
Platform-Independent Accessibility API: Accessible 
Document Object Model

Andres Gonzalez 
Adobe Systems Inc. 

345 Park Avenue 
San Jose CA 95110 USA. 

+1-408-536-6224 

andgonza@adobe.com

Loretta Guarino Reid 
Adobe Systems Inc. 

345 Park Avenue 
San Jose CA 95110 USA. 

+1-408-536-2166 

lguarino@adobe.com
 

ABSTRACT 
This paper addresses the problem of supporting accessibility in 
applications that run in multiple operating environments. It 
analyzes the commonalities of existing platform-specific 
Accessibility APIs, and defines a platform-independent 
accessibility API, the Accessible DOM.  

The Accessible DOM encompasses the features of existing APIs 
and overcomes the limitations of existing APIs to express 
dynamic, complex document contents.  

The Accessible DOM can be used to support existing and future 
platform-specific accessibility APIs. It will also allow the 
development of platform-independent accessibility clients. 

Categories and Subject Descriptors 
D.4.m [Operating Systems]: Miscellaneous – Accessibility APIs; 
H.1.2 [User/Machine Systems]: Human factors; H.5.2 [User 
Interfaces]: Graphical user interfaces (GUI), Standardization 

General Terms 
Design, Human Factors, Standardization 

Keywords 
Accessibility API, W3C DOM  

1. INTRODUCTION 
When supporting accessibility, cross-platform application 
developers have to support the platform-specific accessibility API 
for each operating environment under which their application will 
run. For instance, Adobe Reader 7.0 supports MSAA under 
Windows, the Mac Accessibility API under Mac OS X, and ATK 
under Linux [8]. 

In addition to supporting multiple APIs, application developers 
that want to support accessibility often face the problem that the 
existing platform-specific accessibility APIs are not rich enough 
to convey the full functionality of their applications UI and the 
content that they render. This is most evident when supporting 
accessibility in applications that render documents that can 
contain complex text layouts, tables, interactive form fields, 
different types of annotations and multimedia content. 

This paper propose an approach based on the definition of an 
Accessible Document Object Model (Accessible DOM), that 
addresses both the problem of supporting accessibility in a cross-
platform fashion and that will overcome the limitations of existing 
accessibility APIs. The Accessible DOM is based on the W3C 
DOM specifications. It builds upon the DOM Level 3 Core 
specification [11] to define a new module, the accessibility 
module that contains interfaces specific to accessibility. 

The Accessible DOM will provide a superset of the functionality 
provided by existing platform-specific APIs. Therefore, the 
Accessible DOM will allow support of any platform-specific API 
through the implementation of thin-layer adapters that adapt the 
Accessible DOM interfaces to those of a particular API. The 
architecture resulting of this approach is illustrated in figure 1.1. 

Accessibility Server 

Accessible DOM 

MSAA 
Adapter 

ATK 
Adapter

Mac 
Adapter 

Win 
Client

Linux 
Client 

Mac 
Client 

 
Figure 1.1. Cross-platform accessibility server implements 
Accessible DOM. Three adapter layers adapt the Accessible 
DOM to MSAA, Mac Accessibility and ATK. Platform-
specific Accessibility clients hook to the respective adapters. 

 

 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
W4A at WWW2005, 10th May 2005, Chiba, Japan 
Copyright 2005 ACM 1-59593-036-1/05/05…$5.00. 
 

 

mailto:andgonza@adobe.com
mailto:lguarino@adobe.com


The Accessible DOM will also allow the development of cross-
platform accessibility clients, as illustrated in figure 1.2. 
 

 
Figure 1.2. Cross-platform accessibility server implements the 
Accessible DOM. Platform-independent accessibility client 
hooks directly into the Accessible DOM. Three adapter layers 
adapt the Accessible DOM to MSAA, Mac Accessibility and 
ATK. Platform-specific Accessibility clients hook to the 
respective adapters. 
 
 
Section 2. describes the common features of existing accessibility 
APIs and the additional features and benefits that the Accessible 
DOM provides. Section 3. defines the Accessible DOM, by 
defining the interfaces that constitute the accessibility module, 
and the DOM modules required in order to support accessibility. 
Section 4. illustrates how the Accessible DOM can be adapted to 
a platform-specific accessibility API. 

2. ACCESSIBILITY APIS 
2.1 What Is an Accessibility API? 
An accessibility API is an application programming interface 
(API) by which an application (the server) exposes its graphical 
user interface (UI) and content to another application (the client). 
Through the accessibility API, the client discovers, represents, 
and modifies the server’s UI and content. 

Example of accessibility servers can be any user agent like a web 
browser or document viewer. Accessibility clients can be assistive 
technologies, like screen readers or magnifiers, UI automation and 
testing scripts, or dynamic content scripts like JavaScript scripts. 

There are several accessibility APIs for different operating 
environments: 

• Microsoft Active Accessibility (MSAA) [6] for the 
Windows operating system. 

• Java Accessibility API [3], for Java applications and 
applets running inside a Java VM. 

• Linux Accessibility Toolkit (ATK) [4], for the Linux 
operating system. 

• Mac Accessibility API [5], for the Mac OS X operating 
system. 

Accessibility APIs share the following core features: 

• The definition of an accessible object. 

• A hierarchical tree structure in which accessible objects 
live. Accessibility Server 

Accessible DOM

MSAA 
Adapter 

ATK 
Adapter

Mac 
Adapter 

Win 
Client 

Linux 
Client 

Mac 
Client 

P-I 
Client 

• A number of events to notify clients of UI or content 
changes. 

• A server-client inter-process communication 
mechanism. 

Other important features supported by some accessibility APIs 
include: 

• Definition of relationships or associations between 
accessible objects [3, 4]. 

• A mechanism to simulate keyboard and mouse input. 

This section analyzes the common aspects of existing 
accessibility APIs. It also enumerates the desired features of a 
new accessibility API, the Accessible DOM. 

2.2 Accessible Objects 
Accessible objects can represent a UI component such as a button 
or a menu item. They can also represent a content fragment, like 
some text in a document, more complex objects like a table or an 
interactive form field, an entire document or the application itself. 
They possess properties that describe their nature, state and 
functionality.  

Clients use the accessible object interfaces as the basic means to 
retrieve information about the server’s UI and content. An 
accessible object that represents an interactive UI component 
supports interfaces to simulate user’s input. It is the server’s 
responsibility to implement and expose the accessible object 
interfaces for every UI component and content fragment. 

2.3 Accessible Object Properties 
Some properties are common to all accessible objects. For 
instance, all accessible objects possess a name or textual 
description, and a role or type. Other attributes, like value and 
state, vary in applicability to different types of accessible objects. 

The role or type of an accessible object is the attribute that best 
summarizes the nature and functionality of the object. Examples 
of types are “button”, “menu item”, “list” or “document”. 
Knowing the type of an object, a client may determine what other 
properties are relevant in order to represent the object, and what 
general behavior the object may exhibit. For example, a “button” 
is described by its name property and pressed state, and it can be 
used to invoke an action. On the other hand, a “document” is a 
container object that may include text, tables, forms, multimedia 
content, therefore, a much more complex representation is 
necessary, and a richer behavior is expected. Most accessibility 
APIs define an “unknown” role for those UI components that 
don’t fit any of the behaviors predefined by the platform. In those 
cases, clients can only assume that the “unknown” accessible 
object possesses the generic properties and behaviors common to 
all accessible objects. 

In some accessibility APIs, in addition to a single type property, 
the nature and functionality of an accessible object is specified by 
a combination of predefined behaviors or patterns. This approach 
may allow a more flexible, accurate description of the object. A 

 



“list” object will support the “multi-selectable” behavior, if 
multiple selected list items can exist at the same time, and the 
“scrollable” behavior, it not all the list items are visible on the 
screen. 

The value property is relevant for those objects that can have a 
textual or numeric value, such as an edit field or a slider control. 
The state property is most pertinent for accessible objects that 
preserve a state, such as check boxes, radio buttons, or buttons. 
There are however states that are transient in nature, like “busy” 
or “downloading”, that can be relevant for accessible objects of 
type, say, document. There are also states applicable to most 
object types, such as “enabled”, “focused”, and “visible.” 

Screen location is another attribute relevant for all accessible 
objects representing visible UI components or content. 

2.4 Accessibility Tree 
Accessible objects are contained in a hierarchical tree structure. 
Each accessible object constitutes a node in the tree. The root 
node of the tree typically represents the application object itself. 
An accessible object that is a container for other objects will be 
the parent node of its contained accessible objects. For instance, 
the accessible object representing a menu will be the parent node 
of the menu items. Some accessible objects like a check box or a 
button have no children. 

Child/parent and siblings relationships are used by clients to walk 
and discover the entire application accessibility tree. It is the 
responsibility of the server to implement complete navigation 
throughout the tree. 

2.5 Events 
Most accessibility API events fall into one of the following three 
categories: 

• Changes to the structure of the accessibility tree. 
Accessible objects are created, destroyed, or 
repositioned in the tree. 

• Changes to one or more property of an accessible object 

• Changes to a global property, like the focused object. 

2.6 Relationships 
Clients are interested not only in individual objects, but in the 
relationships between them. The accessibility tree imposes 
structural relationships. This hierarchy, however, does not express 
many important relationships. Examples of these relationships 
are: 

• Label for: An object is the label (or prompt) for another 
object. 

• Header for: An object of role “table cell” is the header 
for another object of role “table row” or “table column”. 

• Annotation for: An object is a textual comment for 
another object of role “document fragment”. 

2.7 Input 
Accessibility APIs have different levels of support for simulated 
mouse and keyboard input. MSAA [6] for example, only allows 
the client to invoke a default action in a particular accessible 
object, which in most cases it is equivalent to a left mouse click. 

In some cases, it is desirable to allow client input that is specific 
to the role or type of the target object. For instance for an object 
of type “list”, it would make sense to allow the client to select a 
specific list item. 

2.8 Inter-Process Communication 
Accessibility APIs utilize an inter-process communication 
mechanism to allow clients and servers running in different 
processes to interact. MSAA [6], for instance, uses a COM based 
mechanism, while ATK [4] uses CORBA. 

It is beyond the scope of this paper to discuss choosing an inter-
process communication mechanism that would be most 
appropriate for a cross-platform accessibility API. 

2.9 Features of the Accessible DOM 
As seen throughout this section, existing platform-specific 
accessibility APIs share a common set of features. In the 
following section, a new accessibility API, the Accessible DOM, 
is defined. The Accessible DOM will share the common features 
of existing accessibility APIs and also meet the following 
requirements: 

• It is defined in a platform- and language-neutral way. 

• It is extensible. Servers and clients can add accessible 
object properties, relationships and events as needed in 
a declarative way. 

• It supports complex, dynamic content documents. 

3. ACCESSIBLE DOCUMENT OBJECT 
MODEL 
The relationship between developing accessible applications and 
conformance with the W3C DOM recommendations has been 
stated in the Guideline 6, Checkpoints 6.2 and 6.9, of the User 
Agent Accessibility Guidelines 1.0 recommendations (UAAG 
1.0) [14], part of the W3C Web Accessibility Initiative [15]. 

Some of the documentation related to the W3C DOM 
specification also allude in general terms to the idea that 
conformance to the DOM will facilitate accessibility. For 
example, the DOM FAQ [13] states: 

“The DOM will make it much easier for accessibility tools to 
access documents, since they will be able to take a document and 
feed it into an accessibility-enabled application, such as a screen 
reader.” 

The DOM for HTML 4.01 and XHTML 1.0 has been successfully 
used to support MSAA and ATK in the Mozilla web browser [1]. 
The accessibility of complex, interactive web applications using 
JavaScript has been also addressed by leveraging platform-
specific accessibility APIs with the functionality provided by the 
Mozilla’s implementation of the DOM for XHTML [2]. 

This paper formalizes the connection between supporting 
accessibility and conformance with the DOM specifications. It 
establishes the relationship between the DOM implementation 
and an accessibility API by proposing the Accessible DOM as the 
appropriate framework to define a platform-independent 
accessibility API. 

The Accessible DOM consists of the accessibility module defined 
in sections 3.1 through 3.3, and a subset of the modules defined 

 



by the W3C DOM specifications. Section 3.6 lists the specific 
modules that need to be supported in order to provide an 
Accessible DOM implementation. 

The AccessibleNode, AccessibleDocument, Relationship, and 
Collection interfaces defined in the accessibility module 
guarantee that the Accessible DOM meets the requirements for an 
accessibility API put forth in section 2.9. These features, in 
addition to the features inherited from the rest of the DOM 
modules comprised by the Accessible DOM, make the Accessible 
DOM a superset of the existing platform-specific accessibility 
APIs. 

Note: Following the style of the W3C DOM specifications, the 
accessibility module interfaces will be defined using OMG IDL 
[7]. See the Appendix for a complete IDL definition of the 
accessibility module of the Accessible DOM. 

3.1 AccessibleNode Interface 
The AccessibleNode interface is the fundamental interface that 
characterizes the Accessible DOM. It contains the basic 
accessible properties that are common to existing accessibility 
APIs and that have proven to be useful to accessibility servers and 
clients. 

The Accessible DOM extends the Node interface defined in the 
DOM level 3 Core specification [11] as follows: 
 interface AccessibleNode : Node { 
  attribute DOMString accessibleName; 
  readonly attribute DOMString accessibleType; 
  attribute DOMString accessibleValue; 
  attribute DOMString accessibleState; 
  attribute Rect boundingRect; 
  Collection getCollection(in DOMString accessibleType); 
  attribute RelationshipList relationships; 
 }; 

The accessibleName attribute contains a string that best describes 
the node. For instance, for a button element in HTML 4.01, 
accessibleName is equivalent to HTMLButtonElement.name, 
while for an image element, it would be more appropriate to use 
HTMLImageElement.alt [9]. 

The accessibleType attribute represents the role or behavior of the 
Node as discussed in section 2.3. For an HTML 4.01 select 
element, accessibleType would correspond to 
HTMLSelectElement.type, which can be “select-multiple” or 
“select-one”, if the element allows multiple or single selection 
respectively. 

The accessibleValue and accessibleState attributes may be null if 
they don’t apply to a particular AccessibleNode. For example, the 
accessibleValue of an HTMLButtonElement would be null, but its 
accessibleState may be “enabled, pressed”. 

The boundingRect of type Rect represents the screen coordinates 
of a bounding rectangle for the visual rendering of an 
AccessibleNode (see the Appendix for the IDL definition of 
Rect). If a certain Node is never rendered on the screen or it is 
invisible at the time, this attribute returns null. In most cases, the 
user agent would need to compute the screen coordinates of the 
bounding rectangle based on the DOM implementation’s client 
area coordinates. 

A Collection is a set of descendents of the AccessibleNode with 
the same accessibleType attribute (see the Appendix for its IDL 
definition). There is no restriction on the relative locations on the 

DOM tree between the items in the Collection, i.e., different items 
can be at different levels of depth in the subtree rooted at the 
AccessibleNode. For instance, the DOM Level 2 HTML 
specification defines several collections as attributes of the 
HTMLDocument object, namely, images, applets, links, forms 
and anchors. Other HTML Elements also possess Collections, i.e., 
HTMLFormElement, HTMLMapElement, HTMLTableElement, 
HTMLTableSectionElement, and HTMLTableRowElement.  
The getCollection method returns a Collection of 
AccessibleNodes with the specified accessibleType or null, if not 
such a Collection exists. 
The relations attribute provides the mechanism to express 
arbitrary associations between AccessibleNodes. The next section 
analyzes in detail the definition of the RelationshipList and 
Relationship interfaces. 

In addition to encapsulating the most commonly used accessible 
properties, the NamedNodeMap attribute inherited from the Node 
interface makes the AccessibleNode an easily extensible 
interface. Accessibility servers and clients will be able to 
exchange a rich set of accessibility properties, not limited by a 
fixed number of API methods. 

The definition of a complete set of accessible attributes, as well as 
a complete set of values for those attributes, is beyond the scope 
of this paper. Future work in the definition of the Accessible 
DOM will define a complete set of values for the 
AccessibleNode’s accessibleType and accessibleState attributes, 
as well as a complete set of relevant relationships between 
AccessibleNodes. 

3.2 Relationship and RelationshipList 
Interfaces 
As mentioned in section 2.6, an important aspect that accessibility 
APIs need to convey is the relevant relationships between objects, 
beyond the parent-child relationships determined by the structure 
tree. To accomplish this, the AccessibleNode interface includes 
the attribute relationships of type RelationshipList, which 
interface and related types are defined as follows: 
 interface Relationship { 
  readonly attribute DOMString name; 
  readonly attribute Node owner; 
  readonly attribute Node relatedNode; 
  readonly attribute Document ownerDocument; 
  void               initRelation(in DOMString relationName,  
   in Node ownerNode, 
   in Node relatedNode); 
  boolean            isSameRelationship(in Relationship arg); 
 }; 

where name is the name of the relationship, ownerNode is the 
owner or subject of the relationship, and relatedNode is the node 
that relates to ownerNode as described by name. 

For instance, let’s assume that n1 is a textual annotation for the 
document fragment n2 in a PDF document. This may be 
expressed with the Relationship rel as follows: 

rel.name = “annotation for” 
rel.ownerNode = n2 
rel.relatedNode = n1 

The ownerDocument attribute is the AccessibleDocument node 
that created the relationship, see the createRelationship method of 
the AccessibleDocument interface. 

 



The initRelationship method allows the initialization of the 
Relationship object. Both the ownerNode and relatedNode 
parameters have to be nodes belonging to the same Document. 

The isSameRelationship method determines whether the specified 
Relationship arg is the same as this Relationship by comparing 
the name attributes, as specified in the DOM Level 3 Core 
specification [11] for comparing DOMStrings, and evaluating the 
Node method isSameNode for both the ownerNode and 
relatedNode. That is, rel1.isSameRelationship(rel2) returns true if 
and only if the following expression is true: 
( rel1.name == rel2.name && 

rel1.ownerNode.isSameNode(rel2.ownerNode) && 
rel1.relatedNode.isSameNode(rel2.relatedNode) ) 
 

 interface RelationshipList { 
  readonly attribute unsigned long   length; 
  Relationship item(in unsigned long index); 
  RelationshipList namedItems(in DOMString name); 
  RelationshipList relatedNodeItems(in Node relatedNode); 
  Relationship add(in Relationship arg); 
  Relationship remove(in Relationship arg); 
 }; 
 
The length attribute and item method provide a way to retrieve a 
particular Relationship from the set of relationships owned by an 
AccessibleNode. The namedItems and relatedNodeItems methods 
are convenient to extract a subset of the relationships owned by a 
Node that have the same name or the same relatedNode, 
respectively. The add and remove methods simply allow the 
addition or removal of a Relationship to the set. Add and remove 
will raise an exception if the Relationship being added or 
removed is not owned by the same Node as the existing items in 
the set. 

3.3 AccessibleDocument Interface 
The AccessibleDocument interface is implemented by the same 
object that implements the Document interface, i.e., the root node 
of the DOM tree. It extends the Document interface by adding the 
capability of creating relationships and inherits the ability of 
retrieving relevant Collections from the AccessibleNode interface. 
It also provides a mechanism for focus and selection tracking.  
 interface AccessibleDocument : AccessibleNode, Document { 
  Relationship createRelationship(); 
  attribute AccessibleNode currentFocus; 
  attribute Range currentSelection; 
 }; 
 
The createRelationship method provides the mechanism by which 
both the accessibility server and the client can create a 
Relationship object. It returns a Relationship object whose 
ownerDocument attribute is the Document implementing the 
interface. The name, ownerNode, and relatedNode attributes are 
null. Therefore, the user of the created Relationship needs to call 
initRelation before it can be added to any RelationshipList of an 
AccessibleNode. 

The getCollection method inherited from AccessibleNode covers 
particular significance for the AccessibleDocument object 
because it would provide a mechanism for easy navigation and 
summarization of a document. As stated in UAAG 1.0 [14], 
Guideline 9. “Provide navigation mechanisms”, direct and 
structured navigation are crucial for accessibility. For example, by 
retrieving a Collection of all the headings in a document, the user 
may jump to the desired section without having to go sequentially 
through the entire content. 

The currentFocus and currentSelection attributes correspond to 
the current user interface focus and current selection concepts 
defined in UAAG 1.0. Notice that different views of the same 
document can have different focused objects and selections, but 
only the current focus and current selection respond to user’s 
input. Defining the currentFocus and currentSelection as attributes 
of the AccessibleDocument object, and not of an AccessibleNode 
in general, reflects their global, unique nature as the target of user 
input. 

3.4 Ranges and Traversal 
An accessible DOM implementation needs to support both the 
ranges and traversal DOM modules defined in the DOM Level 2 
specification [10].  

Ranges are appropriate objects to keep track and manipulate 
content selection and content focus, required by Guideline 9 of 
UAAG 1.0 [14]. The AccessibleDocument interface defined in 
section 3.3 uses a Range to keep track of the document current 
selection. User agents that render textual content may utilize 
Ranges to navigate text by units like paragraphs, lines or words. 

Accessibility clients need to traverse a filtered view of the DOM 
tree. There are at least two filtering criteria that are important for 
an accessibility client: 

1. Traverse only nodes that support the AccessibleNode 
interface. 

2. Traverse only those AccessibleNodes that are visible on 
the screen in a visual rendering. 

Traversing AccessibleNode objects only may be implemented by 
defining an additional whatToShow constant as follows: 
 const unsigned long       SHOW_ACCESSIBLE = 0x000001000; 

The DOM implementation would need to honor this flag when 
supporting the navigation methods of the NodeIterator and 
TreeWalker interfaces. 

Visible AccessibleNode objects may be filtered by providing an 
acceptNode method as follows: 

short              acceptVisibleNode(in Node n) 
{ 

if ( (AccessibleNode)n.boundingRect ) 
 return NodeFilter::FILTER_ACCEPT; 
return NodeFilter::FILTER_SKIP; 

}; 

Then a TreeWalker that traverse only visible AccessibleNodes 
objects may be created by doing the following: 

TreeWalker tw = (DocumentTraversal)doc.createTreeWalker(root, 
 show | SHOW_ACCESSIBLE, 
 acceptVisibleNode, false); 

where show is a combination of the DOM Level 2 NodeFilter 
whatToShow constants excluding SHOW_ALL. 

3.5 Events 
The DOM Level 3 Events specification [12] provides an 
appropriate framework for accessibility-related events. An 
Accessible DOM implementation should support the following 
event modules: 

• User Interface event module. Events related to 
activation of UI elements and focus tracking. 

 



• Text event module. Related to input of text. 

• Mutation and mutation name event modules. 
Notifications of any changes to the structure of the 
document tree and its nodes’ attributes, text, or name. 

• Basic event module. Basic event types associated with 
document manipulation such as load, unload, select, 
resize, and scroll. 

• Mouse and keyboard event modules. Device-dependent 
events such as mouse click and key ups and downs. 

Clients may register event listeners to be notified of any of the 
above-mentioned types of events in any particular subtree of the 
DOM tree. By using the dispatchEvent method of the EventTarget 
interface, clients may also trigger events, which, for instance, 
provides a mechanism to simulate mouse and keyboard input. 

As stated in the DOM Level 3 Events specification, the DOM 
does not attempt to define all possible events. Further types and 
categories of events may be necessary to define for accessibility 
in the future. As a complete set of accessible events is defined, 
specialized event interfaces will be derived from the existing 
DOM event types in order to express the appropriate event 
context information. 

Section 4.2 illustrates how to map the DOM Level 3 event types 
to a platform-specific accessibility API events. 

3.6 Accessible DOM Conformance Profile 
Summarizing, an Accessible DOM implementation will have to 
conform to the following DOM modules: 

• DOM Level 3 Core. 

• DOM Level 3 Events. 

• DOM Level 3 User interface Events. 

• DOM Level 3 Mouse Events. 

• DOM Level 3 Text Events. 

• DOM Level 3 Keyboard Events. 

• DOM Level 3 Mutation Events. 

• DOM Level 3 Mutation name Events. 

• DOM Level 2 Range. 

• DOM Level 2 Traversal. 

It will also have to support the accessibility interfaces and 
associated semantics discussed in this section. See the Appendix 
for a complete IDL definition of the accessibility module. 

4. PLATFORM-SPECIFIC ADAPTERS 
As shown in Figure 1.1 in the introduction, a platform-
independent accessibility API would need to be adapted to 
platform-specific APIs in order to support accessibility clients 
that rely upon them. This section illustrates how the Accessible 
DOM can be adapted and used to support a platform-specific 
accessibility API. 

A platform-specific adapter is nothing more than an Accessible 
DOM client, whose purpose is to adapt the Accessible DOM 
interfaces to a particular API. An adapter will implement the 
interfaces of the accessibility API based on the Accessible DOM 

implementation. It will also forward any events generated by the 
Accessible DOM implementation to the accessibility API event 
triggering mechanism. Adapters for accessibility APIs that 
support input will also need to feed any input from the 
accessibility API back into the Accessible DOM. To accomplish 
this proxy role, the adapter will need to translate between the 
DOM accessible attributes and events and the properties and 
events of the accessibility API. 

Section 4.1 explains how the methods of the IAccessible MSAA 
interface can be implemented given an implementation of an 
Accessible DOM. Section 4.2 shows how DOM events can be 
mapped into MSAA events. 

4.1 Supporting MSAA IAccessible 
The IAccessible get and put accName and accValue correspond to 
the AccessibleNode’s accessibleName and accessibleValue 
attributes respectively. Likewise, get_accLocation, get_accRole 
and get_accState can be implemented straightforwardly from the 
AccessibleNode attributes boundingRect, accessibleType and 
accessibleState, respectively. Other descriptive properties of 
IAccessible such as accDescription or accHelp can be obtained by 
using the AccessibleNode NamedNodeMap attributes attribute or 
the Element interface to retrieve attribute values directly. 

Hierarchical navigation methods like get_accParent, get_accChild 
and accNavigate can be naturally implemented using the DOM 
tree navigation mechanisms. The accNavigate method also 
provides spatial navigation to the objects to the left, right, above 
and below in a bi-dimensional visual rendering. This may be 
implemented by defining and supporting the AccessibleNode 
Relationships “to the left”, “to the right”, “above” and “below”. 

The get_accSelection and accSelect methods can be implemented 
by iterating over the NodeList childNodes attribute and adding or 
removing the “selected” value from the accessibleState attribute 
of each accessible child. A more specialized extension of the 
AccessibleNode interface may be defined in the future to better 
support complex selection operations. 

The get_accFocus method can be supported by using the 
currentFocus attribute of the ownerDocument of the 
AccessibleNode, that is: 

AccessibleNode focus = ( (AccessibleNode)(((Node) accnode). 
ownerDocument) ).currentFocus; 

Then return (IAccessible)focus, if focus is a descendent of 
accnode or null otherwise. 

The accHitTest method can be implemented by traversing the 
subtree rooted at the corresponding AccessibleNode and checking 
the given coordinates against the boundingRect. The deepest 
AccessibleNode in the tree whose boundingRect contains the 
given point is returned. 

Finally, the accDoDefaultAction method can be implemented by 
dispatching the DOMActivate event to the corresponding 
Element. In most cases this is equivalent to dispatching a mouse 
click event. 

4.2 Mapping The DOM Event Types To 
MSAA Events 
To forward Accessible DOM events to the accessibility API, an 
adapter can add listeners for different types of events to all 

 



accessible EventTargets in the DOM tree. The handleEvent 
method of the EventListener interface will map each event and its 
context information into the corresponding accessibility API 
event. 

The following table summarizes the correspondence between the 
DOM Level 3 event types and MSAA events. When more than 

one MSAA event should be fired as the result of a DOM event, 
ampersand (‘&’) is used to indicate so. When different events 
should be fired for different object types, a vertical bar (‘|’) is 
used. 

 
Table 4.1. The first column contains the DOM event types and the second column, the corresponding MSAA events. Third column 

contains comments. 

DOM event type MSAA event Comments 

DOMActivate EVENT_SYSTEM_FOREGROUND | 
EVENT_OBJECT_FOCUS 

A link gained focus, or a new viewport 
became the active view. 

DOMFocusIn EVENT_OBJECT_FOCUS  

DOMFocusOut n/a No equivalent in MSAA 

textInput EVENT_OBJECT_VALUECHANGE The accessibleValue of the Text object 
changed. 

click n/a No mouse input support in MSAA. 

mousedown n/a No mouse input support in MSAA. 

mouseup n/a No mouse input support in MSAA. 

mouseover n/a No mouse input support in MSAA. 

mousemove n/a No mouse input support in MSAA. 

mouseout n/a No mouse input support in MSAA. 

keydown n/a No keyboard input support in MSAA. 

keyup n/a No keyboard input support in MSAA. 

DOMSubtreeModified EVENT_OBJECT_REORDER  

DOMNodeInserted EVENT_OBJECT_REORDER & 
EVENT_OBJECT_CREATE 

 

DOMNodeRemoved EVENT_OBJECT_REORDER & 
EVENT_OBJECT_DESTROY 

 

DOMNodeRemovedFromDocument EVENT_OBJECT_DESTROY  

DOMNodeInsertedIntoDocument EVENT_OBJECT_CREATED  

DOMAttrModified EVENT_OBJECT_STATECHANGE | 
EVENT_OBJECT_LOCATIONCHANGE | 
EVENT_OBJECT_NAMECHANGE | 
EVENT_OBJECT_VALUECHANGE  

Or any other EVENT_OBJECT_ 
constant, corresponding to an MSAA 
descriptive property. 

DOMCharacterDataModified EVENT_OBJECT_VALUECHANGE The accessibleValue of the Text object 
changed. 

DOMElementNameChanged EVENT_OBJECT_NAMECHANGE  

DOMAttributeNameChanged n/a No support for attribute name changes 
in MSAA. 

 

http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMActivate#events-event-DOMActivate
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMFocusIn#events-event-DOMFocusIn
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMFocusOut#events-event-DOMFocusOut
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-textInput#events-event-textInput
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-click#events-event-click
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-mousedown#events-event-mousedown
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-mouseup#events-event-mouseup
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-mouseover#events-event-mouseover
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-mousemove#events-event-mousemove
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-mouseout#events-event-mouseout
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-keydown#events-event-keydown
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-keyup#events-event-keyup
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMSubtreeModified#events-event-DOMSubtreeModified
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMNodeInserted#events-event-DOMNodeInserted
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMNodeRemoved#events-event-DOMNodeRemoved
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMNodeRemovedFromDocument#events-event-DOMNodeRemovedFromDocument
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMNodeInsertedIntoDocument#events-event-DOMNodeInsertedIntoDocument
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMAttrModified#events-event-DOMAttrModified
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMCharacterDataModified#events-event-DOMCharacterDataModified
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMElementNameChanged#events-event-DOMElementNameChanged
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-DOMAttributeNameChanged#events-event-DOMAttributeNameChanged


load EVENT_OBJECT_VALUECHANGE No document support in MSAA. But this 
event may be used to indicate that 
something changed in the document 
object. 

unload EVENT_OBJECT_VALUECHANGE No document support in MSAA. But this 
event may be used to indicate that 
something changed in the document 
object. 

abort n/a No event to indicate document loading 
errors in MSAA. 

error n/a No event to indicate document loading 
errors in MSAA. 

select EVENT_OBJECT_SELECTION  

change EVENT_OBJECT_VALUECHANGE  

submit n/a No forms support in MSAA 

reset n/a No forms support in MSAA. 

resize EVENT_OBJECT_LOCATIONCHANGE | 
EVENT_SYSTEM_MOVESIZESTART | 
EVENT_SYSTEM_MOVESIZEEND 

 

scroll EVENT_SYSTEM_SCROLLINGSTART | 
EVENT_SYSTEM_SCROLLINGEND 

 

 

5. CONCLUSIONS 
The Accessible DOM provides a suitable framework to define a 
platform-independent accessibility API. The AccessibleNode 
interface encapsulates the basic properties of existing accessibility 
APIs. At the same time, it remains easily extensible since new 
accessible attributes, relationships and events can be added in a 
declarative fashion, without having to change its core interfaces.  

The AccessibleDocument, Relationship and Collection interfaces 
create the foundation for supporting accessibility of documents 
with dynamic, complex content and layout. 

The Accessible DOM can be used to support existing and future 
platform-specific APIs through the implementation of thin-layer 
adapters. These adapters will allow the decoupling of defining 
and supporting accessibility requirements from the details and 
mechanisms that are specific to a particular operating 
environment. 

As more work is done in the definition of a complete set of 
relevant accessibility attribute values, relationships and event 
types, the interfaces defined in the accessibility module of the 
Accessible DOM will be refined, enriched, and more specialized 
accessibility interfaces will be added. 

6. APENDIX 
// IDL definition of the accessibility module. 
#ifndef _ACCESSIBLE_IDL_ 
#define _ACCESSIBLE_IDL_ 
 
#include "dom.idl" 
#include "ranges.idl" 
 

 
module accessibility 
{ 
 typedef dom::DOMString DOMString; 
 typedef dom::Node Node; 
 
 interface Rect; 
 interface RelationshipList; 
 interface Collection; 
 
 interface AccessibleNode : Node { 
  attribute DOMString accessibleName; 
  readonly attribute DOMString accessibleType; 
  attribute DOMString accessibleValue; 
  attribute DOMString accessibleState; 
  attribute Rect boundingRect; 
  Collection getCollection(in DOMString accessibleType); 
  attribute RelationshipList relationships; 
 }; 
 
 interface Rect { 
  attribute unsigned long top; 
  attribute unsigned long left; 
  attribute unsigned long bottom; 
  attribute unsigned long right; 
 }; 
 
 interface Collection { 
  readonly attribute unsigned long   length; 
  AccessibleNode item(in unsigned long index); 
 }; 
 
 interface Relationship { 
  readonly attribute DOMString name; 
  readonly attribute Node owner; 
  readonly attribute Node relatedNode; 
  readonly attribute Document ownerDocument; 
  void               initRelation(in DOMString relationName,  
   in Node ownerNode, 
   in Node relatedNode); 
  boolean            isSameRelationship(in Relationship arg); 
 }; 

 

http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-load#events-event-load
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-unload#events-event-unload
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-abort#events-event-abort
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-error#events-event-error
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-select#events-event-select
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-change#events-event-change
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-submit#events-event-submit
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-reset#events-event-reset
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-resize#events-event-resize
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/DOM3-Events.html#events-event-scroll#events-event-scroll


 
 interface RelationshipList { 
  readonly attribute unsigned long   length; 
  Relationship item(in unsigned long index); 
  RelationshipList namedItems(in DOMString name); 
  RelationshipList relatedNodeItems(in Node relatedNode); 
  Relationship add(in Relationship arg); 
  Relationship remove(in Relationship arg); 
 }; 
 
 interface AccessibleDocument : AccessibleNode, Document { 
  Relationship createRelationship(); 
  attribute AccessibleNode focusedNode; 
  attribute Range selection; 
 }; 
}; 
 
#endif // _ACCESSIBLE_IDL_ 

7. ACKNOWLEDGMENTS 
Special thanks to the members of the Acrobat Accessibility team 
Chika Kono, Richard Potter, Ray Fischer and Ashutosh Sharma. 
Many of the ideas presented on this paper are the result of long 
hours of discussion, research and development carried out by this 
team. Big thanks to Abhishek Shrivastava for helping us out with 
the diagrams of the introduction. Our deepest appreciation to 
Chika Kono for also taking care of the formatting of the 
document. 

8. REFERENCES 
[1] Leventhal, A. Mozilla Accessibility Architecture. 

http://www.mozilla.org/access/architecture 
[2] Schwerdtfeger, R. and Gibson, B. DHTML Accessibility: 

Fixing the JavaScript Accessibility Problem. 
http://www.csun.edu/cod/conf/2005/proceedings/2524.htm 

[3] Java Accessibility API. 
http://java.sun.com/products/jfc/accessibility/reference/index
.html 

[4] Linux ATK Accessibility Toolkit. 
http://developer.gnome.org/doc/API/2.0/atk/ 

[5] Mac Accessibility API. 
http://developer.apple.com/accessibility/ 

[6] Microsoft Active Accessibility Version 2.0. 
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/msaa/msaastart_9w2t.asp 

[7] OMG IDL Syntax and Semantics. Common Object Request 
Broker: Architecture and Specification (CORBA), Version 2, 
Object Management Group. 
http://www.omg.org/technology/documents/formal/corba_2.
htm 

[8] Reading PDF Through Accessibility Interfaces. 
http://partners.adobe.com/public/developer/en/pdf/access.pdf 

[9] W3C Document Object Model (DOM) Level 2 HTML 
Specification.  
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-
20030109 

[10] W3C Document Object Model (DOM) Level 2 Traversal and 
Range Specification.  
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-
Range-20001113/ 

[11] W3C Document Object Model (DOM) Level 3 Core 
Specification.  
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-
20040407 

[12] W3C Document Object Model (DOM) Level 3 Events 
Specification.  
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-
20031107/ 

[13] W3C Document Object Model FAQ. 
http://www.w3.org/DOM/faq.html#accessibility 

[14] W3C User Agent Accessibility Guidelines 1.0. 
http://www.w3.org/TR/2002/REC-UAAG10-20021217/ 

[15] W3C Web Accessibility Initiative (WAI). 
http://www.w3.org/WAI/ 

 

 

 

http://www.mozilla.org/access/architecture
http://www.csun.edu/cod/conf/2005/proceedings/2524.htm
http://java.sun.com/products/jfc/accessibility/reference/index.html
http://java.sun.com/products/jfc/accessibility/reference/index.html
http://developer.gnome.org/doc/API/2.0/atk/
http://developer.apple.com/accessibility/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaastart_9w2t.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msaa/msaastart_9w2t.asp
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://partners.adobe.com/public/developer/en/pdf/access.pdf
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/
http://www.w3.org/DOM/faq.html#accessibility
http://www.w3.org/TR/2002/REC-UAAG10-20021217/
http://www.w3.org/WAI/

	1. INTRODUCTION 
	2. ACCESSIBILITY APIS 
	3. ACCESSIBLE DOCUMENT OBJECT MODEL 
	4. PLATFORM-SPECIFIC ADAPTERS 
	1.  
	5. CONCLUSIONS 
	6. APENDIX 
	7. ACKNOWLEDGMENTS 
	8. REFERENCES 

