
Platform Characterization for Domain-Specific Computing

Alex Bui,1 Kwang-Ting (Tim) Cheng,2 Jason Cong,3

Luminita Vese,4 Yi-Chu Wang,2 Bo Yuan,3 and Yi Zou3

1Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
2Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA

3Department of Computer Science, University of California, Los Angeles, CA 90095, USA
4Department of Mathematics, University of California, Los Angeles, CA 90095, USA

Abstract— We believe that by adapting architectures to fit the
requirements of a given application domain, we can significantly
improve the efficiency of computation. To validate the idea for our
application domain, we evaluate a wide spectrum of commodity
computing platforms to quantify the potential benefits of hetero-
geneity and customization for the domain-specific applications. In
particular, we choose medical imaging as the application domain
for investigation, and study the application performance and en-
ergy efficiency across a diverse set of commodity hardware plat-
forms, such as general-purpose multi-core CPUs, massive paral-
lel many-core GPUs, low-power mobile CPUs and fine-grain cus-
tomizable FPGAs. This study leads to a number of interesting
observations that can be used to guide further development of
domain-specific architectures.

I. INTRODUCTION

The goal of the Center for Domain-Specific Computing
(CDSC)[10] is to develop domain-specific hardware architec-
tures, and the software systems to greatly improve the perfor-
mance and the energy efficiency of domain-specific applica-
tions. One of the application domains selected by the center
is medical imaging, given its significant impact of the health-
care industry. To achieve our goal, it is essential to benchmark
how well current commodity platforms perform, and identify
opportunities for architectural innovations.

This paper provides a summary of our efforts to character-
ize the experimental platforms. We first describe several ex-
perimental platform candidates in Section II. We have two
server-class platforms, one of which integrates the CPU, GPU
and FPGA together; the other one combines Xeon and Atom
processor in one server. Additionally, we also investigate a
mobile-class platform that is based on an ARM-based SOC.
We then describe the application domain and the applications
used in this study in Section III. Experimental results, along
with analysis and discussions are presented in Section IV.

II. HARDWARE PLATFORMS

A. Server-Class Platform A: CPU+GPU+FPGA

We want to set up a server-class platform that integrates
multi-core CPU and popular accelerator units (GPU and

FPGA) in a tightly coupled fashion. The platform is used to
demonstrate the benefit of heterogenous coprocessor accelera-
tion and the customization capability of FPGAs.

We use the Convey HC-1ex [2] as our baseline platform.
The motherboard has two PCI-e X16 slots, but there is no
physical space to host a double-width GPU (e.g., GTX280)
or Tesla compute card due to form-factor issues. Currently
we use a PCI-express expansion box to host a Tesla compute
card C1060. Fig. 1 shows the structures of the coprocessor
hardware of the Convey HC-1ex. The HC-1ex uses 4 Xilinx
Virtex6 LX760 as the user FPGAs. The CPU and different
FPGAs access the off-chip memory using a shared memory
model. The system employs an on-board crossbar to realize
the interconnection. Cache coherence is also handled through
the FSB protocols. Each FPGA has 16 external memory ac-
cess channels. (Eight physical memory ports are connected
to eight memory controllers which run at 300MHZ. The core
design runs at 150MHZ. Thus, effectively the design on each
FPGA is presented with 16 “logical” memory access channels
through time multiplexing.) The Convey HC-1ex provides a
very large bandwidth (80GB/s peak), and with 16GB capac-
ity for coprocessor side memory. In practice, we observe that
around 30% to 40% of the peak bandwidth can be easily ob-
tained. The FPGA-side off-chip memory system is designed to
better support interleaved (short) data access rather than tradi-
tional cache-line burst access.

B. Server-Class Platform B: Xeon+Atom

This platform is used to study the heterogeneity across mul-
tiple CPUs. The diagram of the platform is shown in Fig. 2.

The platform consists of one dual-core Intel R⃝

AtomTMProcessor 330 and one quad-core Intel R⃝ Xeon R⃝

Processor E5450. This kind of experimental platform is
considered to be a perfect heterogeneous system for evalu-
ation [14]. The Atom and Xeon processors represent two
opposite types of microarchitecture. The Xeon employs a
high-performance server-class microarchitecture, while the
Atom employs a low-power microarchitecture targeted for
mobile devices.

The microarchitectural parameters of these two processors
are shown in Table I. The Atom processor uses an in-order is-
sue, a narrower issue width, and has a much smaller L2 cache.

Fig. 1. Diagram of the Convey HC-1ex Hybrid Computer

C2 C3 C4 C5C0 C1

L1
cache

L1
cache

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache L2 cacheL2 cache

Memory Control

Memory

FSB FSB

Diamondville Harpertown

Fig. 2. Intel QuickIA Platform Diagram

Fig. 3. Diagram of the Tegra 2 SOC

TABLE I
MICROARCHITECTURAL PARAMETERS OF THE THREE DIFFERENT

PROCESSORS

Class Xeon Atom ARM
Name Xeon L5408 Atom 330 Tegra 2
Code Name Harpertown Diamondville Cortex-A9
Processors 1 1 1
Cores 4 2 2
Clock Freq 2.13 GHz 1.6 GHz 1.0GHz
Issue Width 4 inst issue 2 inst issue 2 inst issue
Execution out-of-order in-order out-of-order
Inst TLB 128-entry, 4-way 32-entry, full 32-entry, full
Data TLB 256-entry, 4-way 64-entry, 4-way 32-entry, full
L1 Cache 32/32KB 32/24KB 32/32KB
L2 Cache 12MB, 24-way 1MB, 8-way 1MB
FSB Freq 1066 MHz 533 MHz N/A
Process 45nm 45nm 40nm

The FSB frequency of the Xeon is degraded to 533GHz be-
cause we need to run the front side bus at a speed that works
for the Atom processor. Because of this, we use the quad-core
Xeon L5408 in the Convey HC1-ex server rather than the Xeon
E5450 in the Xeon+Atom platform to obtain the performance
and energy of a server-class Xeon processor.

C. Mobile-Class Platform

Modern smartphones have a design specification that pro-
vides over 100GOPS workload for cellular communication,
voice/audio/video processing, and graphics rendering within a
1W power budget [15]. The solution to achieving such an ag-
gressive specification is a heterogeneous multi-core SoC where
each core is highly specialized for a set of applications and
running at a just-enough clock frequency for power minimiza-
tion. TI’s OMAP, Qualcomm’s Snapdragon, Nvidia’s Tegra are
exemplar mobile SoCs which integrate a GPU for 3D graph-
ics applications, a DSP for multimedia streaming applications,
and a single or multi-core CPU for running operating system
and general-purpose tasks. Fig. 3 shows the block diagram of
Nvidia’s Tegra 2 SoC, the target mobile-class platform in our
study. The SoC has a dual-core ARM Cortex-A9 which runs
at 1GHz. The Cortex-A9 MPcore processor implements the
ARMv7 instruction set architecture which has an eight-stage
pipeline and out-of-order instruction execution. It has a 32KB
instruction cache and a 32KB data cache per core with both
cores sharing a common 1MB L2 Cache. Other microarchitec-
ture parameters of the processor are shown in Table I.

III. APPLICATIONS

We choose medical imaging as the primary application do-
main as it has become a routine tool in the diagnosis and treat-
ment of most medical problems. Image reconstruction and
medical image processing entails a large degree of computa-
tion. A typical image processing pipeline would include image
reconstruction, denoising, registration and segmentation. The
following subsections briefly describe each application, one by
one.

A. Image Reconstruction: EM+TV

Computerized tomography (CT) plays a major role in mod-
ern medicine. However, the radiation associated with CT is
significant. We applied compressive sensing methods for CT
image reconstruction with less radiation exposure but compa-
rable image quality. The compressive sensing implementation
used by CDSC is called EM+TV, recently proposed in [16].
The reconstruction tries to recover signal (vector or images) x
from measurements b where Ax = b. A is a M × N matrix
describing the transform from the original image to measure-
ments; M is the number of measurements, and N is the dimen-
sion of the image. The EM+TV reconstruction algorithm [16]
tries to solve the non-linear optimization problem:

min
x

∫
Ω
|∇x|+ α

M∑
i=1

((Ax)i − bi log(Ax)i)

Fig. 4. Ray Tracing in Forward Projection

xj ≥ 0, j = 1, · · · , N (1)

The first term is the total variation (TV) term and the second
term is the expectation maximization (EM) term. We omit the
mathematical derivation details which are available in [16].
The constraint optimization problem is solved using a semi-
implicit iterative scheme.

One of the major computation kernels, EMupdate, performs

EM iterations x̃k+1
j =

∑M

i=1
(aijyi)∑M

i=1
aij

x̃k
j where yi = (bi

(Ax̃k)i
).

Inside the EMupdate kernel, we need to do a forward projec-
tion to obtain Ax̃k; perform an element-wise division to obtain
y; do a backward projection to obtain AT y (or

∑M
i=1 (aijyi));

and then obtain the updated value x̃k+1
j using element-wise

scaling. Note that because matrix A is very large and sparse, A
is never constructed explicitly. A ray-tracing based technique
is used to compute the forward and backward projections. Fig.
4 illustrates the ray-tracing technique in a forward projection.

The EMupdate kernel involves many“random” accesses in
the ray-tracing process. Load balancing is also an issue as the
intersection lengths for different rays are different.

B. Image Denoising: Rician Denoise

The reconstructed image may contain certain noisy artifacts
which are removed in a denoising step. Rician denoise is a
TV-based (total variation) algorithm that tries to remove noises
which are under Rician distributions. Assuming f = u + n,
where u is the clear image, which is unknown; f is the ob-
served image with Rician noise n. The problem is to recover a
clear image u from a noisy image f . The following formula-
tion can be used to resolve the noise

min
u∈BV (Ω)

∫
Ω

|∇u| dx+ λ

∫
Ω

[
u2 + f2

2σ2
− log I0(

uf

σ
)]dx (2)

In the equation, λ is a parameter to balance the TV term and
fidelity term. Ω is the domain of the image. σ is the parame-
ter for the Rician noise, which is given. I0(.) is the modified
Bessel function of the first kind of order zero.

Our reference code then solves the minimization problem
using gradient descent where the gradient

∂u

∂t
= ∇ · ∇u

|∇u|
− λ

σ2
u+

λ

σ2

I1(
uf
σ2)

I0(
uf
σ2)

f (3)

interp updateF

updateVupdateU

interpTS
fvuT

Fig. 5. Dataflow Between Procedures

The major computation involved in the gradient computation
is the curvature term ∇ · ∇u

|∇u| , where a finite difference sten-
cil computation kernel is used in actual numeric computation.
More mathematical details are available in [12].

C. Image Registration: Fluid Registration

Image registration tries to find a transformation function of
the coordinate system of one image study into the coordinate
system of another image study, in order to better align the two
image studies and capture the progressive development of the
illness (e.g., tumors). Fluid registration regularizes the defor-
mation using a fluid PDE equation, and it allows registrations
of large deformations. Fluid regularizers ensure that the trans-
form function is smooth. The two images are S and T . The
deformation field is termed u. In each iteration, we first per-
form linear interpolation based on the deformation field:

T̃ (x, t) = T (x− u(x, t)) (4)

We obtain the force field using the derivative of an L2 Sum of
Square Difference (SSD) metric:

f(x, u(x, t)) = −[T̃ (x, t)− S(x)]∇T̃ (x, t) (5)

Instantaneous velocity v(x, t) can be obtained by solving the
fluid PDE:

µ∆v(x, t) + (µ+ λ)∇div v(x, t) = f(x, u(x, t)) (6)

In our implementation, we simply use a Gaussian convolution
as in [11, 17].

v(x, t) ≈ Gσ ∗ f(x, u(x, t)) (7)

We use the recursive Gaussian IIR proposed by Alvarez and
Mazorra [4]. This IIR only needs two MADD operations per
dimension. After that, we obtain an updated deformation field
by solving the PDE du(x, t)/dt = v(x, t) − v(x, t)∇u(x, t),
using an explicit Euler scheme:

R(x, ti) = (v(x, ti)− v(x, ti)∇u(x, ti)) (8)

u(x, ti+1) = u(x, ti) + (ti+1 − ti)R(x, ti) (9)

The advancement of timestep needs to be bounded so that
(ti+1−ti) max∥R(x, ti)∥2 does not exceed the maximum dis-
placement allowed in one iteration. More mathematical deriva-
tions can be seen in [17].

The dataflow of this application is shown in Fig. 5. The ap-
plication involves stencil computation in two functions (upda-
teU and updateF), and random access in one function (interp).
The updateV function involves an in-place sweeping of the 3D
data array in all six directions. The FPGA implementation of
the algorithm is presented in [8].

D. Image Segmentation: Active Contours

Image segmentation tries to find and segment an object of
interest. For example, if we have a medical image that contains
a tumor, image segmentation can be used to segment the tumor,
and we can then perform volumetric assessment of the tumor
size. We use Chan-Vese active contours method [5], which is a
level-set-based technique for image segmentation. The method
tries to minimize

minF2(c1, c2, φ) =

∫
Ω

(I0(−→x)− c1)
2(1−H(φ))d−→x

+

∫
Ω

(I0(−→x)− c2)
2H(φ)d−→x + β

∫
Ω

|∇H(φ)|d−→x (10)

where φ is the level-set function and I0(.) is the input image.
H(.) is the Heaviside step function:

H(z) =

{
1 if z ≥ 0
0 if z < 0

(11)

c1 and c2 are the average intensities of the two phases (regions)
segmented by the level-set function.

c1(φ) =

∫
Ω
I0(

−→x)(1−H(φ(t,−→x)))d−→x∫
Ω
(1−H(φ(t,−→x)))d−→x (12)

c2(φ) =

∫
Ω
I0(

−→x)H(φ(t,−→x))d−→x∫
Ω
H(φ(t,−→x))d−→x (13)

The optimization problem is again solved using gradient de-
scent where the gradient of φ is:

∂φ

∂t
= δ(φ)[β∇ · (∇φ

|∇φ|
) + (I0 − c1)

2 − (I0 − c2)
2] (14)

where δ(.) is the Dirac Delta function.
This application mainly involves stencil computations, the

computation of c1 and c2 needs an additional reduction step.
Most of the codes discussed in this section are available in

[3]. A summary of the application characteristic is shown in
Table II.

IV. APPLICATION PERFORMANCE AND ENERGY
EFFICIENCY

A. CPU vs. GPU vs. FPGA

The CPU code is parallelized using OpenMP. The GPU ker-
nel is implemented using Nvidia CUDA; and our FPGA kernel

is described using hardware-oriented C codes which are further
synthesized into Verilog RTL using AutoESL tool [9] version
2011.1. Tables III, IV and V show the experimental results.

In Tables III and IV, we can see that both the GPU and
FPGA offer substantial speedup compared to the single-thread
CPU version. However, different applications will prefer dif-
ferent accelerators. In the case of denoise and segmentation,
because the dynamic range of the data values are large, we
need to use floating point computations, which are better suited
for the GPU. Moreover, the data accesses in these two ap-
plications are quite regular, therefore the data coalescing and
data reuse can be done easily. Thus, the GPU is the better
accelerator for those two applications. For the other two ap-
plications, we performed the fixed-point computation for the
FPGA implementation. In the FPGA registration implemen-
tation, we also explored inter-module streaming (overlapped
tiling) to conserve bandwidth [8]. For the reconstruction appli-
cation, because the data accesses in the ray-tracing are random,
the GPU implementation will use a lot of uncoalesced data ac-
cesses with a much lower off-chip bandwidth. The Convey
FPGA system uses an interleaved (banked) off-chip memory
(similar to the on-chip shared memory in GPU) that excels in
random accesses. Because of these facts, the FPGA delivers
a better performance for these two applications. Note that so
far we only implemented one kernel of the reconstruction (the
EMupdate part) [6], while the TVupdate is done by the multi-
core CPU for the data presented in Tables IV and V.

Note that we try to use reasonable optimizations for each
platform. At one point, the GPU-based segmentation is more
than 100X faster than the single-threaded CPU. We later dis-
covered that there is a powf(a,1.5) invocation that slows down
the CPU code considerably. Replacing that with sqrtf(a*a*a)
speeds up the CPU code by 4X to 5X. On the other hand, GPU
has the special function unit (SFU) that can compute transcen-
dental functions efficiently. Computations involving subnor-
mal floating points are also very slow on the CPU. We have
to use double-precision code for the denoise application for
the 2563 dataset, because double-precision code is around 2X
faster than the single-precision code.

Table V shows the estimated energy used by the different
platforms. Because of the difficulty in measuring the com-
ponent power in real-time, we use the thermal design power
(TDP) to approximate the full-load power consumption. We
then multiply TDP with the multi-threaded execution time to
estimate the energy consumption. The TDP of the Quad-core
Xeon L5408 2.13GHZ is 40W. The TDP of the Tesla C1060
is 200W. We use the Xilinx xPower tool to estimate the power
of the FPGA design, and each FPGA design reports around
23.5W, and 94W in total for the four user FPGAs. We can see
that using GPU or FPGA accelerators can be up to 4X more en-
ergy efficient for the four benchmark applications. When the
accelerator is not presented with a good bandwidth (e.g., re-
construction on the GPU), its energy efficiency may be worse
than a generic multi-core processor.

TABLE II
APPLICATION CHARACTERISTICS

Reconstruction Denoise Registration Segmentation
Data access pattern Random in EMupdate Stencil Random in interp; Stencil

Stencil in TVupdate Stencil/sweeping in other parts
Major computation FP(mul,add) FP(mul, add,div,sqrt) FP(mul, add) FP(mul,add,div,sqrt)

TABLE III
PERFORMANCE OF THE APPLICATIONS ON CPU (QUAD-CORE XEON L5408 2.13GHZ)

Image Reconstruction Denoise Registration Segmentation
Num. of Iterations EMTViternum = 100 15 500 150

EMiternum = 3

Single thread 128 ∗ 128 ∗ 128 2163s 1.55s 212.4s 14.7s
256 ∗ 256 ∗ 256 20376s 16.3s(DP) 2289s 110.3s

4 threads 128 ∗ 128 ∗ 128 629s 0.501s 85.3s 4.71s
256 ∗ 256 ∗ 256 5931s 6.41s(DP) 739.7s 35.1s

TABLE IV
PERFORMANCE OF THE PIPELINE ON GPU OR FPGAS; NUMBERS SHOWN IN BRACKETS ARE THE SPEEDUP COMPARED WITH THE SINGLE-THREAD

RUNTIME IN TABLE III

Image Reconstruction Denoise Registration Segmentation
GPU 128 ∗ 128 ∗ 128 363s(6.0X) 0.0578s(26.8X) 10.9s(19.5X) 0.675s(21.8X)

256 ∗ 256 ∗ 256 3625s(5.6X) 0.426s(38.3X) 86.3s(26.5X) 3.790s (29.1X)
FPGAs 128 ∗ 128 ∗ 128 178s(EM)+57s(TV)(9.2X) 0.119s(13.0X) 9.8s(21.7X) 1.57s(9.4X)

256 ∗ 256 ∗ 256 1826s(EM)+460s(TV)(8.9X) 0.948s(17.2X) 76.1s(30.1X) 12.52s(8.8X)

TABLE V
ENERGY COMPARISON BETWEEN CPU, GPU AND FPGAS,; NUMBERS SHOWN IN BRACKETS ARE THE ENERGY SAVINGS COMPARED WITH THE XEON

CPU

Image Energy
Reconstruction Denoise Registration Segmentation

Xeon CPU 128 ∗ 128 ∗ 128 25160J 20.0J 3412J 188.4J
256 ∗ 256 ∗ 256 2.37E5J 256.4J 29588J 1404J

GPU 128 ∗ 128 ∗ 128 72600J(0.35X) 11.6J(1.72X) 2180J (1.57X) 135J (1.40X)
256 ∗ 256 ∗ 256 7.25E5J(0.33X) 85.2J(3.01X) 17260J (1.71X) 758J (1.85X)

FPGAs 128 ∗ 128 ∗ 128 19012J(1.33X) 11.2J(1.83X) 921J(3.70X) 147.6J(1.28X)
256 ∗ 256 ∗ 256 1.90E5J(1.25X) 89.1J(2.87X) 7153J(4.1X) 1177J(1.19X)

TABLE VI
PERFORMANCE OF THE PIPELINE ON CPU: XEON, ATOM AND ARM(1283 DATASET)

Processor Reconstruction Denoise Registration Segmentation
Num. of Iterations EMTViternum = 100 15 500 150

EMiternum = 3

Single thread Atom 15023s 8.02s 818.8s 53.3s
ARM 12921s 10.2s 1005s 69.3s

4 threads Atom 5638s 2.75s 298.7s 18.3s
2 threads ARM 6569s 6.4s 561.6s 37.4s

TABLE VII
ENERGY COMPARISON BETWEEN XEON, ATOM AND ARM(1283 DATASET); NUMBERS SHOWN IN BRACKETS ARE THE ENERGY SAVINGS COMPARED

WITH THE XEON CPU

Energy
Reconstruction Denoise Registration Segmentation

Xeon 25160J 20.0J 3412J 188.4J
Atom 45014J (0.56X) 22J(0.91X) 2389J (1.43X) 146.4J (1.29X)
ARM 4815J(5.23X) 4.7J(4.26X) 411.7J(8.29X) 27.4J(6.87X)

B. Xeon vs. Atom

Surprisingly, we see that while the Atom processor has a
much lower power consumption, its computing energy is not
substantially better for the four domain-specific applications.
In particular, for the reconstruction application, the IPC for
Xeon is quite high (the working set fits the L2 cache of Xeon
but not Atom). For the denoise and segmentation application,
floating point square root and divisions drag down the perfor-
mance of Atom significantly.

Note, because the memory footprint of a big dataset would
not fit our Tegra 2 development board, only 1283 data points
are shown in Tables VI and VII. The TDP of the Dual-core
Atom 330 is 8W. 1

C. ARM-Based SOC

As the cross-compiler used by the SOC does not support
OpenMP, we instead run multiple processes with a reduced
workload to simulate the multi-threading behavior. The avail-
able parallelism is slightly larger using this scheme. The codes
are compiled using android NDK using softfp ABI. The single-
thread performance of ARM is only slightly worse than Atom.
But it achieves consistent gain in energy than the latter. ARM
uses RISC instructions natively, while Atom converts CISC
x86 instructions into RISC microcodes. We can see that ARM-
based system has a quite good balance between computation
unit and memory systems, and they deliver remarkable en-
ergy savings compared with desktop systems. According to
ARM webpage [1], dual-core A9 at 800MHZ consumes 0.5W
in TSMC 40nm technology, and 1.9W at 2GHz. Our Tegra 2
runs at 1GHz, and we use linear interpolation to get an esti-
mate of 0.733W.2 Note the marketing power consumption of
whole Tegra 2 SOC is less than 0.5W [7]. We use our esti-
mated power number to compute the energy numbers in Table
VII.

V. CONCLUSIONS AND FUTURE WORK

In this paper we benchmark a wide spectrum of platforms,
from mobile-class to server-class platforms. We compare the
performance as well as energy consumption (approximated by
computing the product of TDP and execution time). Differ-
ent applications prefer different platforms, thus validating the
benefits of heterogeneity.

Currently, the power numbers are estimated through the
TDP. They should be replaced by more dedicated real-time
measurements for more accurate energy results.

1According to [13], the measured average power of this Atom in search
applications is 3.2W, much smaller than the 8W TDP.

2We are not able to find the official TDP number for the Tegra 2 chip. The
actual TDP should be even larger than the power consumption of ARM cores,
because SOC integrates many other application processors. Also the ARM-
based Tegra 2 is a more recent product, which uses a newer technology as
well. Thus the actual energy efficiency gap between Atom and ARM could be
smaller than the numbers we reported in the Table VII.

ACKNOWLEDGEMENTS

This research is supported by the Center for Domain-
Specific Computing (CDSC) which is funded by the NSF Ex-
pedition in Computing Award CCF-0926127. This research is
conducted in a renovated laboratory funded by NSF Grant No.
0963183, awarded under the American Recovery and Rein-
vestment Act of 2009 (ARRA).

We greatly appreciate the research gift and equipment dona-
tions from Intel, and helpful discussions with Ganapati Srini-
vasa, Ravishankar Iyer, and Mishali Naik from Intel about
the Intel QuickIA system. We also thank Ming Yan, Igor
Yanovsky , and Pascal Getreuer for sharing their medical im-
age processing source codes for this study.

REFERENCES

[1] ARM Cortex A9, http://www.arm.com/products/
processors/cortex-a/cortex-a9.php.

[2] Convey HC-1ex, http://www.conveycomputer.com/.

[3] http://code.google.com/p/cdsc-image-processing-pipeline/
downloads/list.

[4] L. Alvarez and L. Mazorra. Signal and image restoration using shock
filters and anisotropic diffusion. SIAM J. Numer. Anal., 31:590–605,
April 1994.

[5] T. Chan and L. Vese. Active contours without edges. IEEE Transactions
on Image Processing, 10(2):266 –277, Feb. 2001.

[6] J. Chen, J. Cong, M. Yan, and Y. Zou. FPGA accelerated 3D reconstruc-
tion using compressive sensing. In Proc. FPGA, 2012.

[7] P. Clarke. Nvidia launches Tegra 2 processor, http:
//www.eetimes.com/electronics-news/4086778/
Nvidia-launches-Tegra-2-processor.

[8] J. Cong, M. Huang, and Y. Zou. Accelerating fluid registration algorithm
on multi-FPGA platforms. In Proc. FPL, 2011.

[9] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for FPGAs: From prototyping to deployment.
TCAD, 30(4):473 –491, april 2011.

[10] J. Cong, G. Reinman, A. Bui, and V. Sarkar. Customizable domain-
specific computing. IEEE Design Test of Computers, 28(2):6 –15,
march-april 2011.

[11] E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens. A viscous
fluid model for multimodal non-rigid image registration using mutual
information. In Proc. MICCAI, pages 541–548, 2002.

[12] P. Getreuer, M. Tong, and L. A. Vese. A variational model for the restora-
tion of mr images corrupted by blur and rician noise. In Proc. ISVC,
pages 686–698, 2011.

[13] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search using
mobile cores: quantifying and mitigating the price of efficiency. In Proc.
ISCA, pages 314–325, 2010.

[14] D. A. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous
multi-core architectures. In Proc. Eurosys, pages 125–138, 2010.

[15] C. H. K. van Berkel. Multi-core for mobile phones. In Proc. DATE.

[16] M. Yan and L. A. Vese. Expectation maximization and total variation-
based model for computed tomography reconstruction from undersam-
pled data. In Proc. SPIE Conference on Medical Imaging: Physics of
Medical Imaging, 2011.

[17] I. Yanovsky, A. D. Leow, S. Lee, S. J. Osher, and P. M. Thompson.
Comparing registration methods for mapping brain change using tensor-
based morphometry. Medical Image Analysis, 13(5):679–700, October
2009.

