored within Weibel-Palade bodies in endothelial
cells, too (34, 35). P-selectin on platelets was shown to interact
with PSGL-1 expressed on leukocytes (36). The interaction of
P-selectin on platelets with PSGL-1 was also demonstrated for
platelet-neutrophil interactions (37, 38). In addition, platelets
can interact with endothelial cells through binding of GPIbα on
platelets to P-selectin expressed on endothelial cells (39). Under
conditions of inflammation such as in atherosclerotic lesions,
platelet-mediated recruitment of leukocytes through platelet P-
selectin has been shown to be followed by platelet binding with
CXCR3 to inflamed endothelium expressing CX3CL1 (40).

Another mechanism especially relevant for the recruitment of
dendritic cells to the vascular wall was shown to be mediated
by JAM-C (Figure 2), a member of the immunoglobulin family
of receptors expressed on platelets, and MAC-1 on dendritic
cells (41). Interaction of MAC-1 with platelets bound to
endothelial cells has been shown for endothelial transmigration
of neutrophils, too (42). Both the interaction of platelets with
neutrophils as well as the interaction of platelets with DCs
initially requires binding of platelet P-selectin to PSGL-1 on
leukocytes (41, 42). Interestingly, MAC-1 was shown to be
a binding partner of platelet GPIbα, too (43). Fascinatingly,
MAC-1 deficiency goes along with delayed thrombosis although
hemostasis seems not to be affected (43). This raises the question
whether targeting MAC-1 could offer a way to efficiently inhibit
thrombosis without hampering with hemostasis.
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FIGURE 1 | The role of platelets for tissue remodeling, apoptosis and angiogenesis. Platelets can have an influence on tissue remodeling under different pathological

and physiological conditions. For tissue remodeling as well as apoptosis and angiogenesis, platelets are equipped with a multitude of receptors. HGF and SDF-1, for

example, are of relevance in tissue fibrosis. In addition, platelets can release a multitude of proteins. Among these are proteins with strong pro- or antiangiogenic

effects. PF4 and endostatin are known to inhibit angiogenesis. In contrast, VEGF, which platelets can release as well, strongly increases angiogenesis. Since platelets

are transported within the blood-stream they can reach almost all organs and tissues thereby even influencing processes associated with inflammation in the brain

and systemic diseases like atherosclerosis. In addition, platelet mediated apoptosis through FasL on the platelet surface has been reported in the brain. VEGF,

vascular endothelial growth factor; PF4, platelet factor 4; SDF-1, stromal derived factor; HGF, hepatocyte growth factor; JAM-C, junctional adhesion molecule C; IL1β,

Interleukin 1β; FasL, Fas-ligand; ADP, adenosine diphosphate; FXII, coagulation factor XII.

Finally, platelets were shown to be involved in the recruitment
of CD34+ bone marrow cells and bone marrow progenitor
cells to sites of vascular injury (44), linking platelets to tissue
remodeling and neointima formation. In this context, platelet
P-selectin as well as GPIIb/IIIa were shown to be involved
(44). Blockade of platelet receptors with monoclonal antibodies
abrogated recruitment of CD34+ cells to sites of vascular injury,
further underlining the relevance of platelets for recruitment of
bone marrow cells to the vascular wall (44).

PLATELETS ARE CLOSELY LINKED TO
THE PLASMATIC COAGULATION SYSTEM,
THEREBY LINKING HEMOSTASIS AND
THROMBOSIS TO INFLAMMATION

Platelets mediate thrombosis and hemostasis through the
different receptors expressed on the platelet surface but also
through soluble mediators released immediately after platelet
activation. With respect to hemostasis, platelets operate in
parallel to the plasmatic coagulation cascade. In a recent
review, the ongoing debate on whether platelets can release
tissue factor or not is delineated in a concise fashion (45).
Some studies show that platelets can release tissue factor by
themselves after activation (46), for instance on the surface of
platelet microparticles (47). Tissue factor initiates the extrinsic

coagulation cascade (48, 49). On top of that, procoagulant activity
was significantly reduced after either tissue factor or F VII were
missing in thrombin-activated platelets adhering to fibrinogen
(46). Accordingly, in the presence of anti-tissue factor antibody
an increased time was observed for clot formation (46). In
contrast, other studies were not able to show a role of platelets for
tissue-factor mediated coagulation. One study could only show
enhanced tissue factor expression when monocytes were present
besides platelets, too (48). In another study, no relevant tissue
factor secretion could be detected after prolonged stimulation
of platelets with lipopolysaccharides (LPS) (50). In the same
study, stimulation of a monocyte cell line with LPS yielded
large amounts of tissue factor leading to clot formation through
activation of the extrinsic coagulation cascade (50), indicating
that monocytes in contrast to platelets are responsible for tissue
factor production.

There is also evidence that platelets interact with the
intrinsic pathway of the coagulation system (Figure 2). Platelets
contain polyphosphates that can be externalized onto the
platelet membrane, thereby creating a large surface with
negative charge triggering activation of coagulation factor
XII (contact system of the coagulation cascade) (51). After
activation, FXII activates FXI thereby further accelerating
coagulation. Additional investigations regarding the role
of FXII for coagulation revealed that FXII is necessary for
stable thrombi in different models of arterial injury in mice
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FIGURE 2 | Mechanisms of interactions between platelets and their microenvironment. Platelets were first recognized to be important for thrombosis and hemostasis

after vessel injury has happened. In addition, there is accumulating evidence that platelet function goes beyond thrombosis and hemostasis. Platelets interact with a

multitude of cells and proteins. Among these are receptors and proteins modulating thrombosis/hemostasis, e.g., GPIbα, GPIIb/IIIa, GPVI, and polyphosphates. In

addition, platelets modulate inflammation, e.g., through C3aR, JAM-C, PSGL-1, P-selectin, CXCR4. GPIbα, glycoprotein Ibα; GPIIb/IIIa, glycoprotein IIb/IIIa; GPVI,

glycoprotein VI; C3AR, receptor for complement factor 3; JAM-C, junctional adhesion molecule C; CXCR4, C-X-C-chemokine receptor type 4.

(52). Coagulation Factor XII, besides mediating coagulation,
seems to have a role for driving inflammation, as well. After
activation, FXII drives activation of the prekallikrein-kininogen-
bradykinin-cascade whereby inflammation is triggered (53).
Strikingly, in humans FXII deficiency is not associated with
an increased bleeding risk. In contrast, in a study population
of 74 patients suffering from FXII deficiency, two subjects had
already suffered venous thromboembolism at an age <40 years
(54). In an experimental design where FXII knockout mice
as well as wildtype mice were subjected to transient middle
cerebral artery occlusion (tMCAO), FXII knockout mice showed
similar reduction in cerebral blood flow in MRI measurements
2 h after tMCAO (55). However, 24 h after tMCAO cerebral
blood flow was markedly improved in FXII knockout mice
compared to their wildtype counterparts (55). In addition, in
tMCAO intravascular fibrin deposits leading to vessel occlusion
were reduced in FXII knockout mice. In wildtype animals
however, occluding thrombi contain both platelets and fibrin
suggesting synergism between FXII mediated fibrin formation
and platelets (56). Indeed, knockout mice for FXII showed
impaired platelet rich occlusive thrombi in distinct arterial
beds (57). This finding was also reported to be of particular
relevance in the context of neurovascular inflammation
since mice lacking FXII showed protection from ischemic
brain damage (55).

PLATELETS, DESPITE LACKING A
NUCLEUS, EXHIBIT TRANSLATIONAL
ACTIVITY AND CAN RELEASE A
MULTITUDE OF ACTIVE FACTORS

Early experiments in the 1960 by Warshaw et al. produced first
evidence on protein synthesis by platelets since they could inhibit
translational activity in platelets with puromycin (58). However,
it took several decades and the power of PCR technology
and proteomics to demonstrate that platelets are capable of
protein synthesis since they incorporate RNA as well as a
transcriptional and translational machinery (59). Interestingly,
platelets can splice intronic interleukin-1β pre-mRNA generating
fully mature interleukin-1β mRNA and interleukin-1β protein
(60). Interleukin 1 comprises a group of 11 cytokines with
both pro- and anti-inflammatory effects and is a good example
demonstrating the role of platelets at an intersection between
inflammation and thrombosis (61) (Table 1). The release of a
multitude of factors from platelets makes them powerful tools
for interaction with various cells and tissues (Figure 1, Table 1).
Platelet proteomics could reveal that more than 300 proteins
are secreted from human platelets after they become activated
by thrombin (62). Among these were proteins responsible
for coagulation including the factors FV or FXIII (62), but
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FIGURE 3 | Mechanisms of activated platelets after organ transplantation Platelets may be activated before, during and after allogeneic organ transplantation. Direct

interaction with the immune system may occur via simultaneous P-selectin and CD40 binding to leukocytes. Non-nucleated platelets contain dense granules with

serotonin, ADP and α-granules with pro-inflammatory cytokines, such as RANTES, TNFα, PDGF, and VWF. Surface receptors including glycoprotein receptors lead to

collagen binding, VWF and fibrogen activation. Activated leukocytes adhere to the endothelium of transplanted grafts, migrate and release growth factors and

pro-inflammatory cytokines finally leading to smooth muscle cell proliferation, collagen deposition and further leukocyte activation.

also proteins such as albumin, platelet factor 4 (PF4, CXCL4)
or matrix metalloproteinase inhibitor 1 (62). Finally, factors
responsible for tissue remodeling such as CXCL12 (SDF-1) and
growth factors, for example hepatocyte growth factor (HGF), can
be released by platelets (63, 66). In addition, a specialized way
of how translational activity in platelets is modulated through
altered ribosome function has been uncovered. It was observed
that the platelet lifespan was linked tomRNA and ribosomal RNA
content, both of which were reduced with increasing platelet
age (78). A recent study could show that loss of the RNA
surveillance factor Pelota is a decisive mechanism by which
platelets stop decay of their limited pool of mRNA (79). This
finding seems to be of relevance in a clinical context, too, since
an association of platelet protein synthesis and cardiovascular
disease could be demonstrated. Platelet WDR-1 (WD-40 repeat
domain 1) mRNA and protein level was found to be significantly
lower in patients suffering from cardiovascular disease compared
to matched controls (80). WDR-1 is known to enhance actin
depolymerizing factor activity (81), thereby altering the platelet
cytoskeleton (82). In addition, WDR-1 mutations in mice were

linked to defects in neutrophil cytoskeleton and defective platelet
production and, finally, brought about macrothrombocytopenia
and autoinflammation (83). Whether the autoinflammation
observed in this model is attributable only to defective neutrophil
function or if platelets are involved as well, e.g., through altered
platelet-neutrophil interactions, still remains to be investigated in
the future.

PLATELETS INTERACT WITH CELLS OF
THE INNATE IMMUNE SYSTEM AND
ENDOTHELIAL CELLS MAKING THEM
IMPORTANT PLAYERS INVOLVED IN
SEPSIS AND INFLAMMATION-INDUCED
BLEEDING

When inflammation takes place, endothelial cells lining the
inner surface of blood vessels become activated and change their
receptor expression profile and their phenotype. Platelets as well
as VWF were shown to be closely linked to inflammation in
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TABLE 1 | Receptors and factors associated with platelets relevant for

thromboinflammation.

Receptor/Factor Relevant for References

IL1β Inflammation (60, 61)

PF4 Tissue remodeling/angiogenesis (62)

CXCL12(SDF) Tissue remodeling (63–65)

HGF Tissue remodeling (66, 67)

tissue factor Coagulation (46, 47)

polyphosphates/FXII Coagulation/thromboinflammation (51)

GPIbα/VWF Coagulation/atherosclerosis/

neuroinflammation/

thromboinflammation

(19, 68, 69)

GPIIb/IIIA/fibrinogen Coagulation/atherosclerosis/

neuroinflammation

(19, 68, 69)

GPVI/collagen Coagulation (20, 21)

ADP Coagulation (70)

thromboxane A2 Coagulation (70)

serotonin Coagulation/inflammation (71, 72)

P-selectin Inflammation/atherosclerosis/

thromboinflammation

(36, 44)

PSGL-1 Inflammation (36)

JAM-C Inflammation/apoptosis (41)

C3aR Inflammation/atherosclerosis/thrombosis (73, 74)

C5aR Atherosclerosis (75)

VEGF Tissue remodeling/angiogenesis (76)

endostatin Tissue remodeling/angiogenesis (76)

FAS-L Tissue remodeling/apoptosis (77)

a neurovascular setting (84). For instance, antibody-mediated
blockade of platelet GPIbα, the receptor for VWF, after
induction of tMCAO was associated with improved cerebral
blood flow in magnetic resonance imaging (85) leading to
improved outcome (86). In addition, deficiency in VWF was
paralleled with a protective phenotype in tMCAO, as well (87).
In contrast, when VWF was reconstituted in VWR knockout
mice, protection from cerebral ischemia was diminished
(87). A common finding in severe generalized infections
and sepsis is that platelet count is markedly reduced (88).
In addition, a prolonged time span of thrombocytopenia is
correlated with increased mortality in intensive care patients
(88). Clinical data, although derived from retrospective
studies, indicate that treatment with antiplatelet drugs is
beneficial under conditions of severe inflammation/sepsis
raising the question of how platelets might be involved in
sepsis (89, 90).

Interestingly, in thrombocytopenia inflammatory mediators
like LPS increased the risk of bleeding (91), underlining the
importance of platelets not only for thrombosis and hemostasis
but also for inflammation. This finding was demonstrated in
various models of inflammation inmice. For instance, whenmice
were suffering from thrombocytopenia, induction of contact
dermatitis resulted in increased bleeding compared to WT
animals (91). Investigations using the dorsal skinfold chamber
model, which enables in vivo observations of the vascular
system, further confirmed the relevance of inflammation for

bleeding in cases of thrombocytopenia (91). Mice suffering
from severe thrombocytopenia as well as inflammation induced
by application of LPS showed spontaneous intraalveolar
hemorrhage (91). In addition, inflammatory bleedings under
conditions of thrombocytopenia in the skin as well as in the lungs,
were shown to be strongly dependent on neutrophil-endothelial
interactions, thereby involving endothelial VE-Cadherin (92). In
addition, platelet GPVI was shown to attenuate inflammation-
induced bleeding mediated through neutrophils by binding to
exposed subendothelial collagen (93). Recently, the maintenance
of inflammatory hemostasis was shown to be organ- and
stimulus-dependent, i.e., GPVI and GPIIb/IIIa were not required
for prevention of intraalveolar bleeding after LPS challenge,
while GPIbα attenuated inflammation-induced bleeding in the
lung (94).

However, in sepsis adverse outcome is not only due to
inflammation-induced bleeding. Instead, increased mortality
could be observed irrespective of bleeding in cases when
thrombocytopenia was present (95). Here, platelet transfusion
was shown to be beneficial with respect to sepsis (95). The
mechanisms behind the protective role of platelets observed,
involved prostaglandin E2 biosynthesis within platelets
through COX-1, and activation of prostaglandin receptors
on macrophages (95). Furthermore, platelets have been
demonstrated to protect from extracorporeal-circulation
induced inflammatory lung injury. Here, platelet transfusion was
associated with milder lung injury which also went along with
decreased levels of TNFα and neutrophil elastase which were
measured in the blood plasma (96). Blocking platelet GPIIb/IIIa
through administration of Tirofiban reversed the observed effects
(96). Finally, platelets were shown to limit neutrophil-induced
endothelial damage by interaction with neutrophil elastase, as
well (93).

Furthermore, the interplay of DCs and platelets was shown
to be of paramount importance with respect to bacterial
infections. Listeria monocytogenes is a bacterial infection
threatening immunocompromised individuals as well as creating
fetal infections that finally can lead to abortion (97, 98).
Recently, new insights on the role of platelets for infection with
Listeria monocytogenes were published. Platelets, with the aid of
complement C3 and GPIbα, were shown to be directly involved
in the transport of Listeria to splenic CD8α+ DCs, which then
cross-present antigenic peptides via MHC-I to T-helper cells
thereby creating an adaptive immune response (99). Besides
Listeria, C3-mediated platelet association could be demonstrated
for other gram-positive bacteria, e.g., Staphylococcus aureus
(99). This further underlines the importance of platelets for
any defense against bacteria and the development of adaptive
immunity. In addition, blockade of GPIIb/IIIa had protective
effects when sepsis was induced in mice (100). Furthermore,
when GPIIb/IIIa was blocked, reduced levels of apoptosis in
splenocytes in an in vitro approach were observed (100).

Another link of platelets to inflammation could be
demonstrated in vivo in a mouse model of immune complex-
mediated systemic shock, since interaction of platelets with
immune complexes led to serotonin release from platelets
(71) (Table 1). After platelet depletion, injection of immune
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complexes did not create a systemic shock-reaction according to
the clinical scores (71). Further investigations of the mechanisms
underlying platelet response to immune complex-mediated
shock revealed that GPIIb/IIIa is necessary in this context
since dysfunctional receptor ligand interaction due to mutated
fibrinogen abrogated immune complex-mediated systemic shock
(71). In contrast, neither P-selectin nor GPIbα were required for
immune complex-mediated shock (71).

PLATELETS INTERACT WITH THE
COMPLEMENT SYSTEM

The complement system is a very old and well-conserved
cascade of proteases produced in the liver, which are involved
in clearance of dead cells as well as pathogens that have passed
the natural barrier between the body and the environment
(101, 102). The complement system is involved in various
human pathologies associated with dysregulated platelet function
and disseminated thrombosis in microvessels, e.g., hemolytic
uremic syndrome (HUS) (103). In atypical HUS (aHUS),
deposition of complement factors C3 and C9 could be verified
on the platelet membrane (104). Furthermore, CD40L expression
was increased on platelets, indicating platelet activation (104).
Complement receptors for C3a and C5a are expressed on
platelets, too (73, 75) (Table 1). Interestingly, in HUS renal
dysfunction is caused through microthrombosis in the renal
vascular system and mutations in complement C3 were shown
to predispose to development of aHUS (105). Investigating the
role of platelets for cardiovascular disease, we were able to
show in a clinical study with patients suffering from coronary
artery disease that expression of complement receptor for
C5a on platelets (C5aR) could be correlated to markers of
platelet activation (75). Interestingly, in vitro investigations of
platelets with flow cytometry performed after platelets had
been stimulated with oxidized low-density lipoprotein (oxLDL)
revealed that expression of C5aR and P-selectin increased after
platelet incubation with oxLDL (75). In the same study, an
inverse correlation between platelet bound oxLDL and plasma
C5a could also be observed (75). Another study performed in
this field uncovered a strong correlation between expression of
C3aR and GPIIb/IIIa on human platelets with known coronary
artery disease (73), further highlighting the intimate connection
between the complement system and platelets. When thrombi of
cardiovascular patients were analyzed, coexpression of C3aR and
GPIIb/IIIa was evident (73). Additional investigations in vivo in
a mouse model deficient for either C3aR or C3 revealed that C3a
affects not only bleeding time but also tissue injury after stroke,
myocardial infarction and thrombosis (73). Reconstitution of
mice deficient for C3aR with WT platelets, could reverse the
observed protective effects of C3aR deficiency with respect to
thrombosis-related ischemic injury (73). Bleeding was aggravated
in the C3aR knockout mice, which could be reversed after
transfusion of WT platelets (74). In addition there is increasing
evidence that platelet P-selectin could be a receptor for C3b,
underlining the close intersection between coagulation and
inflammation (106). The crosstalk between platelet activation

and the complement cascade is a good example of how closely
platelets link inflammation to thrombosis and vice versa.

THE ROLE OF PLATELETS FOR TISSUE
REMODELING, APOPTOSIS AND
ANGIOGENESIS

The Role of Platelets for Tissue
Remodeling
Besides the established function of platelets for coagulation,
there is also increasing evidence for a function of platelets
in tissue remodeling and angiogenesis (Figure 1, Table 1).
For example, platelets are directly involved in the process of
atherosclerosis, even before any thrombotic event. Massberg
et al. could demonstrate in a mouse model of ApoE deficient
mice suffering from severe atherosclerosis, that the development
of atherosclerotic lesions was preceded by platelet adhesion to
the endothelium through interaction of GP Ibα and GPIIb/IIIa
with the arterial wall (68). Platelet adhesion was the first
event preceding atherosclerotic plaque formation, followed by
leukocyte adhesion to the vascular wall (68). There is conclusive
evidence supporting a role of platelets not only for acute
atherothrombosis, for instance in myocardial infarction, but also
in the process of chronic vascular inflammation. For example,
individuals suffering from familial hypercholesterolemia display
elevated levels of platelet microparticles in the blood (107).
These microparticles exhibit markers of platelet activation such
as P-selectin or GPIIb/IIIa and tissue factor (107). Furthermore,
MRI-imaging performed in these patients revealed increased
atherosclerotic plaque burden reflecting dangerous lipid-rich
cores prone to rupture, particularly in the case when tissue factor
bearing microparticles were present (107). Increased levels of
platelet microparticles were also reported in patients suffering
from severe heart failure requiring cardiac assist device therapy
(108). These patients often suffer both from bleeding disorders as
well as thromboembolic complications (109) andmanagement of
coagulation is a major concern.

As already mentioned, platelets can release various factors
already known from tissue remodeling processes (Figure 1).
Among those factors released from platelets are CXCL12
and hepatocyte growth factor (HGF), respectively (44, 63,
66) (Table 1). HGF is highly relevant in tissue fibrosis and
remodeling as investigated in an in vivo model, in which Syrian
hamsters suffering from hereditary cardiomyopathy were treated
with HGF (67). The animals showed severe cardiac dysfunction
and fibrosis. After treatment with recombinant HGF for 3 weeks,
cardiac fibrosis was ameliorated (67). This was accompanied by
reduction of transforming growth factor β 1 (TGFβ1) and type
I collagen (67). Interestingly, platelets themselves were shown to
interfere with HGF, as well, since they could inhibit migration of
mesenchymal stem cells to apoptotic cardiomyocytes. HMGB-1
released by platelets was directly involved in this process (110,
111). However, the inhibitory role of platelets for recruitment
of stem cells has also been questioned since an inhibitory effect
on recruitment of vascular endothelium has been reported,
too (112).
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CXCL 12 also known as SDF-1, which can be released
by platelets, is involved in neointima formation after vascular
injury through recruitment of vascular smooth muscle cell
progenitors (64, 65). First, SDF-1 is released by media
smooth muscle cells undergoing apoptosis after injury has
happened (65). Subsequently, SDF-1 binds to platelets which
then are attached to the vessel wall at sites of injury
(65). This is followed by attachment of smooth muscle
cell progenitor cells to the platelets mediated by P-selectin
and CXCR4, the SDF-1 counterreceptor (65). With respect
to cardiovascular disease it has been demonstrated that
platelet expression levels of SDF-1 correlate with adverse
outcomes (113).

Platelets were shown to be involved in experimental
autoimmune encephalitis (EAE) as well, linking them to another
field of neuroinflammation and tissue remodeling besides stroke
(69, 114). Experimental autoimmune encephalitis is a preclinical
model for the human disease multiple sclerosis (MS), during
the course of which inflammation of the brain is induced
through administration of central nervous tissue or myelin
peptides (115). Both in the human as well as in the murine
disease, platelet specific CD41 was shown to be upregulated in
brain tissue (69, 116). In addition, the course of the disease
was affected as a result of platelet depletion. When platelets
were depleted through administration of platelet depleting
serum in the effector phase of the disease, reduced microgliosis
within inflamed brain tissue could be observed. Both interfering
with platelet GPIbα as well as platelet GPIIb and the GPIbα
counterreceptor on leukocytes, MAC-1, through administration
of blocking antibodies was able to ameliorate EAE (69). Recently,
the importance of the timing of platelet depletion for the
course of the disease was further supported by another study
(114). Platelet depletion in the immunization phase of EAE did
not have an impact on the course of the disease (69, 114).
Microarray analysis of the spinal cords after induction of EAE
revealed several factors relevant for inflammation such as CCL2,
CCL5, CXCR4, and IL1βwhich were downregulated significantly
after platelet depletion (69). The question whether platelets
themselves, are drivers of neuroinflammation in the context
of experimental autoimmune encephalitis, or whether they
contribute to experimental autoimmune encephalitis through
recruitment of inflammatory leukocytes either by receptor-
ligand interaction with leukocytes or by releasing inflammatory
mediators is still open. Hopefully, future research will be able
to resolve this question thereby significantly improving therapies
for patients suffering from multiple sclerosis.

The Role of Platelets for Angiogenesis
Angiogenesis in general is a tightly regulated process that is
modulated by a multitude of cells and soluble factors (117, 118).
Angiogenesis can be beneficial, for instance with respect to
wound healing and tissue regeneration (117, 118). However,
angiogenesis can also be harmful since tumors need a so-
called angiogenic switch to grow beyond a certain size (117,
118). Angiogenesis is tightly associated with inflammation (119).
Some of the proteins released from platelets possess angiogenic

potential either exerting pro- or antiangiogenic responses
on endothelial cells (Table 1). Experimental approaches using
Matrigel, an extracellular matrix from the Engelbrecht-Holm-
Swarm (EHS) sarcoma, together with endothelial cells is an
established way to investigate angiogenesis in vitro (120). In
a Matrigel model, a proangiogenic effect of platelets could
be demonstrated after endothelial cells and platelets had been
added (121). Interestingly, platelets directly adhere to endothelial
cells (121). Adding platelet supernatant to the Matrigel showed
significantly reduced tube formation compared to adding
platelets (121), further supporting that direct platelet-endothelial
interaction is necessary for the observed proangiogenic effect in
vitro. Regarding platelet physiology, differential release of pro-
or antiangiogenic factors happens depending on the stimulus
(122). There are hints that ADP as well as GPVI favor a
proangiogenic phenotype of platelets (122). In addition, platelets
can release VEGF after stimulation with ADP (76). In contrast,
PAR-4 favors an antiangiogenic phenotype of platelets (122).
This was also observed, when platelets were stimulated with
thromboxane A2 since this triggered release of the antiangiogenic
agent endostatin (76). Platelets have been recognized as a major
source of vascular endothelial growth factor (VEGF) (123), one
of the most important growth factors involved in angiogenesis
(124). When VEGF is released, it can bind to a variety of
growth factor receptors thereby directing proangiogenic effects
(124). After VEGF has bound to endothelial cells, they start to
proliferate and to form tubes, which results in the formation
of new vessels with recruitment of pericytes as well as smooth
muscle cells (124).

Furthermore, platelets have also been implicated in ischemia-
induced revascularization after arterial occlusion, which is
primarily achieved by arteriogenesis (125). Platelets have been
shown to recruit bone marrow-derived cells in response to
ischemia in mouse models of hindlimb ischemia or tumor
implantation in mice (126). After platelet depletion through
administration of an anti GPIbα antibody, levels of bone marrow
cells within the tissue were significantly reduced (126). Among
the different factors mediating platelet function, α-granules as
well as the antiangiogenic protein thrombospondin were shown
to be relevant for the observed effects (126). In addition, a role
of platelet microparticles for angiogenesis has been reported,
too (127).

These effects may be the reason why platelet-rich plasma
(PRP) is a potent agent to foster wound healing. Using PRP
in a patient collective suffering from dehiscent sternal wounds
or necrotic skin ulcers has been shown to be beneficial since
duration of hospital stay after administration of PRP was
almost half of the time in patients with dehiscent sternal
wounds compared to standard care (128). Unfortunately,
detailed investigations of the underlying mechanisms were not
undertaken, so far, and we are left with speculating on the
molecular mechanisms involved. Nevertheless, a COCHRANE
review has confirmed the clinical benefit of the administration of
platelet-rich plasma in patients with diabetes and chronic wounds
(129), offering promise for future platelet-based therapies in
this field.
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The Role of Platelets for Apoptosis
Recently, there were hints from preclinical studies in a murine
model that platelets may be involved in the process of apoptosis
(Figure 1, Table 1). Apoptosis in general can be induced both
through external signaling as well as through internal pathways
(130). The external pathway involves several factors (TNFα, FasL,
TRAIL), which after binding to their respective receptor activate
an intracellular signaling cascade finally leading to activation
of a set of specialized enzymes the so-called caspases (130).
Besides the external pathway there is an intrinsic way how
apoptosis can be initiated as well. The intrinsic pathway relies
on cytochrome c which activates caspases after their release
from mitochondria (130). Finally the cells undergo a special
programwhich finally leads to cellular clearance (130). Schleicher
et al. could demonstrate that platelets can be found in the brain
tissue after experimental stroke in the tMCAO stroke model.
Apoptosis in the brain tissue was reduced after platelet depletion
(77). Similar observations were made when GPIbα deficient
mice were used (77). Further analysis revealed that platelets
express FasL in their membrane thereby mediating apoptosis
(77). In contrast, Bax/Bak signaling of the internal pathway
of apoptosis was not required but additionally contributed
to apoptosis (77). A previously unrecognized role of platelets
for apoptosis was also identified in the context of platelet-
DC interactions. JAM-C was shown to be directly involved
in platelet-DC interactions mediating apoptosis of DCs (41).
Platelets were directly responsible for the recruitment of DCs to
the vessel wall. In vivo, when no vascular lesion was present in
a model of carotid artery injury, no DCs were recruited to the
vessel wall. In contrast, after vascular injury, the number of DCs
adhering to the vessel increased markedly (41).

Finally, patients suffering from human immunodeficiency
virus (HIV) were shown to have an increased rate of
cardiovascular events (131), despite having achieved stable
disease by means of combined antiretroviral therapy. In
addition, in vitro investigations could show that markers
of platelet activation, e.g., P-selectin were upregulated under
this condition (132). Furthermore, activation of the intrinsic
pathway of apoptosis was more prevalent in platelets from
patients suffering from HIV infection despite being under
viral control (132), suggesting dysregulated platelet function
as one possible contributing factor to increased numbers
of cardiovascular events. This was further underlined in a
HIV positive patient collective suffering from acute coronary
syndrome where, despite receiving Aspirin and P2Y12 inhibitor
therapy, high residual platelet reactivity could be measured (133).
However, the mechanism underlying the observed dysregulated
platelet function in patients suffering from HIV is incompletely
understood, yet. Altogether, the data reported strongly point
to an intimate connection of platelets and inflammation and a
function of platelets beyond thrombosis and hemostasis.

Platelets and Cancer
A common finding is that cancer is associated with thrombosis
and embolism (Trousseau phenomenon). The increased risk
of thrombosis in cancer can be attributed to a variety
of mechanisms, including increased expression and release

of procoagulant factors and microparticles by tumor cells
and platelets, abnormal tumor vascularity and increased
inflammation [reviewed in (134)]. An increasing body of
evidence indicates that, in addition to increasing the risk of
thrombosis, platelets can also contribute to tumor progression
and metastasis by altering the tumor microenvironment, by
expression of growth factors and proangiogenic factors and
by assisting neoplastic cells to evade apoptosis (76, 135–137).
In addition, platelets can promote metastasis by protecting
tumor cells in circulation from immune surveillance and by
assisting tumor cell adhesion and transmigation of the vascular
endothelium (138, 139). Investigations in the field of platelets
and cancer have shown that induction of thrombocytopenia by
platelet-depleting antibodies increased the efficacy of paclitaxel
therapy in a murine model of breast cancer, likely through
increased tumor vascular permeability (140). In addition, platelet
depletion caused intratumor hemorrhage in different tumor
models in mice (141). Interestingly, no increase in intratumor
hemorrhage could be observed when GPIbα was blocked (141).
However, as expected, tail bleeding time was markedly increased
after blockade of GPIbα (141). In patients suffering from ovarian
cancer, the patients’ platelet count had a prognostic relevance.
Thrombocytosis was associated with reduced overall survival and
resistance to chemotherapy (142, 143). Although these results
point to a central role of platelets in cancer biology, these
insights did not translate to therapeutic strategies exploiting the
function of platelets in cancer progression and metastasis, so
far. While the use of low-molecular-weight heparin has been
demonstrated to reduce the rate of recurrent thrombosis and
thus represents the current standard in patients with cancer who
suffered venous thromboembolism (144), the use of antiplatelet
therapies in patients with cancer remains controversial. Although
retrospective analyses suggest protective effects of daily aspirin
for some cancers (145), antiplatelet drugs have not entered
cancer therapy.

Platelets Participate in Vascular
Remodeling After Organ Transplantation
During the process of solid organ transplantation, platelets
can be activated at multiple points. Activation and subsequent
degranulation may already occur during graft procurement
in organ donors (146). Brain death boosts a catecholamine
storm resulting in organ malperfusion (147). Furthermore,
blood or platelet transfusions administered perioperatively can
promote platelet activation. Prolonged ischemia during organ
procurement or transplantation results in platelet activation via
P-selectin and CD40L (148, 149). Platelet activation in organ
recipients can occur in patients with preexisting diseases such
as atherosclerosis (150) or in contact with bioincompatible
surfaces such as in dialysis patients, patients with a ventricular
assist device and, of course, through contact with surfaces
during extracorporeal circulation at time of transplantation
(151, 152). Subsequently, activated platelets may trigger an
inflammatory reaction of endothelial cells and interfere with
leukocytes resulting in cellular rejection (153, 154) (Figure 3).
These processes may lead to the development of cardiac allograft
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vasculopathy and are the basis for a series of experiments
regarding the role of platelets for chronic rejection after
heart transplantation (155, 156). The experimental therapeutic
approach of platelet inhibition with the P2Y12 ADP receptor
blocker clopidogrel especially in combination with an mTOR
inhibitor was very effective in a mouse aortic transplantation
model, where allograft vasculopathy was almost abolished
(157, 158). These findings paved the ground for a multi-
center clinical trial called CEDRIC. However, the CEDRIC
trial (Clopidogrel add on Certican: Effects on Coronary
Diameter Reduction and Intimal Hyperplasia in Long-term
follow-up after Cardiac Transplantation) had to be terminated
due to recruiting problems and therefore further studies are
necessary to ultimately validate this concept for a broad clinical
application. Taken together, platelets play an important role in
vascular remodeling after organ transplantation through both
antithrombotic properties and the above-mentioned immune
modulatory effects (Figure 3).

CONCLUDING REMARKS

Taken together there is increasing evidence for a role of
platelets beyond hemostasis and thrombosis. Platelets are
closely connected to inflammation. Contextual examples

for this intimate connection between platelets and
thromboinflammation are the plasmatic coagulation system
as well as the complement system. Nonetheless, a lot of
questions are still unanswered. One such question is how
the beneficial effect of FXII deficiency on ischemic stroke
can be explained. Solving this question might point the way
how the outcome of this—sadly—very often disabling disease
might be improved for patients. Another promising field of
research is the close connection of the complement system
and platelets to diseases featuring disseminated thrombosis,
e.g., hemolytic uremic syndrome. Effective therapies for
HUS are still missing, which raises the question, whether
a clinically beneficial resolution of thrombus formation
can be achieved by modulation of platelet function. Future
research in platelet biology has the potential to show us even
more novel, previously unexpected ways how platelets are
directly involved in the most fundamental processes of health
and disease.
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