
Platform-Centric
Self-Awareness as a Key
Enabler for Controlling
Changes in CPS
This paper addresses the challenges in managing the continuous change and evolution

of CPSs and their operation environment. It presents two frameworks, controlling con-

current change (CCC) and information processing factory (IPF), for building self-aware

CPSs that have the capabilities of self-modeling, self-configuration, and monitoring.

By MISCHA MÖSTL , JOHANNES SCHLATOW, ROLF ERNST, NIKIL DUTT, AHMED NASSAR,
AMIR RAHMANI, FADI J. KURDAHI, THOMAS WILD, ARMIN SADIGHI, AND ANDREAS HERKERSDORF

ABSTRACT | Future cyber–physical systems will host a large

number of coexisting distributed applications on hardware

platforms with thousands to millions of networked compo-

nents communicating over open networks. These applications

and networks are subject to continuous change. The current

separation of design process and operation in the field will

be superseded by a life-long design process of adaptation,

infield integration, and update. Continuous change and evo-

lution, application interference, environment dynamics and

uncertainty lead to complex effects which must be controlled

to serve a growing set of platform and application needs.

Self-adaptation based on self-awareness and self-configuration

Manuscript received July 26, 2017; revised May 2, 2018; accepted May 25, 2018.

Date of current version September 14, 2018. This work was supported by the

Marie Curie Actions of the European Union’s H2020 Programme, Deutsche

Forschungsgemeinschaft (DFG) under Grants FOR1800, ER168/32-1, and

HE4584/7-1; and by the U.S. National Science Foundation (NSF) under Grant

CCF-1704859. (Corresponding author: Mischa Möstl.)

M. Möstl, J. Schlatow, and R. Ernst are with the Institute of Computer and

Network Engineering, Technische Universität Braunschweig, Braunschweig

38106, Germany (e-mail: moestl@ida.ing.tu-bs.de; schlatow@ida.ing.tu-bs.de;

ernst@ida.ing.tu-bs.de).

N. Dutt, A. Nassar, and F. J. Kurdahi are with the Center for Embedded &

Cyber–physical Systems, University of California at Irvine, Irvine, CA 92697-2620

USA (e-mail: dutt@uci.edu; anassar@uci.edu; kurdahi@uci.edu).

A. Rahmani is with the Center for Embedded & Cyber–physical Systems,

University of California at Irvine, Irvine, CA 92697-2620 USA, and also with the

Institute of Computer Technology, Technische Universität Wien, 1040 Vienna,

Austria (e-mail: amirr1@uci.edu).

T. Wild, A. Sadighi, and A. Herkersdorf are with the Chair for Integrated

Systems, Technische Universität München, Munich 80290, Germany (e-mail:

thomas.wild@tum.de; armin.sadighi@tum.de; herkersdorf@tum.de).

Digital Object Identifier 10.1109/JPROC.2018.2858023

has been proposed as a basis for such a continuous in-field

process. Research is needed to develop automated in-field

design methods and tools with the required safety, availability,

and security guarantees. The paper shows two complementary

use cases of self-awareness in architectures, methods, and

tools for cyber–physical systems. The first use case focuses

on safety and availability guarantees in self-aware vehicle

platforms. It combines contracting mechanisms, tool based

self-analysis and self-configuration. A software architecture

and a runtime environment executing these tools and mech-

anisms autonomously are presented including aspects of self-

protection against failures and security threats. The second

use case addresses variability and long term evolution in

networked MPSoC integrating hardware and software mecha-

nisms of surveillance, monitoring, and continuous adaptation.

The approach resembles the logistics and operation principles

of manufacturing plants which gave rise to the metaphoric

term of an Information Processing Factory that relies on incre-

mental changes and feedback control. Both use cases are

investigated by larger research groups. Despite their different

approaches, both use cases face similar design and design

automation challenges which will be summarized in the end.

We will argue that seemingly unrelated research challenges,

such as in machine learning and security, could also profit from

the methods and superior modeling capabilities of self-aware

systems.

KEYWORDS | Cyber-physical systems; design automation;

embedded systems; self-awareness

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1543

https://orcid.org/0000-0002-5486-4870

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

I. I N T R O D U C T I O N

A future cyber–physical system (CPS) will host a large

number of coexisting distributed applications on hard-

ware platforms with thousands to millions of networked

components communicating over open networks. These

distributed applications will include critical tasks, such as

road-traffic control involving communicating autonomous

cars and infrastructure, or smart energy controlling the

energy grid down to the individual device. Often, distrib-

uted applications follow common design objectives, such

as energy-efficiency, and guarantees for high availability,

real-time or safety.

Such CPS reach far beyond classical embedded system

design processes controlled by a single owner. They are

subject to permanent change, environment dynamics and

application interference. Applications using self-adaptation

or machine learning dynamically change their properties

and their resource requirements. Resulting short adapta-

tion cycles of CPS applications would introduce system

dynamics never experienced in the history of electronic

design automation (EDA) before. Given the rapidly grow-

ing number of such CPSs and applications, there would

not be enough engineering, service and maintenance per-

sonnel for user directed integration.

Communication has long adapted to this develop-

ment by standardizing protocols and dynamically adapt-

ing the networks and resource assignment to changing

user requests. From this perspective, the Internet-of-Things

appears as a natural extension of the approach taken

in communication. However, CPS design goes further,

addressing complex side effects of such an approach

on distributed applications. Even more so, the approach

used in communication counters the established design

processes for safety-critical and high-availability systems

that assume static design processes organized in prede-

fined, well-structured steps from concept all the way to in-

field maintenance, and require highly predictable behavior

as a basis of worst case guarantees. These requirements are

formulated in safety standards, e.g., the generic standard

IEC 61508 [1], the automotive standard ISO 26262 [2], or

the avionics standard DO 178C [3].

To comply with these requirements, designers partition

the system into noncritical and critical parts. The design

idea behind this approach is to keep the critical parts

static, which is currently a prevalent approach for mixed-

criticality systems [4]. The approach resulting from the

partitioning is to apply methods for static systems to the

critical part of the system. Among these methods are

techniques that promise strong isolation, such as static

time driven scheduling [5, Ch. 10] or static system configu-

rations as, e.g., in AUTOSAR. Static time slicing—a specific

form of time-driven scheduling—is, for example, applied

in the ARINC 653 standard for avionics equipment [6]. It

dictates that, if a CPU shall be shared among software with

heterogeneous certification requirements, the partitions

for the software must be fully isolated through static time-

slice scheduling. In the ideal case, this is possible, e.g., if

software from different time partitions does not commu-

nicate. However, implementing ARINC 653 systems, e.g.,

on multi-core architectures where software communicates

across cores, is already a complex issue. Challenging design

issues arise if software with dynamic behavior, which

according to the applied design paradigm must be assigned

to the noncritical domain, must communicate with crit-

ical applications in the static part. While static budget

assignments (e.g., time-slicing) might be feasible for sys-

tems deployed and maintained by an original equipment

manufacturer (OEM) as the “single owner” (e.g., aircrafts)

if all variables are known in sufficient detail, it is much

more complicated in multi-owner systems. In any case,

ARINC 653 and AUTOSAR both do not provide answers

on how change—i.e., change of software, hardware, goals,

paramaters, environment, etc.—can be managed under the

constraints introduced by multi-ownership and dependen-

cies such as communication between static and nonstatic

system parts.

Hence, handling change is a first class problem in future

CPS. The current separation of design process in the lab

and operation in the field will be superseded by a life-

long design process of adaptation, in field integration, and

update. Like most other system design processes, safety

standards use the V-model to structure the system design

process [2]. While the left branch of the V defines the

design and implementation steps from requirements to

implementation, the right branch defines the test and inte-

gration steps. The objective is to migrate part of the right

branch to the field, such that in-field integration can incre-

mentally accommodate changes. This does not necessarily

mean that in-field integration becomes an online design

process, but it requires right-branch design automation

which can be applied in the field. Unfortunately, the right

V branch is less automated than the design steps on the

left. Important methods like the Failure Mode and Effects

Analysis (FMEA) [7] are currently executed by the user

with little formal and tool support, much like the inte-

gration verification that uses simulation and often has to

resort to prototyping due to lack of complete and accurate

models from the design steps. So, the EDA challenge of

this approach is to provide a suitable model basis and

appropriate algorithms and methods to support in-field

integration.

For clarification in this paper, we distinguish several

terms for methods executed in the field. At-runtime meth-

ods are executed while an application under change is

active, i.e., concurrent to the application. They are also

called online methods. At-downtime methods are executed

while the application under change is not active. All these

methods are subsumed under in-field methods. In-field

methods have in common that they become part of the

overall system function, in contrast to traditional lab-based

methods following a separated design process. Here, we

avoid the term “design-time” usually denoting all activ-

ities before deployment, because in this paper, design is

extended beyond deployment.

1544 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

A possible foundation for in-field EDA methods is the

concept of self-awareness as will be explained in the

next section. After the discussion of self-awareness in

Section II, we will elaborate on two different use cases

for the application of self-awareness in CPS design and

maintenance. The first use case in Section III elaborates on

the controlling concurrent change (CCC) approach, which

aims to automate functional changes. This use case focuses

on application change and integration. It relies on model-

based contracting methods as well as automated analysis

of platform interdependencies, and is exemplified based

on an automotive systems example. The second use case

is introduced in Section IV. It is a concept for efficient,

autonomous, and adaptive multiprocessor system-on-chip

(MPSoC) platform control under aging and changing oper-

ating conditions which shall enable long lifetime for mixed

criticality applications. We present cyber–physical system-

on-chip (CPSoC) as an exemplar self-adaptive MPSoC with

a sensor-actuator-rich platform deploying a closed-loop

paradigm emulating large-scale CPS. This presented exam-

ple addresses the interplay of load profile, platform physics

and model-based platform self-control in an information

processing factory (IPF). In our conclusion in Section VI,

we will utilize the use cases to summarize topics for EDA

research into self-aware CPS.

II. S E L F-A WA R E N E S S

Self-awareness is well known in computing systems and

includes a wide-range of capabilities, such as adaptivity,

autonomy, self-modeling, etc. In particular, many research

fields have been using self-awareness or related concepts

in the past such that a variety of definitions can be found

for this. This section therefore clarifies our generalized

understanding of self-awareness and introduces it as a key

concept for controlling changes in CPS.

A. Status

More than a decade ago, self-awareness was proposed

for autonomic computing. In their seminal 2003 paper [8],

Kephart and Chess from IBM envision “computing sys-

tems that can manage themselves given high-level objec-

tives from administrators.” Required capabilities already

included self-configuration, self-optimization, self-healing,

and self-protection against defined security attacks. Auto-

nomic computing addresses large scale computer systems,

as used in enterprise computing which are continuously

controlled and maintained by humans, the administrators.

Autonomic computing supports administration by auto-

mated diagnosis and offloads from detailed knowledge

of functions and dependencies. Since then, many new

contributions extended the role of maintaining these sys-

tems in an application-centric way. Applications interact

with networked computing systems using control-theoretic

mechanisms to optimize quality of service (QoS) for a

variety of objectives. Self-awareness was used in the for-

mation of virtual platforms supporting systems integration,

increased system dynamics, and openness [9] preparing

the basis for today’s big data applications.

Meanwhile, this principle of self-awareness can be found

in many research fields from control engineering [10]

and autonomic computing [8] to traffic psychology [11].

Hence, many definitions of self-awareness can be found

in literature, emphasizing different aspects of the targeted

contexts [12]. We therefore resort to a very basic definition

that generalizes the overall concept.

Definition 1: Self-awareness is the ability (of a comput-

ing system) to recognize its own state, possible actions and

the result of these actions on itself, its operational goals,

and its environment (including physics).

A major step in the development of self-aware solu-

tions was the extension to networked embedded systems

which are not supervised by humans. New paradigms,

such as organic computing were proposed emphasizing

self-control based on objectives derived from complex

models of self-awareness or leading to emergent behav-

ior [13], [14]. Physical system properties, such as media

quality, automatic control quality, or energy consumption

were added to account for embedded systems functions

and resource constraints [15], [16]. Most recently, self-

awareness in computing systems has been described as

a shift from a reactive to a proactive operation that is

achieved by a model-based loop of learning, reasoning and

acting as an architectural concept [17]. In this context,

group-awareness is defined as the ability of a subject to

distinguish between itself, the environment and the peer

group. The latter is treated differently by associating it with

peer-group-specific expectations and goals [18].

Most of the previous work, however, proposes specific

self-aware solutions for individual applications. In-field

application integration and networked system control

require platform-centric self-awareness that is flexible

enough to handle very different types of applications. In

the following we propose such an approach.

B. Self-Awareness as a Modeling Basis

Definition 1 assumes that system self-awareness requires

an implicit or explicit self-model that not only describes

its current state but also the possible next states. In a

manual design and maintenance process, this knowledge

is encoded in design documents and in the competence of

the integrator. Migrating parts of the integration process to

the field requires formalization of this knowledge to derive

appropriate, formally applicable methods. In practice, doc-

umentation is not complete, might be partly imprecise, and

uncertain. Due to dynamics, the data change over time.

With self-awareness, self-modeling becomes an inde-

pendent EDA research goal. This includes methods for

setting up, maintaining and verifying a self-model under

the concerns of uncertainties and inaccuracies.

Definition 2: Model uncertainty is a set of structural

properties and parameters of a model that are undecidable

or ambiguous.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1545

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

As an example, consider thread mapping on a multi-

core processor. If the scheduler decides thread assignment

at runtime, the model cannot ultimately specify on which

core of the processor the thread will execute. Furthermore,

the speed of a core may vary, if power-saving techniques

such as frequency scaling are applied—hence the worst

case execution time (WCET) of a task can vary depending

on the power-state of the processor.

In self-modeling, models of different design aspects

can be combined. The fusion of such partial models can

reduce uncertainties or help to detect inconsistencies. This

can include physical sensory data as in the IPF example

in Section IV. Such “uncertainty management” can help

to improve design efficiency. Model semantics can be

extended to handle different kinds of uncertainties from

sensor data, possible errors in sensor interpretations, or

data with limited trustworthiness.

While uncertainty is part of the model semantics, inac-

curacy describes the deviation of the model from physical

reality.

Definition 3: Model inaccuracy is the result of insuffi-

cient approximation of a model to the realities,

for instance, the inappropriate application of a lin-

ear model to nonlinear behavior. Such inaccuracies can

arise from unobservable state changes, modeling errors or

deviations, or undetected software errors. Besides these

safety relevant aspects, inaccuracies can also originate

from intentionally incorrect models, which may become a

security issue. There are many approaches to detect and

often quantify inaccuracies: experimental plant character-

ization known as system identification in control theory

[19], execution time monitoring [20] or profiling, to name

a few which are applied in the use cases as follows.

Handling model inaccuracies is a necessity: while possible

inaccuracies could generally be captured as model uncer-

tainties, the resulting large uncertainty bounds will make

design with such general models unfeasible.

Fig. 1 shows how we structure self-modeling for

CPS w.r.t. three different aspects. The function self-

representation models the coexisting and interacting appli-

cations and their logical architecture. The platform self-

representation models the platform components and their

Fig. 1. Self-representation in CPS.

interaction while the physical representation models the

physical environment and the physical properties of the

CPS. This structure was chosen to reflect the world of

existing EDA models and shall open the door for applying

EDA methods in the field. However, in current design

practice, these models are used in separate verification

steps, usually based on simulation and/or prototyping. By

applying these models in completely separate phases, it is

only required that the models represent the same static

design. Yet, using unrelated models is not sufficient for

self-awareness, as changes in one model must be reflected

in the other models to know the consequences on the

system state, actions and environment (cp. Definition 1).

Although there exist techniques such as sandboxing [21]

which constrain these consequences, they can only cover

part of the possible effects—they are certainly helpful

but not sufficient. Instead, we require knowledge about

relations between objects of different models in order to

establish a coherent and self-aware view on a CPS. Note

that this can be achieved by applying a holistic modeling

methodology where the models follow a clear abstrac-

tion hierarchy, which is sufficient but not necessary for

model coherence. More precisely, model coherence does

not require a strict specialization/abstraction relation as

found in holistic meta-models; the necessary and sufficient

property is that related models are free of conflicting

information, i.e., are coherent.

Hence, automated in-field integration requires more for-

mal methods and dependencies between models become

crucial. As an example, an FMEA for distributed CPSs (see

Section III) can reveal dependencies between functions

extracted from a combination of function and platform

models. Such a dependency can arise from timing inter-

ference on a processor core or from a clock frequency that

is influenced by the ambient temperature. Therefore, new

in-field methods and respective EDA tools require model

coherence. The two use cases of this paper exploit coher-

ence between two model types each, as shown in Fig. 1.

The goal of self-awareness in the use cases is to ensure

self-modeling and monitoring to maintain an accurate

image of the system state. Through these self-awareness

capabilities automatic design steps are possible, that would

traditionally be lab-based and carried out by engineers.

Our goal in both use cases is to move automated steps

into the field. The in-field EDA tasks are then subject

to the same verification and validation as the traditional

lab design, with the only difference that it is performed

automatically. In the following two use cases, we focus

on different challenges when applying (platform-centric)

self-awareness to enable in-field EDA for CPSs: The CCC

use case follows an analytical approach with contracting,

dependency analysis, formal safety analysis, and monitor-

ing for handling functional changes. It primarily focuses

on dealing with model uncertainty in both (functional

and platform) worlds. The challenge here is to automat-

ically maintain coherent models that capture and monitor

safety and other nonfunctional properties of the entire

1546 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

system that result from platform sharing. The IPF use

case relies on incremental changes and feedback control

of (physical) effects of the platform, i.e., system iden-

tification and model coherence from platform models

upward is the primary goal. Dealing with the complexity

of modeling physical effects and the involved uncertainties

and inaccuracies becomes a major challenge in this use

case. With respect to self-awareness, both approaches are

challenged by the platform complexity of CPSs (e.g., het-

erogenity, architectural complexity) as well as the ubiqui-

tous nonfunctional requirements in this domain. The latter

must not be neglected but rather dealt with at design

time and by self-awareness in combination, i.e., at design

time, the room and boundaries (design corridor) should be

specified and leave room for self-awareness to cope with

uncertainties and inaccuracies at runtime.

III. S E L F-A WA R E A R C H I T E C T U R E

F O R C O N T I N U O U S C H A N G E

A N D E V O L U T I O N

Updates for commodity embedded systems, such as smart-

phones, have nowadays become an established technique.

They either bring new applications to the device or

change existing applications or functionalities. Updating

has become an integral part of the life cycle and is done

while devices are in the field and in the possession of

consumers. The enabler for this is the shift towards deploy-

ing the devices as an open platform rather than a closed

product such that third-party updates do not need to be

channeled through the device’s OEM. On the contrary,

designing and deploying updates and new applications for

other embedded systems and especially CPSs remains a

difficult and challenging task, which is addressed by the

German DFG Research Unit CCC (eight faculties, six years

funding) at TU Braunschweig.

When trying to answer the question, why continuous

updates and lifetime (software) maintenance are rarely

done for embedded systems that carry out safety-critical

functions, one has to take a look at the design process of

these systems and their applications. The classical V-model

as depicted in Fig. 2 is the prevalent method to structure

the design process of these systems. In the V-model, every

system—which is a set of functionalities, carried out by a

defined set of applications—is designed by starting with a

requirements specification at the left top of the V. During

Fig. 2. V-Model for system-level development.

traversal of the V, these are refined on the descending

branch and culminate in the hardware and software imple-

mentation at the bottom of the V. On its ascending branch,

integration of individual functions and subsystems takes

place such that extensive testing or validation can be

applied to verify whether the initial requirements are met.

The V-model design object can range from a single appli-

cation to a complete vehicle integration with many inter-

dependent applications. In the context of safety-critical

application domains, the understanding of system is rather

holistic, taking the platform with all its functionalities into

account. In other domains, it is also common to understand

individual functions as the system under development, as

for instance done with smartphone apps. In the latter case,

as the individual functions are developed in isolation, such

a process would require total isolation of functionalities on

the platform, which is not achievable for CPS. This can be

easily understood with the following example: Consider a

vehicle as an example for a CPS. The functions of braking

and accelerating for longitudinal guidance are two integral

functions of any vehicle. Both require the wheels of the

vehicle to carry out their task, i.e., they share elements of

the CPS. Consequently, there must be a mutual exclusion or

a strict hierarchy between the two functions to operate cor-

rectly, which is impossible to realize if the functionalities

are to be totally isolated. As in the given example, many

functionalities of CPSs can be safety critical, i.e., can cause

harm to humans or their environment. Therefore, com-

mon safety standards, such as ISO 26262 in the automo-

tive domain or IEC 61508 for general electric/electronics

(E/E) or programmable-electronic (PE) systems, require

the V-model as a system-level process. Individual function

designs can also follow the V-process, but the overarching

and holistic V-process for the system is essential, as—

besides careful implementation—safety guarantees are a

direct result of this process guiding the system’s integra-

tion. In this process, methods like FMEA [7] or fault tree

analysis (FTA) [22] are applied to reveal dependencies

introduced through the implementation, as these can cause

(harmful) interference between functions. Because of such

side effects, the results of these methods are only valid for

exactly one configuration/parametrization and allow no

variances within the functions and their implementation.

Furthermore, as a system is a static set of functionalities

and their implementation, any update, upgrade or other

change forms a new system. As a consequence, this new

system has to undergo the complete process again if

safety must be ensured for any element in the systems.

Enforcement of properties that technically enable func-

tional safety in the original system can certainly provide

partial isolation, however, are not necessarily sufficient as

it is not guaranteed that other introduced dependencies

can undermine the isolation.

With respect to allowing in-field changes to safety-

critical systems—which is one of the main goals of CCC—

we therefore need to automate the essential steps of

this design process. This particularly includes the steps

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1547

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

that enable, e.g., safety assurances as a property of the

process. Hence, in-field changes, such as software updates,

become an EDA problem as these changes must undergo

the system-level design process to be integrated into the

system. In the scope of CCC, we develop such an auto-

mated integration process that not only approaches safety

requirements but also security, availability and real-time

aspects in applications for the automotive domain and

avionics. In this context, we further use the term change to

consolidate all aspects of intended alterations of a system’s

platform or functional representation. Such changes can,

for instance, not only originate from user input but also

from a new operation environment that triggers a func-

tional adaptation, or from a degrading platform.

In the remainder of this section, we elaborate on how

this EDA problem is approached in the scope of CCC,

and also provide insights into the architectural approach

that enables the in-field application of such an EDA. In

particular, we describe a modified design process that is

tailored for a continuous life-cycle management of CPSs.

We also elaborate on what particular methods are applied

in order to automate design decisions and still provide

strong guarantees on nonfunctional requirements such as

safety and security. With the architectural approach in

CCC, we further emphasize the role of self-awareness as

a key concept to close the gap between model-based EDA

methods and the actual CPS.

A. Cross-Layer Modeling and Dependency
Analysis

As any EDA method relies on suitable modeling, we

now summarize the important aspects of modeling for

automated integration in the design process. We extend

the idea of self-representation of systems introduced in

Fig. 1 by a more detailed cross-layer model that picks up on

modeling function as well as its platform. An example for a

cross-layer model can be found in Fig. 3, which is formally

Fig. 3. Cross-Layer modeling.

represented as a graph. At the top layer of the functional

model (light blue box), we find a logical architecture of

the system, describing the high-level logical elements of

a system (dark blue blocks). These logical elements map

to individual functions (red circles) which are necessary

to carry out the intended actions described by a logi-

cal element. This mapping is indicated in Fig. 3 by the

blue dashed arrows between logical elements and func-

tions. Interactions and dependencies between particular

elements are expressed by solid black arrows. Note that

one functionality can have mapping ties with more than

one logical element and can thus be shared within the

system, e.g., f4 in Fig. 3 which is a shared function.

Although logical elements appear as independent ele-

ments in the logical architecture, coupling of these can

already exist on the function layer by sharing a com-

mon function. In general purpose systems, changing and

modifying logical elements of a system is comparatively

easy, as all functional dependencies are known and can be

tested in advance. This test can, e.g., follow the V-model

process. However, in CPS design one faces a number of

additional nonfunctional requirements such as functional

safety, isolation for better security, real-time, reliability,

availability, and many more. As these requirements are

tied to platform- and implementation-specific knowledge,

the architecture layers in the platform model from Fig. 3

provide a detailed view on these aspects. The software

architecture describes the implementation of functions

in software, as well as the interaction within the soft-

ware system. The elements of the software architecture

itself are deployed on several (logical) hardware elements

(processors, memories, peripherals, etc.) as described by

the mapping relations between software and hardware

architecture. Again, the hardware architecture captures

hardware dependencies. The mappings from hardware to

physical architecture describe on which particular chip

hardware elements are integrated.

We can see that each architecture layer within the

functional model and the platform model has distinct prop-

erties that it describes and which are typically abstracted in

hierarchical models. Nevertheless, the dependencies that

are explicit in lower layers affect elements in higher layers,

as dependencies are only hidden by abstraction but not

eliminated, for instance, by sharing a common hardware

element such as a processor (in the hardware architecture)

or an operating system service/function (in the function

architecture).

By introducing mapping relations between the architec-

ture layers, a cross-layer model of the system is derived.

This model enables tracking dependencies resulting from

a multitude of effects on the different modeling layers.

One can identify cross-layer dependencies that are not

present in the architecture of the affected elements, i.e.,

the elements’ architecture model suggests that both ele-

ments are independent. In order to do this, the Functional

Model alone does not suffice, and possible dependencies

within the implementation, hence the platform model,

1548 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

must be considered as well. Consider the system sketched

in Fig. 3. Dependencies either appear directly in an archi-

tecture model between two elements, or via mapping to

an element in another layer. Consequently, also paths that

traverse multiple layers can construct a dependency path

for elements that have no direct dependency in their own

architecture.

As a first example we illustrate that already the function

architecture can procure dependencies that are abstracted

on the logical architecture. On the Logical Architecture we

see three independent elements in Fig. 3. Due to the map-

ping relations, we can, however, track that the logical ele-

ment 2 is implemented by function f3, which resorts to the

shared function f4. However, f4 is also used by f5, which

creates a dependency between the two functions and thus

also between the logical element 2 and 3. Further, and as

a second example highlighting the importance of the Plat-

form Model, we have to consider that the implementation

of f3 is realized in software component s3. We can track

a path in the graph given by Fig. 3 from s3 via CPU2, s2,

to f2, which maps to logical element 1. In consequence,

also elements 1 and 2 must be assumed dependent on each

other, as long as no reasoning whether all dependencies

are relevant has been performed. Note that, in order to

assume two elements as independent under all relevant

dependencies, no path of relevant dependencies must exist

between them in the cross-layer model. This implies that,

in the case of f3, f4, and f5, from the first example we must

also show that there is no relevant dependency between f3

and f5 on other architecture layers.

These examples highlight the necessity of cross-layer

modeling as a prerequisite for exposing dependencies, that

otherwise would be hidden by abstraction and possibly

neglected. However, it also carves out that, besides expos-

ing the dependencies, an evaluation of them is necessary

due to their sheer number. Evaluation thus implies that

dependencies must be quantified to be assessed as either

relevant or negligible for a certain functional or nonfunc-

tional property in the context of the system.

We refer to the discovery, quantification, and assess-

ment of dependencies in the cross-layer model as depen-

dency analysis. This requires for cross-layer modeling that

coherency of the models must be ensured at any time, i.e.,

if change happens, the implications must be reflected in all

respective models, and dependency analysis must assess

the resulting cross-layer model.

While seemingly solving the dependency analysis prob-

lem, application of such a cross-layer model faces two

main challenges. While individual layer models are usually

available, at least in critical designs, the mapping relations

between layers are often only known late in the design and

are likely to be updated in case of changes on any of the

levels. That is the rationale behind the holistic approach

of fault analysis. In case of dynamic mapping, such as

in case of task migration or dynamic scheduling in the

runtime system, dependencies can even change at run-

time. So, mapping and dependency analysis must be able

to handle uncertainties and underspecified systems. This

is addressed by defining sets of possible mappings and,

hence, sets of possible dependencies [23]. The second chal-

lenge is relevance. When following all possible dependency

paths in Fig. 3, it becomes obvious that all elements depend

on each other. This is an overly pessimistic result which

is useless for safety critical systems design. Therefore,

the dependencies must be classified by relevance for the

effects under analysis. Usually, such classification requires

dependency quantification. Well known examples include

error probabilities or timing interference. Today, relevance

is determined by a human expert in a time-consuming

and error-prone process. The current lack of appropriate

models and automated methods is a main obstacle for a

useful cross-layer design analysis and, consequently, for

automated change management for safety critical systems.

For a design process, that particularly aims at

incrementally changing a system, a suitable formulation

of change is necessary. In the CCC approach, change

requests are formalized that specify a modification

based on models, i.e., every change request includes the

“new” executable software along with a suitable model,

describing it. An important prerequisite for software

changes is a certain modularity and interchangeability.

In software engineering, this is well-known as separation

of concerns. More specifically, component-based software

engineering is one approach that emphasizes this principle

by composing a software system from components that

solely interact over well-defined interfaces. The interfaces

generalize from the actual implementation and therefore

keep the components interchangeable.

In CCC, we aim for component-based models of CPS—

including software as well as hardware components—as

they reduce dependencies in the architecture to the explic-

itly modeled interfaces and thereby keep the dependency

analysis tractable. The components are generic building

blocks of the system that is composed from these compo-

nents such that they implement the desired functionality

and fit to the particular target platform. Each change to

the system must be coherently representable in a system-

wide model for analyzing any potential cross-layer depen-

dencies, as well as for other analyses to ensure freedom

from interference for the individual functions that a set of

(software) components create.

B. Architectural Approach

In the scope of CCC, an architecture is developed that

implements the aforementioned life cycle of CPSs, partic-

ularly with applications in automotive vehicles and space

robots. This architecture is composed of two segregated

domains: the model domain and the execution domain.

Fig. 4 depicts the resulting system architecture. The

execution domain is based upon existing operating

systems and runtime environments that execute on

multiple (networked) platform components and host

several application components. It is further augmented by

application and platform shaping/monitoring capabilities

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1549

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

that allow parameter enforcement and the observation

of the application and platform components at runtime.

All changes to the execution domain are managed by the

model domain, which is implemented by the multichange

controller (MCC). The MCC therefore performs the

integration of changes and deploys the corresponding

configurations to the execution domain. The interface

between execution domain and model domain is built on

a contracting formalism. Contracts can be seen as sets

of assumptions and resulting guarantees if the specified

assumptions are fulfilled. In the CCC setup, contracts are

negotiated between the model and the execution domain,

i.e., if the execution domain’s behavior complies with the

model domain’s assumptions, the system provides the

negotiated guarantees.

In the ideal case, contracts are executed properly, i.e.,

the model assumptions are faithful and the execution

domain behaves accordingly. However, this is an idealized

view on systems, assuming complete and correct knowl-

edge. In real systems, inaccuracies in the form of a devia-

tion of model and corresponding observation are the norm.

To cope with these inaccuracies, the interface of model

and execution domain in Fig. 4 provides the model domain

with metrics observed in the execution domain. This inter-

face allows the model domain to interpret the metrics and

detect deviations of actual behavior from model knowl-

edge. Knowledge about deviations is the basis for adjust-

ing models to make them coherent with observed behav-

ior. This self-modeling ability is a prerequisite for self-

awareness in the CCC system. To achieve self-awareness,

the model domain must further be able to negotiate new

contracts on the refined self-model of the system. Note that

the execution domain’s operation is independent from this

refinement and negotiation whereas its configuration may

only be changed at (function) downtime.

Fig. 4. CCC architecture comprising a model domain (red), an

execution domain (green) as well as changing software/hardware

components (gray).

1) Model Domain: The CCC model domain is imple-

mented by the MCC (cf., Fig. 4), which takes full control

over the configuration of the execution domain. Such a

configuration specifies all relevant parameters that are

necessary to set up the execution domain. In order to

guarantee an uninterrupted operation, we only permit con-

figuration changes at downtime of the execution domain,

i.e., in a safe state. Nevertheless, the MCC may operate

as a (budgeted) background process at runtime of the

execution domain, as long as normal operation of the

system is not impaired.

One objective of the MCC is to find a suitable config-

uration for a specified set of integration contracts. These

contracts are a formalization of parameters and require-

ments of, e.g., a software or hardware component. More

specifically, the MCC guarantees that all the contracted

requirements (e.g., response time) are satisfied by the

resulting configuration under the assumption that the com-

ponents adhere to the specified parameters (e.g., execution

time). In realistic systems, the contracted requirements

will depend on parameters from other integration con-

tracts. For instance, a response time constraint can only be

guaranteed if the given execution times of all interferers

are accurate and conservative. Cross-layer dependency

analysis allows us to discover all relevant parameters that

act as assumptions for a certain requirement. We formalize

this relation as tuples of assumptions and guarantees and

thereby create derived contracts which we use to establish

the contracting interface between the model domain and

execution domain. This contracting interface effectively

closes the gap between models and implementation as

it enables the MCC to react to changes in the assump-

tions. This becomes particularly relevant in the presence of

model uncertainties and inaccuracies, for which we must

question the quality of the provided guarantees.

In general, any change will trigger the MCC to perform

an automated design process in reaction to the changed

integration contract or derived contract. For this purpose,

the MCC must keep a coherent cross-layer model of the

supervised system covering software and hardware com-

ponents, operating system (OS) and runtime environment

(RTE), as well as shaping and monitoring mechanisms.

As previously stated, we separate functional and platform

aspects in the model (cf. Fig. 3) due to the fact that the

functional model depends on the application domain and

the platform model on the target platform.

For the platform, we apply a component-based and

service-oriented model in which the platform hosts sev-

eral software/hardware components that communicate

via service-oriented interfaces. Given a functional model

of the system, the MCC must decide which components

need to be part of the system in order to integrate the

modeled functionality and how these components must

be connected. For this, we differentiate between applica-

tion components and repository components: An application

component implements (a part) of a particular function

and can therefore be directly related to the functional

1550 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

model. Repository components, on the other hand, per-

form more generic tasks such as relaying access to hard-

ware devices or networks. Both types of components may

require or provide certain services. The MCC must there-

fore solve pending service requirements—for instance by

inserting repository components—in order to generate a

consistent network of communicating components [24].

Note that nonfunctional requirements, such as memory

and response-time requirements, will additionally con-

strain the solution space. The parameters of this solu-

tion space are not only the selection and interconnection

of components but also the mapping of components to

processors and scheduling parameters. The MCC must

therefore make automated design decisions such that all

requirements are satisfied and appropriate contracting

interfaces can be established. For this purpose, we resort

to an automated model transformation and refinement

from implementation- and platform-independent models

to implementation- and platform-specific solutions [25].

This process is assisted by analysis engines that pro-

vide expert knowledge about particular design decisions

and check for constraint violations. As constraint viola-

tions might only be detectable on lower model layers,

this process may require iterations by backtracking to

the conflicting design decision. By applying a backtrack-

ing algorithm—which guarantees termination—for this

design-space exploration, a solution is found in limited

time if it exists. Although it may take a very long time

to search the entire design space, we do not have any

requirements for this as we focus on feasibility of the

design automation rather than efficiency or even optimal-

ity. More precisely, as the MCC only performs EDA, we do

not require the MCC to find a solution within a particular

time limit or to find a solution at all. The analysis engines

allow reusing established analyses and evaluating specific

aspects in isolation without the need of a holistic view. This

reflects the fact that diverse requirements arise in differ-

ent application domains. For instance, such analyses may

focus on security threats in vehicles [26], byzantine agree-

ment in cooperating vehicles [27], optimized resource

assignment for FPGAs [28], hard response-time constraints

[29], [30], or weakly hard timing constraints [31]. Note

that the design-space exploration is centrally managed

to ensure consistency of design decisions from multiple

analysis engines.

Furthermore, dependency analysis [23], [32] is

employed as an overarching method, which serves two

purposes. First, it separates relevant from nonrelevant

dependencies and, secondly, it determines neuralgic points

where relevant dependencies need to be contained. These

neuralgic points either result from inappropriate design

decisions or from model uncertainties and inaccuracies. If

necessary for establishing a sound contracting interface,

shaping mechanisms can be applied at those points

in order to supervise and enforce particular contract

parameters. As mentioned earlier, detected parameter

changes are also fed back to the MCC in order to

renegotiate the contracting interfaces. As the dependency

analysis provides the information which parameters are

influenced by a changed contract parameter, it enables

an incremental consideration of these changes such that

the MCC can react with a reconfiguration of the execution

domain. In consequence, this supervision and feedback

mechanism equips the system with self-awareness.

2) Execution Domain: As indicated above, the execution

domain must build a solid foundation for dealing with in-

field changes in terms of a continuous life-cycle manage-

ment for CPSs. In this section, we give a more detailed

account of the particular mechanisms and solutions to

which we resort in regard to this.

The main purpose of the execution domain consists of

providing the RTE (and OS) for the applications. This RTE

must permit changes (configurability) and likewise allow

the MCC to keep control over any changes. Ideally, such

an RTE will already provide strong isolation between soft-

ware components and enable fine-grained access control in

order to enforce the modeled behavior.

With respect to configurability, we can differentiate

three paradigms: static, dynamic and reconfigurable. With

static, we denote systems whose configuration is set at

compile time (e.g., typical AUTOSAR/OSEK systems).

Dynamic systems, on the other hand, can be configured at

runtime. Typical examples are general-purpose OSs (e.g.,

Linux) that allow the user to start arbitrary processes,

which often requires rather lax access restriction. The

third paradigm, reconfigurable, stands for systems whose

configuration may only change at boot time or down-

time. By design, this paradigm thus enables the best

control over changes, which is an essential prerequisite

for the CCC approach. Moreover, in order to apply the

model-based methods, we must also have fine-grained

control over access permissions such that dependencies

can be restricted to a minimum. We therefore pursue

the principle of least privilege, i.e., a white-list approach

of access control that only grants the minimum set of

required permissions to a software component. Note that,

in general-purpose systems, this approach is usually hard

to employ as it quickly impedes the usability. On the

other hand, in conjunction with an automated integra-

tion/configuration process, it becomes manageable and

a key concept for guaranteeing an explicit structure of

runtime dependencies.

In order to control changes and access permissions

by the MCC, CCC resorts to—but is not limited to—

microkernel-based systems which allow both by design,

fine-grained access control as well as reconfigurability. In

these systems, software components are operating in dis-

tinct address spaces in order to establish a spatial isolation.

Communication between these components is therefore

made explicit for which the microkernels typically provide

interprocess communication (IPC) and signaling mecha-

nisms. This effectively mitigates side-effects between com-

ponents as memory accesses and interactions are restricted

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1551

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

to the necessary extent (principle of least privilege). With

this concept, microkernels intend to minimize the trusted

computing base (TCB), i.e., the amount of code on which

an application must rely. As the TCB not only comprises

the kernel and the application itself but may also include

other applications, minimizing the application-specific TCB

becomes an important element of security-focused archi-

tectures [33]. A major achievement of these minimiza-

tion efforts is that they enable the formal verification of

microkernel implementations as in the case of seL4 [34] or

MUEN [35]. Apart from spatial isolation, temporal isola-

tion is another important aspect in CPS in order to provide

freedom from interference. Common concepts are time

partitioning as in ARINC 653 [36], [37] or budget-based

scheduling [38], which have also been recently adapted by

microkernel implementations [39], [40].

The main concept of microkernels is the separation of

policy and mechanism, i.e., the kernel should be kept clean

from any particular policy but only provide the pure mech-

anisms. In consequence, applying and enforcing policies

becomes an issue of the RTE. In the scope of CCC, we

particularly use the Genode OS Framework [41], which pro-

vides a strictly component-based RTE with service-oriented

interfaces, and aims at minimizing the application-specific

TCB. Component-based (operating) systems are a straight-

forward continuation of the microkernel approach [42]

and particularly suitable for formal verification [43]. Note

that a clean and homogeneous application/component

model simplifies the EDA.

Detailed knowledge about the RTE becomes an impor-

tant aspect when establishing the corresponding mod-

els. In particular, it must be known to which extent the

defined policies are enforced by the RTE. Where necessary,

the RTE is augmented with shaping mechanisms as a

contract enforcement to strengthen the assumptions that

can be made by the model domain. It also equips the

execution domain with self-protection capabilities against

potentially harmful behavior. For instance, shaping of

interrupt frequencies or execution times may be required

to safely bound the interference on critical tasks. As a

contract-enforcement mechanism, shaping can also guar-

antee integrity of network communication [44], [45],

enforce assumptions in the timing model [20], provide

fault detection and recovery [46], [47], or even avoid

unaccounted interference in wireless communication [48].

In consequence, shaping is the main technique to address

model uncertainties.

Nevertheless, contract enforcement alone does not

equip a CPS with self-awareness. It only becomes self-

aware if we add a feedback loop to the model domain

that allows self-assessment of the system’s behavior. By

this, the system can learn from observations, reason about

necessary changes, and act/adapt upon these. Monitoring

acts as supervision and observation of a managed system

and is a well-known concept in self-aware architectures

[49], [50] or self-adaptive systems [51], [52]. This mon-

itoring is especially relevant for model properties that

cannot be accurately modeled, such as the presence of

security leaks for which anomaly detection has been shown

to be a feasible countermeasure [53]. In consequence,

runtime monitoring also serves as a technique to addresses

model inaccuracies.

As the name suggests, runtime monitoring and shap-

ing always come with a runtime overhead. However,

event-tracing frameworks have already become a common

infrastructure in microkernel RTEs [41], [54] and act as

an enabler for the efficient instrumentation of component

interactions at runtime.

C. Example

Having discussed the cross-layer modeling and architec-

tural approach of the CCC project, this section illustrates

these methods by means of an example. For this purpose,

we have a look at the integration of an automotive subsys-

tem that performs lateral and longitudinal guidance of a

road vehicle. Lateral guidance primarily uses the yaw rate

provided by an inertial navigation system (INS) in order

to control and correct the steering and ensure stability of

the vehicle. Optionally, it also uses a reference trajectory

calculated by a camera-based lane detection as a secondary

input. Longitudinal guidance controls the vehicle speed

based on the measured acceleration which is provided by

the INS based on accelerometers and wheel-speed sensors.

As an optional secondary input, it uses radar-based dis-

tance detection that implements an adaptive cruise control

(ACC).

Due to the similarity in their sensor usage, both func-

tions are typically implemented in the same subsystem.

From the CCC perspective, we suppose that both func-

tions have been developed independently, e.g., by using

software-engineering techniques such as interface- or

service-based design. However, as lateral guidance can be

considered more critical than longitudinal guidance [55],

we must show independence of both functions in the

scope of an automated model-based integration process.

Furthermore, we must also show their independence from

other functions that share or connect to the vehicle plat-

form, e.g., infotainment, navigation, etc. In the remainder

of this section, we give a more detailed account of how

this can be achieved by cross-layer dependency analysis.

We specifically focus on timing dependencies for brevity,

however, handling other dependencies, especially physical

ones, follows the same principle.

1) Subsystem Setup and Implementation: The conceptual

software and hardware architecture for the subsystem is

illustrated in Fig. 5. It shows the distributed implemen-

tation on two electronic control units (ECUs), a switched

Ethernet network, and dedicated camera and radar mod-

ules; other components (software as well as hardware)

of the vehicle platform are omitted for simplicity. The

INS is implemented by three sensor components (red)—

i.e., Gyro., Accel., and WheelSpeed —and the INS com-

ponent. The Gyro. component performs sensor fusion of

1552 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Fig. 5. Software/hardware architecture of the INS example with lateral and longitudinal guidance consisting of several interacting

software components that execute on networked hardware components (ECU1, ECU2, CAM, RADAR).

three gyroscopes for yaw, pitch and roll, while the Accel.

component fusions the readings for three accelerometers in

x, y, and y orientation. Further, the WheelSpeed component

processes readings from the vehicle’s wheel-speed sen-

sors into current speed and acceleration. Resulting values

from the three sensor components are reported to the

INS component and aggregated. It subsequently provides

the current angular velocity and linear acceleration as

distinct services. The subscribed clients (Lat. and Long.) are

notified whenever new values are available. Note that the

gyroscopes are sampled with a much higher frequency than

the accelerometers and wheel-speed sensors as the latter

two are more precise and less affected by drift. A camera

sends raw image data to ECU2 over the network. Similarly,

the radar performs object recognition and also transmits

the results to ECU2. On ECU2, trajectory calculation and

ACC are performed based on the data received over the

network, which is interfaced by the NIC (network interface

controller) component. The results are periodically sent to

ECU1.

On ECU1, the reference trajectory and target velocity is

received and placed into read-only shared memory. Lateral

guidance is then implemented by the Lat. component,

which reads the INS and trajectory data from shared

memory and calls the Steering component that provides

an interface to the vehicle steering actuators. Similarly,

longitudinal guidance (Long.) reads the INS and cruise

control data from shared memory and calls the SpeedCtrl

component to control the speed with the corresponding

vehicle actuators (motor and brake).

As mentioned above, the lateral guidance is a critical

function as it ensures stability of the vehicle and has

respective safety goals associated with it [55]. The safety

goals, e.g., are expressed in tolerable control overshoot,

which is dominated by maximal tolerable dead time expe-

rienced by the control algorithm component. This can,

for instance, be derived through functional analysis of the

control algorithm. As dead time corresponds to reaction

times of component paths, they can be specified together

with the safety requirements in the integration contract

describing the change and as a mapping in the supplied

models.

2) Dependency Analysis: Considering the function in

the context of a cross-layer model of the vehicle, it is

obvious that numerous cross-layer dependencies exist. In

the excerpt of the overall system in Fig. 5 alone, we can

easily see that a number of software components map

to the same ECU, and that the processing chains starting

at the camera and radar sensors utilize the vehicle’s net-

work. The network is assumed to be shared with functions

such as navigation and passenger entertainment. The lat-

ter are typical QM functions (not safety relevant), which

must not interfere with functions that have an Automotive

Safety Integrity Level (ASIL) requirement [2]. From the

structure alone, all functions must be assumed transitively

dependent, hence defeating the safety concept. As laid out

above, the relevant dependencies must be distinguished

from the nonrelevant ones.

Since the lateral guidance operates with a rather high

frequency compared to other dynamic vehicle functions, it

is sensitive to timing interference, i.e., the dependencies

that possibly generate interference on the timing of the

component paths must be evaluated for relevance. In

order to detect and quantify any timing dependencies, the

timing model (task graph) for ECU1 as depicted in Fig. 6

must be considered, since all interference paths with other

functions traverse ECU1, as a common point of interfer-

ence. The task graph models the ECU’s workload by tasks

Fig. 6. Timing model for ECU1 in Fig. 5 illustrating the task chains

for lateral guidance (orange) and longitudinal guidance (green).

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1553

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

(circles) and their precedence constraints (solid/dashed

arrows) and can be extracted from the software archi-

tecture given appropriate knowledge about the service

interfaces [30]. Orange and green tasks in the figure

represent the timing-critical part of the lateral and longi-

tudinal guidance as two separate task chains. Note that

the longitudinal and lateral guidance tasks are triggered

from ins1 and ins2 respectively in order to process the

updated values. Furthermore, the task graph contains a

task chain indicated in gray in which the wheel-speed

sensor processing and reporting to the INS is performed

by the task ins3. Note that each insx task represents a

different path in the INS component, i.e., depending on

which interface of the INS is used, a different functionality

is provided. The remaining tasks can be considered as

interference in this example as they result from sensor

preprocessing (pre), network stack (nic), and other higher

priority load (irq). To resolve the dependencies on the ECU

we must investigate its scheduling.

As we use static-priority preemptive scheduling on this

ECU, we must determine a priority assignment that sat-

isfies both schedulability and freedom from (unbounded)

interference. The latter gains relevance if we include model

uncertainties such as the quality of WCET parameters. For

critical functions (here: lateral guidance), we must ensure

that every (timing) dependency can be safely bounded.

This includes the task chain itself—as it contains service

dependencies—as well as higher priority interference and

lower priority blocking.

With respect to schedulability, a rate-monotonic priority-

assignment (higher rate = higher priority) is optimal but

potentially adds timing dependencies. In this example,

we therefore employ a “criticality as priority” scheme

that reduces timing dependencies by design but requires

schedulability analysis.

As lateral guidance is the most critical function in this

example, we assign its task chain the highest priorities and

perform a response-time analysis in order to calculate an

upper bound on the chain’s latency [30]. However, the

acquired bound is only safe if all parameters on which it is

based are safe. In this example, we particularly notice that

the tasks ins2 and ins3 appear as lower priority blockers to

the lateral-guidance chain (orange) because they belong

to the same software component and thus cannot be pre-

empted by ins1 (cf. [30]). Note that these tasks represent

another path in the INS component and are not necessarily

verified or carefully tested as is required for the criticality

of the lateral-guidance function.

In consequence, three conditions must be ensured

to mark timing dependencies on ECU1 as irrelevant:

First, the required response times can be met with the

assumed/specified execution rates and execution times so

that timing guarantees can be given. The relevance thresh-

old here is whether the response-time requirement can be

met. Second, all parameters utilized for this conclusion

are known with the same level of assurance, e.g., the

parameters for ins2 and ins3 are known with the same level

Table 1 Contract Negotiation Results

of confidence as those for the tasks in the orange chain

itself. The threshold for this dependency is the assurance of

the parameter, which typically depends on the method how

the parameter is obtained. Third, other cross-layer paths

these parameters depend on can be considered irrelevant

as well.

Table 1 shows the results of four iteration steps (0–3)

based on dependency analysis for ECU1. It indicates in

which step a dependency can be accepted (), i.e., can

be considered irrelevant. Furthermore, it also exemplifies

that, to determine relevance thresholds, further contracts

must be negotiated in order to accept a dependency ().

For instance in iteration 0, in order for the response time

lat to be accepted, we need to negotiate the dependent

contracts for WCETs and ACTs first. Moreover, if a con-

tract cannot be accepted (), countermeasures must be

applied. For instance the dependence on the Worst Case

Execution Time analysis parameters for ins2 and ins3 can-

not be considered irrelevant in iteration 1 as the process

for determining the Worst Case Execution Time is not as

stringent as for ins1. It only becomes irrelevant in iteration

2 after shaping enforces an upper bound on the worst case

execution time parameters.

Timing dependencies on the network and other hard-

ware elements require similar steps: For the camera and

radar data that share the network with other traffic,

analysis also suggests that shaping mechanisms in the

execution domain can be used to guarantee QoS even in

the presence of unpredictable traffic, e.g., from brought-in

devices that are granted access to the network. However,

note that this only addresses the timing dependency, other

cross-layer effects must still be assessed for relevance. For

1554 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

instance, both guidance functions and the entertainment

would depend on the same Ethernet network, i.e., the

network and its configuration still pose as a single-point-

of-failure. The relevance of this depends on the effects that

are expected for the system and the failure rates that can

be expected under the assumed operational conditions.

For brevity, we only sketch the idea behind the further

analysis here. If, e.g., transient hardware faults are to be

expected, suitable fault-tolerance protocols can be applied

and subsequently their timing implications included in the

timing analysis [56]. On the other hand, for permanent

hardware faults redundancy measures are necessary, i.e.,

the dependency is not acceptable as the rate for permanent

faults is above the accepted threshold.

3) Contracting Aspects: Any configuration of the execu-

tion domain must satisfy the initially specified contract

requirements of all functions in order to be valid. For this, it

is required that all dependencies are classified in relevance

and that no unacceptable relevant dependency remains. To

achieve this, revealed dependencies are iteratively broken

down into derived contracts such that their acceptance can

be determined and negotiated.

In this example, we focused on the initially specified

latency bound of the longitudinal and lateral guidance,

which are supposed to be integrated as depicted in Fig. 5.

The contracts that are necessary due to the dependency

analysis’ steps, can be derived from parameters that spec-

ify the integration, e.g., on which ECU components are

implemented and how the priorities are assigned on ECU1

to perform a response-time analysis. Despite focusing on

timing contracts in this example, other types of contracts

need to be formulated in order to cover other types of

requirements. Note that how to efficiently formulate and

specify such contracts and system properties is an orthog-

onal problem and not in the scope of this paper.

Besides validating the configuration, the derived con-

tracts in Table 1 implicitly select the metrics that can

be evaluated by the model domain, and which shall be

observed by the execution domain. The example high-

lighted that the model-based guarantees depend on the

execution time of ins2 and ins3. Consequently, observing

whether these model properties actually hold at runtime

also checks the validity of the contracts between execution

and model domain, and whether renegotiation is necessary

to reduce shaping interventions.

This approach could even be extended such that certain

integration parameters which become necessary during

dependency analysis are automatically synthesized by the

MCC. For instance the MCC could compute possible com-

ponent deployments based on the given hardware platform

and subsequently assigning priorities based on further

dependency analysis steps.

D. Conclusion

CCC automates the integration process for CPS by copy-

ing many aspects of the existing engineering process, i.e.,

how and when design decisions are made, reasoning about

requirements, etc. In CCC, the MCC implements this EDA

methodology that replaces the lab-based integration and

testing while the execution domain is kept self-contained

(operational without the MCC) thereby equipping the CPS

with the ability to apply design changes in place of the

OEM. In particular, the CCC methodology exploits strong

guarantees (contracts) that can be formulated for lab-

tested software components and the microkernel archi-

tecture. For instance, our example illustrated how the

integration of components for a safety-critical function

is performed on these contracts and how requirements

and dependencies are reasoned about. However, weaker

guarantees (model uncertainty) can also be dealt with by

using dependency analysis to expose neuralgic points and

synthesize possible countermeasures. When it comes to

model inaccuracy, runtime monitoring (and its feedback to

the MCC) is essential.

IV. I P F

With decreasing feature size, semiconductor technologies

expose higher parameter variation. In several national

research priority programs, such as the NSF Variability

Expeditions [57] or the German SPP Dependable Comput-

ing [58], new solutions have been developed to address

these challenges, ranging from the circuit level all the way

up to the software and applications layers. These solutions

are applicable at design time, at downtime, at runtime or a

combination thereof. On-chip sensors are used to identify

the hardware health status including automatic control of

current temperature or to mitigate aging effects. Redun-

dancy in many forms has been proposed to guarantee con-

tinued performance, real-time constraints and integrity for

safety critical and high availability embedded and cyber–

physical applications. Sensor networks have profited from

dynamic energy control which will support the pervasive

use of very-large-scale integration (VLSI) in the up-coming

Internet of Things (IoT). More and more of these on-chip

control loops and higher level platform scheduling and

management strategies have been employed to operate

complex applications executing efficiently on an integrated

circuit. Yet, these mechanisms (that span multiple levels of

abstraction, and which address different goals) are largely

uncorrelated and targeted to control individual effects.

While acceptable for today’s circuits and applications, the

number and impact of effects to be controlled increases

and requirements to dependability, resilience and longevity

grow. Therefore, a holistic approach which covers VLSI

circuit operation as well as runtime OS and application

software is needed.

In this section, we introduce a concept that addresses

these challenges and highlight how EDA can profit from

control oriented self-aware platform management; we

illustrated this with aspects from four examples of prelim-

inary work and motivate the overall concept with a highly

topical use case.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1555

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

A. IPF Concept

Future microelectronic systems can be compared to

factories. To keep factory production running effectively

and efficiently, the production itself, the logistics of supply

(material, energy, water, waste), the machinery and trans-

port, the facility control including heating or illumination

are all adapted to the current workload, while at the same

time considering maintenance and continuous operation.

Future microelectronic systems face comparable require-

ments. Much like in a factory, there will be a platform

operation layer that controls the performance and health

status of a microelectronic system based on an on-chip

sensor network, considering the many different targets of

temperature, energy, aging, reliability, security and long

term systems evolution when it schedules the application

functions, the memories, I/Os, and possibly micromechan-

ics (where applicable). That platform operation layer will

not only focus on the current status, but also predict

the future state of a microelectronic system including the

expected development of the platform. Where possible,

it will communicate with other platforms to identify the

development of the processing load and act accordingly.

The platform layers will use their own IT infrastructure

and reach a level of autonomy that is far beyond what is

possible today.

Such holistically controlled autonomous microelectronic

systems can be considered information processing fac-

tories (IP factories). The transformative vision is that

these “IP factories” could become the dominant micro-

electronic platform beyond the current age of many

core processors because of their flexibility, controllability,

longevity, and evolution potential. They could adapt to

modes of extremely low energy consumption and high-

est performance, as well as changes in other operational

characteristics.

The IP factory is not only suitable to meet the chal-

lenges of future microelectronic systems, it is also a per-

fect platform for future autonomous systems. All major

trends—networked embedded systems, CPS, systems-of-

systems, or the IoT—assume higher subsystem autonomy

to reach the required scalability. Due to its sensory capabil-

ities, its flexibility and adaptability as well as the built-in

autonomous control, an IP factory provides the conceptual

basis for system level autonomy. Its capabilities can be

utilized to enable self-awareness and context-awareness of

the subsystem and to support system level collaboration for

group awareness as well as to enable and control emergent

system behavior. Together, component and system-level

autonomy will form a hierarchy which separates concerns

and appears to be eminently suitable for the design of large

scalable systems.

Even though the IPF concept addresses all levels of

CPS, the main focus is the “factory,” i.e., the platform

that processes information including its hardware and

operation. The IPF concept is currently elaborated and

investigated by an international research group of UC

Irvine, TU Munich, and TU Braunschweig. The joint project

is funded by the DFG and the NSF.

B. Objectives of Self-Aware Information
Processing Factory

The central objective of a self-aware information

processing factory in this specific context is the effec-

tive exploitation of self-awareness and self-organization

in order to provision complex, MPSoC-based hardware-

software CPS with a holistic information processing run-

time control infrastructure for optimizing performance,

power dissipation and system resilience.

The motivational metaphor of the information process-

ing factory clearly indicates that bundles of component-

specific, uncorrelated control instances are inadequate to

orchestrate multicriterial objective functions of complex

systems. Equally true, a strictly centralized controller for

such systems has to fail due to lack of scalability. Therefore,

a hybrid—as much modular and distributed as possible, as

much centralized as necessary—and hierarchical approach

must be developed that is viable, cost-/overhead-efficient

and scalable.

In order to achieve the stated objective, the following

conceptual design principles and mechanisms (see also

Fig. 7) can be deployed. Sensor information will be tapped,

fused and merged into SO/SA control processing entities

at various abstraction levels of the hardware/software

architecture of an MPSoC-based CPS system. The control

Fig. 7. Self-organization/self-awareness (SO/SA) MPSoC stack.

1556 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

processing entities generate actuation directives to affect

the MPSoC system constituents at the same or lower levels

of abstraction. Individual control processing entities shall

be delegated well-defined degrees of autonomy in opera-

tion [self-organization, self-awareness (SO/SA)] to locally

optimize the entity-specific performance, power consump-

tion and reliability. Correlation among multiple control

processing entities, either at the same or among different

abstraction levels, shall be established through the aware-

ness for the “actuation-to-implication causalities” caused

by an applied action (e.g., how an increase in frequency

affects entity performance and power dissipation, or how

a task scheduling policy affects energy consumption and

application performance).

Self-organized, autonomous control, especially when

applied by multiple hierarchical entities at different

abstraction levels and with different control cycle peri-

ods, may lead to divergent or even contradictory con-

trol directives. Such forms of destructive emergence must

be avoided. They can be detected by observing sys-

tem interaction and controlled by monitoring and jointly

enforcing global constraints and objectives. Self- and

group-awareness provide a suitable modeling basis for

the resulting globalized interaction and control. This is

especially important in critical systems as will be discussed

in the following.

The viability of such an approach can be assessed in

terms of optimality of the achieved system performance,

power efficiency and resilience relative to a state-of-the-

art reference approach. Cost can be quantified in terms

of fractional overhead of the SO/SA sense-control-actuate

entities in comparison to the pure functional CPS hard-

ware/software components. Scalability can be assessed in

terms of numbers of architectural entities up to how many,

as well as with how few, the approach is plausible.

C. EDA Perspective of IPF

Just as in the case of CCC, in-field methods for IPF

extend current design steps to the field. But, the design

goals change and so do the EDA tool challenges. The IC

is no more optimized for the best operating point but it

is optimized to efficiently adjust the operating point to

changing operating conditions. This goal change affects

verification and (online) test. It might be useful to extend

testing by elements of system identification (see above)

observing the influence of parameter change on circuit

behavior under parameter change. EDA should support

synthesis of control stacks for robust learning (cp. Fig. 7)

using suitable architectures.

Furthermore, research on the self-aware IPF paradigm

must address a whole host of fundamental problems that

pose new challenges to EDA. How to ensure robust,

predictable CPS system performance, power consump-

tion and resilience through a combination of self-aware

layers of autonomous, heterogeneous hardware/software

(self-organization based) control on the one hand side

and hierarchical top-down control resembling an IPF?

How can self-awareness of individual system constituents

or subsystems be transferred and combined into higher

level group-awareness? What cost/overhead for a holistic

SO/SA control infrastructure can realistically be achieved?

Is it possible to bound this cost/overhead of the equivalent

functional MPSoC layer complexity?

All these are open problems for architecture and related

EDA research.

D. Preliminary Work on IPF

Although many related aspects have been explored

earlier, they lack awareness and hierarchical, cross-layer

autonomous management in MPSoCs through a relevant

and comprehensive conceptual framework such as the pro-

posed IPF. The following subsections provide an overview

on preliminary works to IPF where self-awareness and self-

adaptivity have been exploited at individual but different

abstraction levels of MPSoC systems: autonomous system-

on-chip (ASoC) uses hardware-based machine learning to

control operation parameters of processor cores at the

hardware architecture level, CPSoC introduces an adap-

tive and reflective middleware software stack for self-

aware computing and communication control based on

multi-layer sensing, and non-uniform verification architec-

ture (NUVA) provisions a distributed runtime verification

infrastructure utilizing self-replicating, low overhead run-

time verification (RV) monitors and checkers.

1) ASoC Platform With Machine Learning-Based Control:

ASoC platform [59], [60] deploys hardware and software

reinforcement machine learning techniques (learning clas-

sifier systems) [61] on homogeneous multicore processors

for optimizing workload balancing, power consumption

and resilience against intermittent core failures in a self-

aware/self-organizational manner. The general idea is that

parts of today’s and future abundant chip capacity, in form

of MOSFET transistors, shall be dedicated for generic self-

awareness/self-organization purposes in order to flexibly

react to changing system and environmental operating

conditions at runtime. The ASoC platform, as shown in

Fig. 8, can be considered as a forerunner for the envisaged

layered IPF MPSoC Architecture depicted in Fig. 7. The

ASoC architecture augments the conventional functional

or plant layer of a SoC by a so-called autonomic layer,

consisting of interconnected autonomic elements (AEs).

This separation of the ASoC architecture in two layers

is only a conceptual view; physically, functional elements

(FEs) and AEs will be realized intertwined on the same die.

Preferably, FEs are existing IP library blocks such as CPU

cores, NoC building blocks, on-chip memories, dedicated

accelerators and I/O blocks. The idea is to use them

untouched or “as is” in order to maximize reuse and pre-

serve earlier investments in IP library development. Self-

aware control and autonomous at-runtime optimization of

key MPSoC operation parameters (e.g., CPU core supply

voltage and frequency, task mapping to individual cores)

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1557

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Fig. 8. ASoC architecture layering.

is achieved through closed “monitor-evaluate-act” control

loops between individual FE-AE pairs.

In order to grant individual AEs awareness of the oper-

ation states in other AEs (and their FEs), AEs are inter-

connected at the autonomic layer through a dedicated ring

network.

An AE consists of four building blocks: 1) the monitor,

for collecting status information from the supervised FE;

2) the actuator, to issue FE operation parameter changes;

3) the communicator, to interface to the mentioned ring

exchange network; and 4) the evaluator, to analyze the

monitored status information and to propose potential

actions. The evaluator obtains self-awareness of what is

going on in its local FE and neighboring FEs, formally

speaking the capacity for introspection and the ability

to recognize oneself as an individual separate from the

environment and other individuals, via its monitor and

communicator. The analysis of monitor data within the

evaluator followed by the deduction of actions on the

local FE is performed by means of reinforcement-based

machine learning classifier tables (LCTs). At this point it

is important to note that these local actions may represent

parts of the desired means to counteract at-runtime appli-

cation interference, environmental dynamics and model

uncertainties on processing resources. Generally speaking

they address an EDA problem typically found in the right

branch of the V-model as part of test and verification steps

(cp. Fig. 2). Partial means because the ASoC FE-AE all-

hardware control loop only strives to tackle control tasks

that require ultimately short, i.e., few CPU clock cycles,

loop latencies. At-runtime actions that are less timing criti-

cal will be accomplished by OS/Middleware or application

layer techniques of the anticipated IPF architecture. An

example of which, the CPSoC system, will be presented in

Section IV-D2.

The two application scenarios described in the sequel

will use the same three-core LEON3 Open RISC proto-

type with identical objective and reward functions (to

demonstrate generic applicability). In the video processing

application the frame rate of the I/O interface was picked

such that one core can merely handle the entire workload if

it operates at maximum frequency. When all three cores are

available, each can run at corresponding lower frequencies

and supply voltage, resulting in a more homogeneous

temperature and power density distribution across the

architecture. All cores have the same frame processing

program loaded in their caches.

Fig. 9 shows how individual cores adjust their oper-

ation frequency in the presence of emulated randomly

intermittent core failures (a maximum of two cores has

been switched off in random patterns and intervals). What

at first glance looks like random fluctuations in plotted

frequency and CPU utilization, exhibits a trend when more

closely examined. The longer the intermittent core switch

off/on lasts, the less do individual cores extend the fre-

quency range to the ultimate limits for operation with only

one, respectively three, core(s) operational. LCT fitness

evaluation assigned rules which more gradually follow the

new system operation points over more aggressive rules.

Resulting consequence at system level is that fewer frames

get lost through “trapping” the multicore in operating

conditions not adequate for the workload.

In the IP packet forwarding application, packet for-

warding is partitioned into five tasks which can each

be mapped to any core. Upon system initialization, all

tasks are assigned to one and the same core (see right

side of Fig. 10). The core that initially was assigned all

tasks immediately runs into saturation while the other two

cores are idling. The overloaded core starts issuing task

migration requests to the RTE.

Task migration is accomplished by eliminating one task

in the scheduling ring of one core and enabling scheduling

on another core. No code copy operations are necessary,

as the core-local memories (caches) host copies of all

tasks. Over time we see tasks migrating among all cores

with corresponding frequency adjustments to accomplish

the corresponding workload. The system settles in a quasi

Fig. 9. Video processing with intermittent core failures.

1558 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Fig. 10. IP packet processing with automated task partitioning.

static task partition (see left side of Fig. 10). The multi-

core figured out by itself how to map tasks such that no

further improvement in the objective function is found. Or,

expressing it differently, the self-aware multicore proces-

sor did an automated online task partitioning on parallel

resources, a problem which is known to be NP hard. This

time, the system level benefit expresses itself as a mini-

mization of the overall packet processing latency. When

looking carefully, we see that the system saturates in a local

optimum as an even lower packet latency was experienced

earlier during the partitioning process. Hence, there is no

guarantee that the described approach finds the optimal

solution, but a solution close to it.

We want to finish the discussion of machine learning-

based self-organization of MPSoCs by discussing an

important related property known as emergence. Emer-

gent behavior occurs when system constituents (e.g.,

CPU cores) perform local actions (adjusting their oper-

ation parameters) which influence global system behav-

ior through hidden causalities between the various local

actions [62]. Or in short, local actions lead to global

effects. Thus, emergent behavior complies with the defin-

ition of self-organization, which describes a process where

some form of overall order or coordination arises out of

the local interactions between smaller component parts

of an initially disordered system. In this sense, self-

awareness, based on which local actions are triggered,

is a necessary precondition for self-organization and self-

adaptation [63]. The phenomenon of emergent behavior

can represent both a huge potential as well as a serious

threat for system control.

The huge potential is that complex system-level behav-

iors (e.g., multicore failure resilience control or task par-

titioning onto parallel resources) typically result from

few, fairly simple local actions (e.g., increase/decrease

frequency, issue migration request for random task). Little

program space, rule table size and relatively low com-

pute performance/finite state machine control are nec-

essary to stimulate behaviors that otherwise would be

way more complex, e.g., when specified in a declarative

programming language. There are several examples where

the exploitation of emergent behavior can be found in

nature to control complex organisms or organizations such

as fish schools, flocks of birds, ant colonies, etc. In nature,

evolutionary selection by the law of “survival of the fittest”

did let the species with the “right” local rules survive.

Organizations or organisms with “wrong” rules are extin-

guished, which brings us to the downside or threat of emer-

gence. Emergent behavior may result in chaotic, instable

control. There is a good base of scientific investigations

that address the differentiation between constructive or

controllable emergence [64], [65] and how to build trust-

worthy systems that inherit emergent control OC trust.1

In technical systems, time-to-market does not allow for

many-generation evolutionary selection, nor does it allow

for oscillating or unstable behavior as a consequence of

emergence. In technical systems, machine learning adopts

the role of evolution and rapidly explores rules, separating

them by fitness values. In the end, few, effective LCT rules

are sufficient to “personalize and customize” a generic

multicore processor for optimized usage in different appli-

cation domains.

2) Cyber–Physical System-on-Chip: CPSoC [66], [67] is a

smart embedded system paradigm that combines a sensor-

actuator-rich self-aware computing-communication-

control (C3) centric paradigm with an adaptive and

reflective middleware (a flexible hardware-software

stack and interface between the application and OS

layer) to control the manifestations of computations

(e.g., aging, overheating, parameter variability etc.) on

the physical characteristics of the chip itself and the

outside interacting environment. Inspired by the adaptive

and learning abilities of autonomous computing [8]

and C3 paradigm of CPSs [68], CPSoC provides a

computing framework that assures the dependability of

the cyber/information processing (i.e., the cyber aspects

such as integrity, correctness, accuracy, timing, reliability

and security) while simultaneously addressing the physical

manifestations (in performance, power, thermal, aging,

wear-out, material degradation, and reliability and

dependability) of the information processing on the

underlying computing platform. CPSoC aims to coalesce

these two traditionally disjoint aspects/abstractions of

the cyber/information world and the underlying physical

computing worlds into a unified abstraction of computing

by using cross-layer virtual/physical sensing and actuation,

forming an ideal platform for IPFs.

The CPSoC architecture consists of a combination of

sensor-actuator-rich computation platform supported by

adaptive NoCs [communication NoC (cNoC) and sensor

NoC (sNoC)], introspective sentient units, and an adaptive

and reflective middleware to manage and control both the

cyber/information and physical environment and charac-

teristics of the chip [66], [67]. The CPSoC architecture is

broadly divided into several layers of abstraction. Unlike

1http://gepris.dfg.de/gepris/projekt/66598707

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1559

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Fig. 11. Cross-layer virtual sensing and actuation at different

layers of CPSoC.

traditional MPSoC, each layer of the CPSoC can be made

self-aware and adaptive, by a combination of software

and physical sensors and actuators as shown in Fig. 11.

These layer specific feedback loops are integrated into

a flexible stack which can be implemented either as

firmware or middleware. The CPSoC framework supports

three key ideas. 1) cross-layer virtual and physical sensing

and actuation—CPSoCs are sensor-actuator-rich MPSoCs

that include several on-chip physical sensors (e.g., aging,

oxide breakdown, leakage, reliability, temperature) on

the lower three layers as shown by the on-chip-sensing-

and-actuation (OCSA) block in Fig. 12. On the other

hand, virtual sensing is a physical-sensorless sensing of

immeasurable parameters using computation [69]. Sim-

ilarly, virtual actuations (e.g., application duty cycling,

algorithmic choice, checkpointing) are software/hardware

interventions that can predictively influence system design

objectives. Virtual actuation can be combined with physical

actuation mechanisms commonly adopted in modern chips

[66], [67]. 2) simple and self-aware adaptations: Two key

attributes of the self-aware CPSoC are adaptation of each

layer and multiple cooperative observe–decide–act loops.

As an example, the unification of an adaptive computing

platform (with combined dynamic voltage and frequency

scaling (DVFS), adaptive body bias (ABB), and other actu-

ation means) along with a bandwidth adaptive NoC offers

extra dimensions of control and solutions in comparison to

traditional MPSoC architecture. 3) Predictive models and

online learning: Predictive modeling and online learning

abilities enhance self-modeling abilities in the CPSoC par-

adigm. The system behavior and states can be built using

online or offline linear or nonlinear models in time or

frequency domains [19]. CPSoC’s predictive and learning

abilities improve autonomy for managing system resources

and assisting proactive resource utilization [66], [67].

3) Non-Uniform Verification Architecture (NUVA): NUVA

[70] is a scalable distributed monitoring architecture that

enables low-overhead monitoring for parametric specifica-

tions over multiprocessor systems in the form of parame-

terized finite-state automata, intended for embedded and

general-purpose multiprocessors deployed within CPSs

and IoTs. The core of NUVA is a coherent distributed

automata transactional memory that efficiently maintains

states of a dynamic population of automata checkers orga-

nized into a rooted dynamic directed acyclic graph concur-

rently shared among all processor nodes. NUVA comprises

five ingredients: 1) a specification language based on self-

replicating finite automata (SR-DFAs) introduced in [70];

2) a naturally distributed representation [70], [71] of

RV checkers and auxiliary information; 3) decision algo-

rithms; 4) a low-overhead RV architecture; and 5) a spec-

ification mining tool called ParaMiner. The distributed RV

architecture is the centerpiece, and namesake, of NUVA. It

is intrinsically distributed and scalable, minimizes conflicts

among concurrent RV transactions over shared RV data,

and is loosely coupled and minimally invasive to current

CPU architectures. Many RV frameworks have been pro-

posed with varying degrees of success. NUVA is the first

attempt at solving two open problems. 1) Most RV frame-

works lacked a naturally distributed structure that scales

RV to arbitrarily large multiprocessor systems. 2) Pure

software RV frameworks sustain substantial performance

and power overheads. As shown in Fig. 13, NUVA tackles

both problems through architectural support for RV of

parametric specifications. A vital quality of NUVA is that

parametric (or data-carrying) event streams are so general

as to possibly stand for many different aspects of pro-

gram executions, user behavior, environment conditions

(battery, temperature, GPS, sensory data, text, video, etc.).

NUVA is able to handle all of these event streams in the

same specification.

Specification Mining: In general, automated software

verification decides correctness of a design against a for-

mal specification. Unfortunately, formal specifications, like

Fig. 12. CPSoC architecture with adaptive Core, NoC, and the

observe–decide–act loop as adaptive, reflective middleware.

1560 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Fig. 13. Hardware-assisted cross-layer, specification-based

monitoring infrastructure.

SR-DFAs, are notoriously hard to formulate and main-

tain for evolving complex distributed systems, especially

at the level of precision mandated by such applications

as host-based intrusion detection. This difficulty hinders

formal specifications from coping with agile, fast-changing

computing environments. Additionally, specifications of

existing software systems are needed to verify (or secure)

new systems built on top of them. Therefore, specification

mining [72] emerged as an automated technique used

to discover formal specifications of computing systems

from samples of their executions. Inferred properties can

take many forms, such as value invariants, finite-state

machines, temporal properties, or sequence diagrams. The

NUVA framework includes ParaMiner, a tool that discov-

ers software properties (in the form of SR-DFAs [70])

of arbitrary, tunable complexity and precision from large

execution traces. ParaMiner relies on a novel specifica-

tion mining technique that is the first to introduce and

use parametric multiple sequence alignment (pMSA) that

extends classical MSA [73] to handle parameterized alpha-

bet. In [74], we presented sound theoretical underpinnings

of using MSA as a language learning tool for the case

of classical finite automata. Using MSA, ParaMiner can

reconstruct properties with abstract state spaces which

do not merely duplicate the hidden program state space

and whose sizes are dictated solely by the complexity of

observed execution traces.

E. Exemplar Design Driver: Autonomous Mobile
System

In the following, we use a smart phone use case to

outline how platform control and management of the IP

factory concept can be applied to complex systems. For

smart phones, the IPF concept spans through multiple

abstraction levels of the device, including hardware, OS

and application layers (cp. Fig. 7) and interacts within

and outside itself as part of an ecosystem comprising the

device, the mobile infrastructure and the cloud. Tradition-

ally, power consumption is a primary goal but other con-

siderations are also important such as size, cost, security

and privacy. The latter two become especially important

as much of our information is now accessed through these

devices. As mobile systems become increasingly powerful

and diverse in their scope, the ability to foretell all the

possible scenarios they will go through in their lifetime

quickly diminishes, which could lead to problems of mas-

sive nature. Nowhere is that more apparent than in the

recent recall of Samsung’s Note 7 which is estimated to

have cost Samsung close to $17 billion in lost revenue.

As smart phones become more complex and empowered

with additional capabilities, the IP factory model becomes

indispensable in making these devices more self-aware,

and in doing so, making them more energy efficient but

at the same time increasing their resiliency to different

“anomalies” such as security (intrusion), aging, etc. The

key issues in this self-awareness is to be able to encompass,

manage and evolve the interactions between layers of

abstraction as well as the interactions within one layer.

For illustration, consider a smart phone SoC where

voltage overscaling (VOS) is applied at the hardware layer

to control power consumption. The goal is to allow the

hardware to contribute to the noise floor of the system in a

controlled manner as long as that leads to minimizing the

cost in terms of power and deviation from QoS metrics.

For example, if VOS is used at the physical layer (for a

WCDMA radio link), errors gradually start to appear in

the hardware. These errors will then propagate through

the system and manifest themselves at the application

layer.

At the platform level, VOS can be applied to both the

modem and the application processor (an H.264 video

decoder in this case) separately (cases A and B) or jointly

(case C). Fig. 14 shows the results of these three policies,

concluding that although more involved, a joint policy

can achieve better tradeoff between power and video

Fig. 14. Combined modem and application processor design space

exploration.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1561

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

quality. The situation is not as simple as one might imag-

ine, though. There exists a complex relationship between

power, performance (i.e., frequency) and reliability (i.e.,

probability of errors) factoring in temperature in a SoC

Upscaling voltage achieves higher noise immunity and

higher performance, but results in increased power con-

sumption, which raises the chip temperature, thereby

increasing leakage power, which further increases chip

temperature until the package dissipation limit is reached.

This increased temperature results in decreased reliability

and potentially offsetting expected gains in resilience orig-

inally sought by increasing voltage.

Tradeoffs at different layers can be exploited to optimize

power and reliability. At the modem layer, it is possible

to use a hybrid adaptive modulation control scheme to

tradeoff modulation (i.e., bitrate) versus power at different

signal-to-noise ratio (SNR) levels. At the network layer,

we will assume that selective protection and UDP-Lite

implementations are available. At the application layer

we can use probability-based power aware intrarefresh

(PBPAIR) [75]. The PBPAIR scheme inserts intracoding

(i.e., coding without reference to any other frame) to

enhance the robustness of the encoded bitstream at the

cost of compression efficiency. Another technique at the

application ecosystem layer is video transcoding which

requires a cooperation with the remote video server in the

cloud to generate an encoded video specifically tailored to

each hardware’s defect map. By controlling the macroblock

sizes, it is possible to limit the error propagation, thus

enabling higher peak SNR at reduced power levels.

In the IP factory context, a coordination across all layers

and within each layer is necessary. Developing such a

capability requires sensing and actuation across both the

physical and cyber domains at the interface level, and self-

awareness within the system. In this illustrative example

a particularly challenging task is the development of an

intelligent cross-layer power management policy that can

adaptively tune itself based on the current state of the

system. For instance, given a system running at a certain

level of performance, power and reliability, the policy

will need to react to changes in the environment (e.g.,

channel conditions, noise, user input, temperature, etc.).

There may be a number of alternative actions that can

be explored at different abstraction levels. At the physical

layer: Vdd scaling and/or Vsb (substrate voltage) scaling,

which may increase or decrease power with side effects

on performance, temperature. At the architectural layer:

processor frequency scaling, migration of jobs between

processors (e.g., to eliminate hot spots on the chip) or

throttling communication between processors to reduce

temperature. This can, e.g., be achieved systematically

by dynamic resource management [76], [77] and at the

application layer by changing the mode of operation, for

example reducing the frame rate in video or reducing the

resolution by dropping the enhancement layers. Addition-

ally, one may choose to apply any of these techniques to

one application or to multiple applications simultaneously

as illustrated in the video-over-wireless case study. The

big question is: which of these alternatives should be

employed for a given set of circumstances? The main

premise of this thrust is to practically demonstrate that

instead of having separate, narrowly scoped policies, much

more benefit can be reaped by approaching the problem

comprehensively. The cost, of course, is an increase in

the policy complexity, but this is something that can be

mitigated by the fact that today’s chips have significantly

more space and computing power than before. With that

premise in mind, enabling the horizontal (i.e., within a

layer) and vertical (cross layer) coordination requires the

chip itself to be cognizant of much more than a limited

set of parameters or facets. This broad-based perception

can be thought of as platform self-awareness. The self-

aware IPF paradigm provides a conceptual framework

under which these challenges of cross layer and within

layer cognizance can be explored and addressed.

F. IPF in Critical Systems

Up to here, the IPF approach lacks the rigorous handling

of critical requirements. In fact, at the current state there

is no enforcement of timing or safety constraints in this.

Unlike the CCC use case, where possible platform changes

are included in safety and availability margins reflect-

ing the established approach to critical systems design,

IPF handles significant long-term platform changes and,

therefore, must actively control platform components and

their parameters to safeguard critical requirements. Pos-

sible methods include constraint-driven dynamic resource

management [76], [77], which gives preference to critical

tasks when needed, and fast error detection and recovery

mechanisms when errors have occurred [78], [79]. Safety

standards as discussed above, however, not only require

functional guarantees but also preservation of safety mar-

gins to cope with short term error effects across a sys-

tem stack like in Fig. 7. Such “margin guarantees” could

possibly be provided by automated methods as developed

for the CCC use case, but assessment of margins requires

model accuracy which is unknown beyond the current

operating point of a critical system. This limitation is a

general challenge of current approaches to self-awareness

and must be overcome if IPF methods shall be used for crit-

ical functions, as well. Here, system identification could be

applied as introduced previously; by controlled operating

parameter change (voltage, load, etc.), system behavior

could be explored in the neighborhood exploiting (but not

impacting) the available margin. Once the current model

accuracy has been investigated this way, similar monitoring

mechanisms as in the CCC use case could be applied.

Both cross-layer margins and models with a wider range

of guaranteed accuracy remain relevant but open research

issues.

V. E D A C H A L L E N G E S

The two use cases elaborated in the preceding sections

are, to a large extent, complementary. Using different

1562 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

architectures and methods they have illustrated the oppor-

tunities arising from self-awareness in CPSs. But the use

cases also show some key challenges that entail new EDA

problems.

A. Model Validation

While the current design process assumes correct mod-

els or, at least, the capability to validate model correctness

in the lab, a self-aware system must cope with model

uncertainty and incorrectness. In the IPF case, we assume

that system changes lead to model deviation and hold

the system itself responsible for model adaptation. IPF

uses system identification techniques but such techniques

are limited to few parameters that are controllable and

observable, and they require sufficient system margin to

be applicable. For larger systems, we need research how

to partition a system for identification. Partitioning should

eventually be executed in the field because the system

structure might change over time. In the CCC case, model

correctness stays a designer responsibility while the self-

aware system is responsible for model integration. Initially

trusting the designer provided model, the self-aware sys-

tem focuses on dependencies and formal analysis coupled

with self-configuration. While in IPF, model uncertainty is

the rule, in CCC it is considered an exception requiring

protective mechanisms. Both methods of IPF and CCC can

be combined opening a large new area of self-modeling

and model prediction for large systems with online model

validation.

B. Designing the Self-Aware Design Process

With self-awareness moving part of the design process

to the field, the designer develops a system that con-

tinues designing itself. Decisions at design time includ-

ing objectives and constraints have an indirect effect on

the resulting behavior and structure. Controlling such a

process requires a new form of system specification that

does not define a single behavior, but constrains and guides

the expected system behavior. Specifying and controlling

such a “design corridor” is another new EDA problem of

high importance not only to self-aware systems but to

autonomous systems in general.

C. Critical Systems Design Automation

Currently, critical systems design is highly user driven

leaving many opportunities for EDA research. Definition

of safety cases, application of error models, dependency

determination and error propagation are still genuine

engineering tasks. While the definition of safety cases

requires profound knowledge of application functions and

their effects, dependability analysis uses more systematic

formal methods, such as FMEA, which could be automated

and executed in the field. One of the main automation

challenges is the determination of relevant dependencies

in a complex system as demonstrated in the CCC use case.

Automation of this design step would be helpful in a tra-

ditional design process, but is an essential requirement for

changing and autonomous systems. While self-awareness

alone does not solve that challenge, its cross-layer mod-

eling capabilities provide a good basis for formal depend-

ability analysis. Such dependability analysis could, then,

be used for self-configuration to improve or restore guar-

anteed margins. Here, integration in the CCC use case

is closer to a solution, because the IPF approach faces

the additional challenge of system self-identification as

explained above. System self-identification for dependabil-

ity analysis is an important research topic in itself, because

it could be used for early detection of latent degradation

or defects in general. Thus, system self-identification could

become the foundation of a new generation of monitor-

ing and self-diagnosis functions greatly improving CPS

dependability.

D. Software Architectures and Efficiency

The CCC use case demonstrates the need for new

software architectures and runtime environments. Embed-

ding the model domain, protocols for the software

“self-management”, the generation of monitors, CCC gives

implementation examples from a wide range of possible

solutions that are largely unexplored. While dependability

and IT security can profit from additional information and

methods provided by such a self-awareness infrastructure,

this infrastructure itself becomes a primary functional

safety concern and arises as an object of IT security attacks.

CCC could only provide initial results which fit the use

case, but more research is necessary for larger and open

CPSs. Algorithm efficiency and frequency of execution

determine the required runtime and energy overhead for

self-awareness. This is another research field with impact

on the practical feasibility and acceptance of self-aware

systems.

E. Self-Awareness and Machine Learning

Self-awareness can favorably be used for machine learn-

ing in many forms. It can improve predictability and

dependability by monitoring input data uncertainty and

controlling the effects of learned behavior by predicting

the consequences of actions. The self-modeling and predic-

tion infrastructure could even be used to support training

(“self-reflection”). There seem to be many opportunities in

combining self-awareness and machine learning.

F. Self-Awareness, Emergence, and Scalable
Control

Coupling several self-aware systems for cooperative con-

trol has shown to be an effective mechanism for distributed

control, at least on a smaller scale [49], [80]. In the IPF

use case, many layers of different types must be coupled

vertically, while in the CCC example, many participants

interact on the same level (horizontally). Large interacting

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1563

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

self-aware systems show emergent system behavior which

can be intended to achieve new functionality but must

be controlled to stay within the intended design corridor.

Hence, heterogeneity, emergence, and scalability will arise

as general challenges for self-aware systems collaboration

requiring closer investigation of the resulting behavior.

VI. C O N C L U S I O N

Managing change and evolution is a major challenge for

future CPSs, particularly for the methods used to design

them. Self-awareness is the ability (of a computing system)

to recognize its own state, possible actions and the result

of these actions on itself and its environment.

The two complementary use cases in this paper employ

different architectures and methods and have illustrated

the opportunities arising from self-awareness in CPSs. Both

share the principles of self-modeling, self-configuration,

and monitoring. They maintain a continuously updated

image of the system state, but differ in the objectives and

the concrete approach to meet the design goals. While

the IPF use case relies on incremental changes and feed-

back control to track the evolution of system parameters

and optimize system properties, CCC follows an analytical

approach with contracting, formal system analysis, self-

configuration and contract enforcement. While IPF targets

flexible platform adaptation for changing CPS require-

ments, CCC mainly addresses critical CPSs using a rigorous

process following the principles of current critical systems

design. Both approaches could be combined. They intro-

duce new methods that effectively extend design processes

from the lab to the field adding new system capabili-

ties that are not achievable in current lab-based design

processes. This feature extension opens a new dimension

of systematic CPS control and management thereby heavily

relying on design automation. This results in a variety of

opportunities for EDA research as outlined in the paper.

Notably, two major concerns of future CPSs, control of

machine learning and improvement of systems security,

can profit from this research. �

A c k n o w l e d g m e n t s

The authors would like to thank J. Zeppenfeld and

A. Bernauer for their valuable contribution to the ASoC

project, and S. Sarma for his valuable contribution to the

CPSoC project. M. Möstl, J. Schlatow, and R. Ernst were

part of the CCC project. N. Dutt, A. Nassar, A. Rahmaniy,

F. J. Kurdahi, T. Wild, A. Sadighi, and A. Herkersdorf were

part of the IPF project.

R E F E R E N C E S

[1] Functional Safety of Electrical/Electronic/

Programmable Electronic Safety-Related Systems,

Standard IEC 61508, 2nd ed., Int. Electrotechnical

Commission, Apr. 2010.

[2] Road Vehicles—Functional Safety, Standard ISO

26262, International Organization for

Standardization, Apr. 2011.

[3] Software Considerations in Airborne Systems and

Equipment Certification, RTCA, Washington, DC,

USA, Dec. 2011.

[4] R. Ernst and M. Di Natale, “Mixed criticality

systems—History of misconceptions?” IEEE Design

Test, vol. 33, no. 5, pp. 65–74, Oct. 2016.

[5] H. Kopetz, Real-Time Systems: Design Principles for

Distributed Embedded Applications, 2nd ed.

Springer, Apr. 2011.

[6] ARINC Specification 653 Parts 1-2, ARINC,

Annapolis, MD, USA, Aug. 2015.

[7] Analysis Techniques for System

Reliability—Procedure for Failure Mode and Effects

Analysis (FMEA), Standard IEC 60812, 2nd ed., Int.

Electrotechnical Commission, Jan. 2006.

[8] J. O. Kephart and D. M. Chess, “The vision of

autonomic computing,” Computer, vol. 36, no. 1,

pp. 41–50, Jan. 2003.

[9] P. Padala, “Adaptive control of virtualized resources

in utility computing environments,” in Proc. 2nd

ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst.

(EuroSys), 2007, pp. 289–302.

[10] R. Isermann, Fault-Diagnosis Systems: An

Introduction From Fault Detection to Fault Tolerance.

Springer, Jan. 2006.

[11] A. Morin, “Levels of consciousness and

self-awareness: A comparison and integration of

various neurocognitive views,” Consciousness Cogn.,

vol. 15, no. 2, pp. 358–371, Jun. 2006. [Online].

Available: http://www.sciencedirect.com/

science/article/pii/S1053810005001224

[12] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and

X. Yao, Self-Aware Computing Systems—An

Engineering Approach. Springer, 2016.

[13] P. R. Lewis, “A survey of self-awareness and its

application in computing systems,” in Proc. Conf.

Self-Adapt. Self-Org. Syst. Workshops (SASOW),

Oct. 2011, pp. 102–107.

[14] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif,

and U. Richter, “Adaptivity and self-organization in

organic computing systems,” ACM Trans. Auton.

Adapt. Syst., vol. 5, no. 3, p. 10, Sep. 2010.

[15] H. Hoffmann, “JouleGuard: Energy guarantees for

approximate applications,” in Proc. 25th Symp.

Oper. Syst. Princ. (SOSP), 2015, pp. 198–214.

[16] H. Hoffmann, “CoAdapt: Predictable behavior for

accuracy-aware applications running on

power-aware systems,” in Proc. 26th Euromicro

Conf. Real-Time Syst., Jul. 2014, pp. 223–232.

[17] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and

S. Kounev, “Architectural concepts for self-aware

computing systems,” in Self-Aware Computing

Systems. Cham, Switzerland: Springer, 2017.

[18] A. Jantsch and K. Tammemäe, “A framework of

awareness for artificial subjects,” in Proc. Int. Conf.

Hardw./Softw. Codesign Syst. Synthesis (CODES),

Oct. 2014, pp. 1–3.

[19] L. Ljung, “System identification,” in Signal Analysis

and Prediction (Applied and Numerical Harmonic

Analysis), A. Procházka, J. Uhlí̌r, P. W. J. Rayner,

and N. G. Kingsbury, Eds. Boston, MA, USA:

Birkhäuser, 1998.

[20] M. Neukirchner, K. Lampka, S. Quinton, and

R. Ernst, “Multi-mode monitoring for

mixed-criticality real-time systems,” in Proc. Int.

Conf. Hardw./Softw. Codesign Syst. Synthesis,

Sep. 2013, pp. 1–10.

[21] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo,

“Sandboxing controllers for cyber-physical

systems,” in Proc. IEEE/ACM 2nd Int. Conf.

Cyber-Phys. Syst. (ICCPS), Apr. 2011, pp. 3.1–3.12.

[22] Fault Tree Analysis (FTA), document IEC 61025, 2nd

ed., Int. Electrotechnical Commission, Dec. 2006.

[23] M. Moestl and R. Ernst, “Cross-layer dependency

analysis for safety-critical systems design,” in Proc.

Archit. Comput. Syst., Mar. 2015, pp. 1–7.

[24] J. Schlatow, M. Moestl, and R. Ernst, “An extensible

autonomous reconfiguration framework for

complex component-based embedded systems,” in

Proc. Int. Conf. Autono. Comput. (ICAC), Jul. 2015,

pp. 239–242.

[25] J. Schlatow, M. Nolte, M. Möstl, I. Jatzkowski,

R. Ernst, and M. Maurer, “Towards model-based

integration of component-based automotive

software systems,” in Proc. 43rd Annu. Conf. IEEE

Ind. Electron. Soc. (IECON), Beijing, China, Oct.

2017, pp. 8425–8432.

[26] M. Hamad, M. Nolte, and V. Prevelakis, “Towards

comprehensive threat modeling for vehicles,” in

Proc. Workshop Secur. Dependab. Crit. Embedded

Real-Time Syst. (CERTS), 2016, pp. 31–36.

[27] W. Xu, M. Wegner, L. Wolf, and R. Kapitza,

“Byzantine agreement service for cooperative

wireless embedded systems,” in Proc. 3rd Int.

Workshop Saf. Secur. Intell. Vehicles (SSIV), Denver,

CO, USA, Jun. 2017, pp. 10–15.

[28] A. Dörflinger, B. Fiethe, H. Michalik, P. Keldenich,

and C. Scheffer, “Resource-efficient dynamic partial

reconfiguration on FPGAs for space instruments,”

in Proc. 11th NASA/ESA Conf. Adapt. Hardw. Syst.

(AHS), Pasadena, CA, USA, Jul. 2017, pp. 24–31.

[29] J. Schlatow and R. Ernst, “Response-time analysis

for task chains in communicating threads,” in Proc.

22nd IEEE Real-Time Embedded Technol. Appl. Symp.

(RTAS), Apr. 2016, pp. 1–10.

[30] J. Schlatow and R. Ernst, “Response-time analysis

for task chains with complex precedence and

blocking relations,” in Proc. ACM Int. Conf.

Embedded Softw. (EMSOFT), Seoul, South Korea,

Oct. 2017, p. 172.

[31] W. Xu, Z. A. H. Hammadeh, A. Kröller, R. Ernst, and

S. Quinton, “Improved deadline miss models for

real-time systems using typical worst-case

analysis,” in Proc. 27th Euromicro Conf. Real-Time

Syst., Jul. 2015, pp. 247–256.

[32] M. Moestl and R. Ernst, “Handling complex

dependencies in system design mischa,” in Proc.

Design, Automat. Test Eur. (DATE), 2016,

pp. 1120–1123.

[33] H. Härtig, “Security architectures revisited,” in Proc.

10th ACM SIGOPS Eur. Workshop, 2002, pp. 16–23.

[34] A. J. G. Klein, “seL4: Formal verification of an

operating-system kernel,” Commun. ACM, vol. 53,

no. 6, p. 107–115, Jun. 2010.

[35] R. Buerki and A.-K. Rueegsegger, “Muen—An

x86/64 separation kernel for high assurance,” Tech.

Rep., Aug. 2013.

[36] P. J. Prisaznuk, “ARINC 653 role in integrated

1564 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

modular avionics (IMA),” in Proc. IEEE/AIAA 27th

Digit. Avionics Syst. Conf., Oct. 2008, pp. 1–3.

[37] PikeOS Hypervisor. [Online]. Available:

https://www.sysgo.com/products/pikeos-rtos-and-

virtualization-concept/

[38] M. Beckert, K. B. Gemlau, and R. Ernst, “Exploiting

sporadic servers to provide budget scheduling for

ARINC653 based real-time virtualization

environments,” in Proc. Desing Automat. Test Eur.

(DATE), Lausanne, Switzerland, Mar. 2017,

pp. 870–875.

[39] A. Lyons and G. Heiser, “Mixed-criticality support in

a high-assurance, general-purpose microkernel,” in

Proc. Workshop Mixed Criticality Syst., Dec. 2014,

pp. 9–14.

[40] M. Stein, “A kernel in a library: Genode’s Custom

kernel approach,” in Proc. FOSDEM, Brussels,

Belgium, Feb. 2017. [Online]. Available: https://

fosdem.org/2017/schedule/event/microkernel_

kernel_library/

[41] N. Feske, “GENODE. Operating system framework

18.05. Foundations,” Tech. Rep., 2018. [Online].

Available:

http://genode.org/documentation/genode-

foundations-18-05.pdf

[42] J. Song, Q. Wang, and G. Parmer, “The state of

composite,” in Proc. Workshop Oper. Syst. Platforms

Embedded Real-Time Appl., 2013.

[43] M. Fernandez, G. Klein, I. Kuz, and T. Murray,

“CAmkES formalisation of a component platform,”

NICTA UNSW, Sydney, NSW, Australia, Australia,

Tech. Rep., Nov. 2013.

[44] M. Hamad, J. Schlatow, V. Prevelakis, and R. Ernst,

“A communication framework for distributed access

control in microkernel-based systems,” in Proc.

Oper. Syst. Platforms Embedded Real-Time Appl.,

2016, pp. 11–16.

[45] V. Prevelakis and M. Hamad, “A policy-based

communications architecture for vehicles,” in Proc.

Int. Conf. Inf. Syst. Secur. Privacy (ICISSP),

Feb. 2015, pp. 155–162.

[46] J. Song, J. Wittrock, and G. Parmer, “Predictable,

efficient system-level fault tolerance in C3,” in Proc.

IEEE 34th Real-Time Syst. Symp., Dec. 2013,

pp. 21–32.

[47] J. Song, G. Bloom, and G. Parmer, “SuperGlue:

IDL-based, system-level fault tolerance for

embedded systems,” in Proc. 46th Annu. IEEE/IFIP

Int. Conf. Dependable Syst. Networks (DSN),

Jun. 2016, pp. 227–238.

[48] L. Thiele, F. Sutton, R. Jacob, R. Lim, R. Da Forno,

and J. Beutel, “On platforms for CPS-adaptive,

predictable and efficient,” in Proc. Int. Symp. Rapid

Syst. Prototyping (RSP), Oct. 2016, pp. 1–3.

[49] H. Hoffmann, M. Maggio, M. D. Santambrogio,

A. Leva, and A. Agarwal, “SEEC: A general and

extensible framework for self-aware computing,”

Tech. Rep., 2011.

[50] H. Giese, State of the Art in Architectures for

Self-Aware Computing Systems. Cham, Switzerland:

Springer, 2017.

[51] A. Bennaceur, “Mechanisms for leveraging models

at runtime in self-adaptive software,” in

Models@Run.Time (Lecture Notes in Computer

Science), N. Bencomo, R. France, B. H. C. Cheng,

and U. Assmann, Eds. Springer, 2014.

[52] B. H. C. Cheng, “Using models at runtime to

address assurance for self-adaptive systems,” in

Models@Run.Time (Lecture Notes in Computer

Science), N. Bencomo, R. France, B. H. C. Cheng,

and U. Assmann, Eds. Springer, 2014.

[53] J. Song, G. Fry, C. Wu, and G. Parmer, “CAML:

Machine learning-based predictable, system-level

anomaly detection,” in Proc. Workshop Secur.

Dependability Crit. Embedded Real-Time Syst., 2016,

pp. 12–18.

[54] (2001–2017).QNX Neutrino RTOS. [Online].

Available:

http://www.qnx.com/products/neutrino-

rtos/neutrino-rtos.html

[55] T. Stolte, G. Bagschik, A. Reschka, and M. Maurer,

“Hazard analysis and risk assessment for an

automated unmanned protective vehicle,” CoRR,

vol. abs/1704.06140, Apr. 2017.

[56] P. Axer, D. Thiele, and R. Ernst, “Formal timing

analysis of automatic repeat request for switched

real-time networks,” in Proc. 9th IEEE Int. Symp.

Ind. Embedded Syst. (SIES), Jun. 2014, pp. 78–87.

[57] L. Wanner, “NSF expedition on variability-aware

software: Recent results and contributions,” Inf.

Technol., vol. 57, no. 3, pp. 181–198, 2015.

[Online]. Available: https://www.

degruyter.com/view/j/itit.2015.57.issue-3/itit-

2014-1085/itit-2014-1085.xml

[58] J. Henkel, “Design and architectures for dependable

embedded systems,” in Proc. 9th IEEE/ACM/IFIP

Int. Conf. Hardw./Softw. Codesign Syst. Synthesis

(CODES+ISSS), Oct. 2011, pp. 69–78.

[59] A. Bernauer, O. Bringmann, and W. Rosenstiel,

“Generic self-adaptation to reduce design effort for

system-on-chip,” in Proc. 3rd IEEE Int. Conf.

Self-Adapt. Self-Organizing Syst., Sep. 2009,

pp. 126–135.

[60] J. Zeppenfeld and A. Herkersdorf, “Applying

autonomic principles for workload management in

multi-core systems on chip,” in Proc. 8th ACM Int.

Conf. Auton. Comput., 2011, pp. 3–10.

[61] M. V. Butz, Rule-Based Evolutionary Online Learning

Systems—A Principled Approach to LCS Analysis and

Design. Springer, 2006.

[62] J. Fromm, The Emergence of Complexity. Kassel

Univ. Press, 2004.

[63] M. Salehie and L. Tahvildari, “Self-adaptive

software: Landscape and research challenges,” ACM

Trans. Auton. Adapt. Syst., vol. 4, no. 2, p. 14,

May 2009.

[64] C. Müller-Schloer, H. Schmeck, and T. Ungerer,

Organic Computers—A Paradigm Shift for Complex

Systems. Basel, Switzerland: Springer, 2011.

[65] D. Fisch, M. Janicke, B. Sick, and C. Müller-Schloer,

“Quantitative emergence—A refined approach

based on divergence measures,” in Proc. 4th IEEE

Int. Conf. Self-Adapt. Self-Organizing Syst., Sep.

2010, pp. 94–103.

[66] S. Sarma, N. Dutt, P. Gupta,

N. Venkatasubramanian, and A. Nicolau,

“CyberPhysical-System-On-Chip (CPSoC): A

self-aware MPSoC paradigm with cross-layer

virtual sensing and actuation,” in Proc. Design,

Automat. Test Eur. Conf. Exhib. (DATE),

Mar. 2015, pp. 625–628.

[67] S. Sarma, N. Dutt, N. Venkatasubramanian,

A. Nicolau, and P. Gupta, “Cyber

Physical-System-on-Chip (CPSoC): Sensor-actuator

rich self-aware computational platform,” Univ.

California, Irvine, CA, USA, Tech. Rep., 2013.

[68] E. A. Lee, “Cyber physical systems: Design

challenges,” in Proc. 11th IEEE Int. Symp. Object

Compon.-Oriented Real-Time Distrib. Comput.

(ISORC), May 2008, pp. 363–369.

[69] S. Sarma, N. Dutt, and N. Venkatasubramanian,

“Cross-layer virtual observers for embedded

multiprocessor system-on-chip (MPSoC),” in Proc.

11th Int. Workshop Adapt. Reflective Middleware,

2012, p. 4.

[70] A. Nassar, F. J. Kurdahi, and W. Elsharkasy, “NUVA:

Architectural support for runtime verification of

parametric specifications over multicores,” in Proc.

Int. Conf. Compil., Archit. Synthesis Embedded Syst.,

2015, pp. 137–146.

[71] A. Nassar and F. J. Kurdahi, “Lattice-based Boolean

diagrams,” in Proc. 21st Asia South Pacific Design

Automat. Conf. (ASP-DAC), 2016, pp. 468–473.

[72] G. Ammons, R. Bodík, and J. R. Larus, “Mining

specifications,” in Proc. 29th ACM SIGPLAN-SIGACT

Symp. Princ. Program. Lang. (POPL), 2002,

pp. 4–16.

[73] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison,

Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge, U.K.:

Cambridge Univ. Press, 1998.

[74] A. Nassar, F. J. Kurdahi, and S. R. Zantout, “Topaz:

Mining high-level safety properties from logic

simulation traces,” in Proc. Conf. Design, Automat.

Test Eur. (DATE), Mar. 2016, pp. 1473–1476.

[75] M. Kim, H. Oh, N. Dutt, A. Nicolau, and

N. Venkatasubramanian, “PBPAIR: Probability

based power aware intra refresh—A new

energy-efficient error resilient coding scheme,”

Center Embedded Comput. Syst., Univ. California,

Irvine, CA, USA, Tech. Rep., 2005.

[76] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic

control for mixed-critical networks-on-chip,” in

Proc. IEEE Real-Time Syst. Symp., Dec. 2015,

pp. 317–326.

[77] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst,

“Dynamic admission control for real-time

networks-on-chips,” in Proc. 21st Asia South Pacific

Design Automat. Conf. (ASP-DAC), Jan. 2016,

pp. 719–724.

[78] E. A. Rambo, C. Seitz, S. Saidi, and R. Ernst,

“Designing networks-on-chip for high assurance

real-time systems,” in Proc. IEEE 22nd Pacific Rim

Int. Symp. Dependable Comput. (PRDC), Jan. 2017,

pp. 185–194.

[79] E. A. Rambo, S. Saidi, and R. Ernst, “Providing

formal latency guarantees for ARQ-based protocols

in networks-on-chip,” in Proc. Design, Automat. Test

Eur. Conf. Exhib. (DATE), Mar. 2016, pp. 103–108.

[80] H. Hoffmann, “Self-aware computing in the

Angstrom processor,” in Proc. Design Automat. Conf.

(DAC), Jun. 2012, pp. 259–264.

A B O U T T H E A U T H O R S

Mischa Möstl received the B.S. and M.S.

degrees in computer and communication

systems engineering from the Technische

Universität Braunschweig, Braunschweig,

Germany, in 2011 and 2013, respectively,

where he is currently working toward the

Ph.D. degree at the Institute of Computer

and Network Engineering (IDA) under Prof.

R. Ernst and a member of the CCC project.

His research interests are in-field safety validation for systems

under concurrent change and self-aware mechanisms for safety.

Johannes Schlatow received the M.Sc.

degree in computer and communication

systems engineering from the Technical Uni-

versity of Braunschweig, Braunschweig, Ger-

many, in 2013, where he is currently working

toward the Ph.D. degree.

He is a Researcher in the Embedded Sys-

tem Design Automation Group (IDA) of Prof.

R. Ernst. He is working in the field of design,

modeling, and analysis of component-basedmixed-critical systems

and a member of the CCC project.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1565

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Rolf Ernst (Fellow, IEEE) received the

Diploma degree in computer science and

the Dr.Ing. degree in electrical engineering

from the University of Erlangen-Nuremberg,

Erlangen, Germany, in 1981 and 1987,

respectively.

After two years with Bell Laboratories,

Allentown, PA, USA, he joined the Technische

Universitaet Braunschweig, Braunschweig,

Germany, as a Professor of Electrical Engineering. He chairs the

Institute of Computer and Network Engineering (IDA) covering

embedded systems research from computer architecture and real-

time systems theory to challenging automotive, aerospace, or

smart building applications. He co-ordinates the DFG Research

Group Controlling Concurrent Change and is a member of the IPF

project.

Prof. Ernst is a DATE Fellow. He served as an ACM SIGDA Dis-

tinguished Lecturer, and is a member of the German Academy

of Science and Engineering (acatech). In 2014, he received the

annual Achievement Award of the European Design Automation

Association (EDAA).

Nikil D. Dutt (Fellow, IEEE) received the

Ph.D. degree in computer science from the

University of Illinois at Urbana-Champaign,

Urbana, IL, USA, in 1989.

He is currently a Distinguished Professor

of Computer Science, Cognitive Sciences,

and Electrical Engineering and Computer

Science at the University of California Irvine,

Irvine, CA, USA. He is also a Distinguished

Visiting Professor in the CSE Department, IIT Bombay, India. He is a

coauthor of seven books on topics covering hardware synthesis,

memory and computer architecture specification and validation,

and on-chip networks. His research interests are in embedded

systems, electronic design automation (EDA), computer systems

architecture and software, healthcare Internet-of-Things (IoT), and

brain-inspired architectures and computing.

Prof. Dutt is a Fellow of the Association for Computing Machinery

(ACM) and recipient of the IFIP Silver Core Award. He received

over a dozen best paper awards and nominations at premier EDA

and embedded systems conferences. He has served as Editor-in-

Chief of the ACM Transactions on Design Automation of Electronic

Systems (TODAES) and as an Associate Editor for the ACM Trans-

actions on Embedded Computing Systems (TECS) and the IEEE

Transactions on Very Large Scale Intergation (VLSI) Systems. He

has extensive service on the steering, organizing, and program

committees of several premier EDA and Embedded System Design

conferences and workshops, and also serves or has served on

the advisory boards of ACM SIGBED, ACM SIGDA, ACM TECS, IEEE

Embedded Systems Letters (ESL), and the ACM Publications Board.

Ahmed Nassar received the B.Sc. degree

in electronics and communications engi-

neering from Alexandria University, Egypt,

in 2002, the M.Sc. degree in electronics engi-

neering from Cairo University, Cairo, Egypt,

in 2010, and the Ph.D. degree in electrical

and computer engineering from the Univer-

sity of California Irvine, Irvine, CA, USA, in

2016.

He is currently with NVIDIA Corp., Santa Clara, CA, USA. His

research interests lie in the area of modeling, design, and verifi-

cation of cyber-physical systems in general, and in verification and

safety validation of automated driving systems in recent years.

Dr. Nassar won a best paper award from ASP-DAC 2016.

Amir M. Rahmani (Senior Member, IEEE)

received the M.S. degree from the Depart-

ment of Electrical and Computer Engineer-

ing, University of Tehran, Tehran, Iran, in

2009, the Ph.D. degree from the Depart-

ment of Information Technology, University

of Turku, Finland, in 2012, and the MBA

degree jointly from the Turku School of Eco-

nomics and the European Institute of Inno-

vation & Technology (EIT) ICT Labs, in 2014.

He is currently Marie Curie Global Fellow at the University of

California Irvine, Irvine, CA, USA and Technical University of Vienna

(TU Wien), Vienna, Austria. He is also an Adjunct Professor (Docent)

in embedded parallel and distributed computing at the Univer-

sity of Turku. He is the author of more than 160 peer-reviewed

publications. His research interests span self-aware computing,

energy-efficient many-core systems, runtime resource manage-

ment, healthcare Internet-of-Things, and fog/edge computing.

Dr. Rahmani has served on a large number of technical program

committees of international conferences, such as DATE, VLSID,

GLSVLSI, DFT, ESTIMedia, CCNC, MobiHealth, and others, and was

a guest editor for special issues in journals such as the Journal

of Parallel and Distributed Computing, Future Generation Com-

puter Systems, the ACM Springer Mobile Networks and Applications

(MONET) Journal, Sensors, Supercomputing, etc.

Fadi Kurdahi (Fellow, IEEE) received the

Ph.D. degree from the University of Southern

California, Los Angeles, CA, USA, in 1987.

Since then, he has been with the Faculty at

the Department of Electrical and Computer

Engineering at the University of California

Irvine, Irvine, CA, USA, where he conducts

research in the areas of computer-aided

design and design methodology of large

scale systems. Currently, he serves as the Associate Dean for Grad-

uate and Professional Studies at the Henry Samueli School of Engi-

neering, and the Director of the Center for Embedded and Cyber-

Physical Systems (CECS), comprising world-class researchers in the

general area of embedded and cyber-physical systems.

Dr. Kurdahi served on numerous editorial boards, and was Pro-

gram Chair or General Chair on program committees of several

workshops, symposia, and conferences in the area of computer-

aided design (CAD), very large scale intergation (VLSI), and system

design. He received the Best Paper Awards for the IEEE Transactions

on Very Large Scale Intergation (VLSI) Systems in 2002, ISQED

in 2006, and ASP-DAC in 2016, and other distinguished paper

awards at DAC, EuroDAC, ASP-DAC, and ISQED. He also received the

Distinguished Alumnus Award from his Alma Mater, the American

University of Beirut, in 2008. He is a Fellow of the American

Association for the Advancement of Science (AAAS).

Thomas Wild received the Dipl.-Ing. and

Dr.-Ing. degrees from the Department of

Electrical and Computer Engineering, Tech-

nical University of Munich (TUM), Munich,

Germany, in 1989 and 2003, respectively.

He is a member of the scientific staff at

the Chair of Integrated Systems (LIS), TUM,

and is responsible for the activities in the

area of multicore and network processing

architectures. His current research interests comprise multiproces-

sor system-on-chip (MPSoC) architectures, networks-on-chip (NoC)

and memory hierarchies as well as MPSoC diagnosis, system level

design methodologies, and design space exploration.

1566 PROCEEDINGS OF THE IEEE | Vol. 106, No. 9, September 2018

Möstl et al.: Platform-Centric Self-Awareness as a Key Enabler for Controlling Changes in CPS

Armin Sadighi received the B.S. degree

in computer engineering from Amirkabir

University of Technology, Tehran, Iran, in

2013, and the M.S. degree in communica-

tion electronics from the Technical Univer-

sity of Munich, Munich, Germany, in 2016,

where he is currently working toward the

Ph.D. degree in the Electrical Engineering

Department.

His research interests include application-specific multiprocessor

architectures, self-aware computing, and autonomous systems.

Andreas Herkersdorf (Senior Member,

IEEE) received the Ph.D. degree from ETH

Zurich, Zurich, Switzerland, in 1991.

He is a Professor in the Department

of Electrical and Computer Engineering

and also affiliated with the Department of

Informatics, Technical University of Munich

(TUM), Munich, Germany. Between 1988 and

2003, he was in technical and management

positions with the IBM Research Laboratory, Rüschlikon, Switzer-

land. Since 2003, he has led the Chair of Integrated Systems

at TUM. His research interests include application-specific multi-

processor architectures, IP network processing, network-on-chip,

and self-adaptive fault-tolerant computing.

Prof. Herkersdorf is a Member of the German Research Foundation

(DFG) Review Board and serves as editor for Springer and De

Gruyter journals for design automation and information technology.

Vol. 106, No. 9, September 2018 | PROCEEDINGS OF THE IEEE 1567

