
Platform Independent Model Transformation
Based on TRIPLE

Andreas Billig1, Susanne Busse2, Andreas Leicher2, and Jörn Guy Süß2

1 Fraunhofer ISST, Berlin, Germany
Andreas.Billig@isst.fhg.de

2 Technische Universität Berlin, Germany
{sbusse,aleicher,jgsuess}@cs.tu-berlin.de

Abstract. Reuse is an important topic in software engineering as it
promises advantages like faster time-to-market and cost reduction. Reuse
of models on an abstract level is more beneficial than on the code level,
because these models can be mapped into several technologies and can be
adapted according to different requirements. Unfortunately, development
tools only provide fixed mappings between abstract models described in a
language such as UML and source code for a particular technology. These
mappings are based on one-to-one relationships between elements of both
levels. As a consequence, it is rarely possible to customize mappings
according to specific user requirements.
We aim to improve model reuse by providing a framework that gen-
erates customized mappings according to specified requirements. The
framework is able to handle mappings aimed for several component tech-
nologies as it is based on an ADL. It is realized in Triple to represent
components on different levels of abstraction and to perform the actual
transformation. It uses feature models to describe mapping alternatives.

1 Introduction

In general, software development consists of several steps from which one is the
design. The design is often expressed by a modeling language such as UML and
sketches the specification of a system. It is common practice to translate the
result of the design into source code. This is done either manually or automat-
ically. Unfortunately, the link between design and source code often ends after
the transformation step and the design is not kept up-to-date any longer. This
has several disadvantages, particularly for reuse.

At present, reuse mainly manifests itself in artifacts: Either source code or
commercials off-the-shelf (COTS) are reused. However, this kind of reuse is re-
stricted to a small number of situations, where we can directly reuse an artifact.
If we, for example, develop a system based on the .Net technology and we have
an existing component that exactly fulfills a particular service but is written in
CORBA, we can’t directly reuse that component. Instead, we have to construct
appropriate wrapper code to adapt the component to the actual environment.
This often brings some disadvantages such as performance penalties etc. Unfor-
tunately, we cannot simple extract the design from existing code and build an

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 493–511, 2004.
c© IFIP International Federation for Information Processing 2004

494 Andreas Billig et al.

adapted component from it, because code is the result of the amalgamation of
both design and technology. It is difficult to recognize design in large projects,
because it tends to get lost in the brittle structure of libraries and code. As a
consequence, design reuse is hard to achieve, as it is not supported in current
software development.

For that reason, Model-Driven Development [12] proposes to model systems
on a higher level of abstraction – independent of a particular technology – and to
automatically transform a design into code. This kind of development promises
faster time-to-marked and cost reduction because specifications on a more ab-
stract level simplify development. If we for example have the design specification
of the CORBA component mentioned above, we can automatically generate a
.Net version of this component based on the abstract design. More precisely, the
exact extent of the generation depends on the degree of modeled information in
the design model. If it only comprises interface definitions, we only can generate
platform specific interfaces. However, we assume that a platform independent
component specification additionally includes pre- and post conditions, behav-
ior descriptions, and a state model of the component. Therefore, only a small
amount of source code has to be generated manually.

The OMG however proposes Model-Driven Development by their Model
Driven Architecture (MDA). The MDA [13] targets fully automated component
generation. Therefore, it distinguishes two kinds of models: platform indepen-
dent models (PIM) and platform specific models (PSM). We refer to a PSM if it
is based on a particular form of technology such as Enterprise JavaBeans, Jav-
aBeans, and Jini etc. A PSM is normally described in a modeling language such
as UML and corresponds in a one-to-one fashion to an implementation of the
system. For example, the OMG provides several UML profiles (PSM) that de-
scribe a platform such as Enterprise JavaBeans or CORBA in UML [15]. These
profiles also define mappings in order to automatically generate source code.
Contrary to these models, platform independent models (PIM) can be defined
without reference to a platform, and therefore without describing a particular
form of technology. Such kinds of models are usually specified using a modeling
language without using platform specific elements, e.g. platform specific types.
Figure 1 shows the core concept of Model-Driven Development. It distinguishes
the different kinds of models as well as model transformations between them. In
particular, it presents two mappings between a platform independent model and
the Enterprise JavaBeans technology respectively the .Net Platform.

Unfortunately, the proposed advantages of Model-Driven Development can’t
yet realized with MDA, because automatic model transformations are required
to gain an advantage towards traditional source code development. Currently,
the MDA lacks a transformation language to perform necessary mappings [7].
Therefore, the OMG issued the Request for Proposal for Query/Views/Trans-
formations (QVT) [14].

Another problem of today’s software development concerns the lack of cus-
tomization of particular model transformations. A transformation should be ap-
plied according to specific user requirements. For example, a platform indepen-

Platform Independent Model Transformation Based on Triple 495

PICMPIM

PSM

Implementation

PSCMEJB PSCM.Net

Artifacts

PICMUMLProfile

PSCMEJBUML
Profile

Artifacts

UML
RepresentationComponent Models

Key:
Mapping
with Cardinality 1 or many(*)

Model

1 1

1

1

1

1

111

* * *

Fig. 1. Model-Based Transformation in MDA

dent component should be transformed into an EntityBean or a SessionBean
according to particular requirements. Unfortunately, existing software develop-
ment tools (such as Rose, ArgoUML etc.) do not support platform independent
models. They often provide source code mappings only for one or a small number
of technologies: These mappings are defined as one-to-one relationships between
UML classes and source code classes. As a consequence, it is rarely possible to
customize these mappings according to user requirements.

1.1 Objectives

We propose an ontology-based framework that provides customizable PIM-to-
PSM mappings. The framework is based on a platform independent component
specification that is constructed according to the component definition used in
an Architecture Description Language (ADL). It is capable of handling map-
pings aimed for several platforms such as Enterprise JavaBeans, CORBA, .Net,
COM etc. A user can add mappings for each platform of interest. Each mapping
defines a relationship between the platform independent component model and
a platform specific component model.

Furthermore, the framework allows defining several PIM-to-PSM mappings
for each specific platform. Each mapping can be associated with a particular con-
cept or feature that describes a situation when the mapping should be applied.
Thus, a particular mapping is selected based on the requirements of a specific
situation. For example, in this paper we start with one platform independent
component specification and generate two different EJB models according to user
requirements: One is optimized for data throughput between distributed com-
ponents and one is optimized for local communication. A developer can specify
certain properties such as quality of service attributes that should be taken into
account in a particular situation. The framework chooses the appropriate map-
ping based on the specified properties and generates optimized platform specific
EJB components.

496 Andreas Billig et al.

The framework is based on Feature Models [5] as well as on Triple [16].
Feature models describe properties and alternatives for model transformations.
They are used to specify mapping requirements. Triple is a deductive pro-
gramming language, similar to F-Logic [10]. It is used to select the appropriate
mapping and to perform the model transformation based on this mapping.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the framework with its component models and feature models. Sec-
tion 3 explains model transformation including the realization with Triple.

1.2 Related Work

Several proposals for model transformation have been recently published in re-
sponse to the OMG’s RFP. These proposals can be classified regarding several
categories such as how they define transformation rules or rule application strate-
gies. Czarnecki and Helsen [6] provide a classification of model transformation
approaches. According to this classification our approach, which is based on
Triple is a declarative relational model-to-model approach. Other model trans-
formation languages are based directly on UML. [18] for example defines an
extension of the Object Constraint Language OCL using database manipulation
operations of SQL. We use an existing language – Triple – to define mappings.
Thus, the model transformation is ”automatically” done by the inference engine.
It allows declaring transformations in a very flexible and compact syntax, similar
to F-Logic1. Additionally, the Triple concept of parameterized contexts allows a
modularization of rule sets and enables the re-use of mappings by parameterized
mapping specifications.

Additionally, our approach uses feature model instances, which describe map-
ping variants to parameterize mappings. Feature models are important in the
context of product line engineering and domain analysis ([5, 4]). They are used
to describe variants within a system family and to generate applications as in-
stances of this system family from the application’s specification.

Mostly, the generative approach is used on the implementation level. [2] de-
fines the KobrA methodology for a component-based engineering with UML very
similar to our approach. KobrA also contains the specification of variable parts
of a system and feature models called decision models. But these concepts are
only discussed in the context of product line engineering. We use them to sup-
port the general development process wherein alternative realizations must be
chosen according to the requirements. Additionally, [2] discusses no explicitely
specification of relationships between decisions and realizing system variants so
that the transformation has to be done manually.

2 Overview of the Ontology-Based Framework

Our framework provides the frame for model transformation. It therefore has
to model both platform independent components and platform specific com-
1 As described in [7] a great advantage is the ability to express the model and instance

level in an uniform way and to define multiple targets in a single rule.

Platform Independent Model Transformation Based on Triple 497

ponents for each technology of interest. Furthermore, it includes properties as
well as feature models to describe the customization of a model transformation.
This section provides an overview of the architecture of our framework and the
platform independent conceptual models. As an example for platform specific
models we present the Enterprise JavaBeans model which is used in the given
example.

2.1 General Architecture of the Framework

Figure 2 shows an overview of the framework’s architecture. It is based on
a knowledge base that provides reasoning and transformation capabilities. It
mainly consists of models describing platform independent and platform specific
components as well as of transformation rules. These rules transform a PIM
model into a PSM model based on a feature model instance that describes user
requirements. A property model allows marking model elements with feature
values. The mappings are parameterized both on those marks and on the fea-
ture models. The figure does not show the behavioral model, as we do not map
its specification at present.

Fig. 2. The Architecture of our Framework

2.2 Platform Independent Models

The conceptual model handles component descriptions on an architectural level.
It consists of three sub models representing each of the relevant areas of compo-
nent descriptions as well as of a feature model to describe customized mappings.
These models are shown in figure 3.

The structural model consists of elements that are found in most ADL: com-
ponents, connectors, interfaces, as well as their relationships and subordinate
elements such as operations. Moreover, it distinguishes instance and type ele-
ments, in order to describe both architectural styles and system configurations2.
This model constitutes a type system, which can be specialized into technology
specific types.

The behavioral model restricts components and connectors by means of pre-
and post-conditions, as well as by protocols (order of method invocations). This
2 Figure 3 shows only component types as we only use component types in our example.

498 Andreas Billig et al.

values

Property model

has

ElementType

ComponentType ConnectorType

propertiesCoreElement

name: String
Property*

*

*
Interface

Structural model

EntityType
__________ provides

requires

Value

Operation

operations*

Basic
Type

Composite
Type

Array
Type

Record
Type

Function
Type

Type

name: String

subtypeOf

*

Label

name: String

1

*

refersToType *

ItemVariability
Element

Xor Or

var
1

optional

mandatory
1

1

Feature model

FM
Element

Fig. 3. Platform Independent Models of the Framework

allows verifying behavioral equivalence of components by using appropriate tools
such as model checkers and theorem provers. However, this model is not shown
in Figure 3, because we do not regard this information for transformation of EJB
components.

The property model defines an ontology that describes architectural and
technical properties of components. In particular, it provides a classification,
which can be used to describe differences between components. Therefore, we
integrated two well-known taxonomies from Allen/Shaw and Medvidovic/Mehta,
which respectively describe architectural styles and communicational properties.
In the context of model transformation, it is used to annotate components with
their specific roles and to state user requirements on these elements. This is the
basis for customized mappings, described in the next section.

Feature models describe alternatives to customize a mapping. They are graph-
ically expressed in feature diagrams. Feature models play an important role in
the area of domain analysis. Introduced in FODA [9] they serve as a description
of the features of domain entities using and-or-trees enhanced with some useful
elements to express variability. According to Deursen [19] they contain elements
representing

– optional and mandatory features pointed to by a simple edge ending with
an empty circle or a filled circle, respectively,

– alternative features pointed to by edges connected by an arc,
– non-exclusive features, also called or-features, pointed to by edges connected

by a filled arc,
– and constraints over feature dependencies specified beside the feature dia-

gram.

Platform Independent Model Transformation Based on Triple 499

2.3 A Platform Specific Component Model for EJB

EJB components are described according to the EJB Profile for UML [8]. They
mainly consist of a home interface, a remote interface and an implementation
class. We use a slightly adapted form of the profile, because it doesn’t support
EJB2.x local interfaces. Figure 4 shows a simplified specification of the EJB
model.

Fig. 4. The EJB Component Model

It is important to notice that the EJB specification and the Profile do not
model connectors. Thus, we have to translate connectors from the platform in-
dependent level into EJB Components, if they include business logic. Otherwise,
we do not need to model a connector at all, because, it is solely a relationship
that we can configure in the EJB deployment descriptor.

2.4 Triple Realization

The framework is realized with Triple. Triple is based on F-Logic, which provides
a logical foundation for object-oriented features. The design of Triple is influ-
enced by the Resource Description Framework (RDF) [20], which is commonly
known in the knowledge representation community. RDF is a general represen-
tation language for information structures. It provides basic constructors for the
definition of concepts and their relations. Furthermore, it describes knowledge
by Tuples (S, P, O): S is a subject, the entity to be described. P is a predicate
that states the relation of interest, O stands for an Object, which is either a
literal or another resource.

Despite the similarity to RDF, Triple describes tuples of the form (S, P, O, C).
It introduces a ‘context’ as a new construct that allows specifying views of an
object in different contexts. In our framework each core model is described within
a separate context. This feature is extremely helpful because is divides up facts
into chunks that can be used as separate units. Furthermore, it allows creating
contexts on the fly by defining mapping rules.

Information specified in RDF can be validated against a schema definition,
described by RDFS. The metamodels described above are schema definitions that
correspond to RDFS. Instances (Facts) can be checked against these definitions.

500 Andreas Billig et al.

An RDF statement can be formalized in Triple as follows

Subject[predicate -> object]@context.

Subject, predicate and object are normal parts of RDF whereas context refers
to a particular tupel space as explained above. If the context is omitted the
statement is valid in every possible context. The following example statement
declares a ‘context’ block:

@picm{
CoreElement[

subClass->ElementType[
subClass->EntityType[

subClass->ComponentType]]].
}

This indicates that all following statements are within the context ‘picm’. The
statements describe a specialization relation between ‘CoreElement’, ‘Element-
Type’, ‘EntityType’, and ‘ComponentType’. Thus, Triple statements can be
nested, which is extremely useful if we get to more complicated statements.
Alternatively, we can state the example as

CoreElement[subClass->ElementType].
ElementType[subClass->EntityType].
EntityType[subClass->ComponentType].

We also can define instances for these schema definitions:

ComponentType[typeOf->Planner].

defines ‘Planner’ as an instance of ‘ComponentType’.
As a final example, we define the platform specific component model for EJB

expressed in Triple. Figure 5 shows the corresponding Triple statements.
The main focus of this paper concerns model transformation. Triple supports

these transformations by mapping constructs. We show two examples: The first
example describes a parameterized mapping by defining a parameterized context.
It describes a kind of ‘copy’ operation that replicates all facts within the context
A into the context B.

FORALL A,B @ picm(A,B) {
FORALL S,P,O

S[P->O]@A --> S[P->O]@B
}

The second example is a mapping rule within the actual context. It is not param-
eterized and generates for each ‘Interface’ an equal named ‘ComponentType’.

FORALL Z Interface[typeOf->Z] --> ComponentType[typeOf->Z]

Platform Independent Model Transformation Based on Triple 501

Class [
typeOf -> { EJBElement, EJBImplementation, EJBEntityBean, SessionBean,

Home, Business, EJBSessionHomeInterface, EJBLocalHomeInterface,
EJBRemoteInterface, EJBLocalInterface }].

EJBElement [
subClass -> EntityBean;
subClass -> SessionBean].

EJBInterface [
subClass -> Home [

subClass -> EJBSessionHomeInterface;
subClass -> EJBLocalHomeInterface];

subClass -> Business [
subClass -> EJBRemoteInterface;
subClass -> EJBLocalInterface]

].

Property [typeOf -> { EJBRealizesHome, EJBRealizesRemote, EJBImplements,
instantiate }].

EJBRealizesHome [domain -> EJBImplementation; range -> Home].
EJBRealizesRemote [domain -> EJBImplementation; range -> Business].
EJBimplements [domain -> EJBElement; range -> EJBImplementation].
instantiate [domain -> Home; range -> Business].

Fig. 5. Platform Specific Component Model for EJB expressed in Triple

3 PIM-PSM Model Transformation Explained

In this section we present our approach on PIM-to-PSM transformations.
Thereby we also regard variants of transformations using feature modelling to de-
termine an appropriate mapping. After describing our approach to model trans-
formation in general, we explain it using an example.

3.1 Customized Model Transformation

In difference to common practice we do not map a PIM directly into source code.
Instead, it is mapped into a PSM expressed in UML. The appropriate mapping is
chosen according to selected requirements. A PIM-PSM transformation is based
on three elements:

– the platform independent model that should be mapped. In our context this
will be a PIM represented as an instance of the metamodel described in the
last section. Especially, the elements like components are annotated with
further properties that can be used to customize a model transformation to
the specific situation.

– a feature model instance describing requirements that should be considered
in the transformation. It is used to choose an appropriate mapping. So, the
feature modelling allows the customization of a model transformation.

– mappings that define rules for possible transformations. Mappings formally
specify design knowledge that is used when realizing a system with a specific
middleware technology. They enable the automatization of the transforma-
tion process.

502 Andreas Billig et al.

A PIM-PSM transformation is done as following: At first, the developer de-
signs a system modelling it independent from platform technologies. In a second
step, he specifies his requirements on the PIM-PSM transformation by choosing
features from the feature model describing possible variants of available trans-
formation rules. The chosen features are called feature model instances (FI). In
contrast to a feature model it is an instance model that does not contain any
variants. In the last step, a development tool transforms the PIM according to
the specified requirements.

Formally, the basis for the customized model transformation is a set of trans-
formation rules. Each rule takes the PIM and the feature model instance (FI) as
input arguments and specifies the PSM appropriate for the given situation. In
our framework all participating models – PIM, feature model, and PSM – are
represented as instances of corresponding metamodels that can be translated
into the Triple-based format. On this basis a mapping can be defined as a
Triple-mapping with parameterized contexts:

FORALL PIM, FI @ pim2psmMapping(PIM, FI) {

// Transformation rule 1

FORALL <...necessary variables...>

<...constraint...> @ PIM, <...constraint...> @ FI

-->

<...PSM elements...>

// Transformation rule 2

...

}

3.2 Example

Our running example comes from federated information systems. We describe
two possible PIM-to-PSM transformations from the platform independent model
to EJB specific models regarding specific requirements on distribution and op-
timization.

3.2.1 Platform Independent Model (PIM). The PIM of our example con-
sists of two components that are part of a mediator (see figure 6). A mediator
is a kind of middleware that performs queries against heterogeneous distributed
data sources ([21]). If a client queries a mediator calling the execute operation,
the mediator first calculates which data sources are capable to answer the query
or part of it (Planner component). Then, it queries these sources, integrates the
answers and delivers the result back to the client.

The Planner calculates its plans based on specified interfaces of the data
sources. These interface descriptions are called query capabilities (QC). A query
capability, shown on the right side of the figure, consists of parameters that
a data source can process as well as of result attributes returned by the data
source. In figure 6, the QCManager component stores the query capabilities (QC)

Platform Independent Model Transformation Based on Triple 503

of managed data sources. The Planner uses QC, obtained by the QCManager,
to decide which data sources have to be queried. These query plans are provided
to the execution component of a mediator.

The figure also shows some annotations that are used for the transformation
later on. These annotations are properties describing a component’s role regard-
ing its interoperation with another component. For example, the Planner is a
client using the interface of the QCManager.

Fig. 6. Example – PIM Component Type View

Specification with TRIPLE. The formal specification of the PIM within our
framework uses the Triple representation of the UML metamodel and the PIM
metamodel defined in the last chapter. It defines the elements of figure 6 as
instances of the metamodels.

3.2.2 Variants of the PIM-PSM Transformation. The PIM of the QC-
Manager is used as a starting point to exemplify two PSM transformations for
the Enterprise JavaBeans platform. We present two customized transformations
according to specific requirements (criteria) for our example: We regard physical
distribution of mediator components and performance of communication mea-
sured in the number of procedure calls between components and the amount
of transmitted data. In general, several factors influence performance. In dis-
tributed systems, performance can be improved by minimizing distributed trans-
actions, remote procedure calls, the amount of transmitted data etc. Figure 8
shows the feature diagram related to our example.

The developer chooses the features from the feature model that should be
considered in a specific transformation. We will examine a local PSM transfor-
mation optimized for the amount of transmitted data, as well as a distributed
PSM transformation optimized for the amount of remote procedure calls. Both
are realized with the EJB platform.

504 Andreas Billig et al.

...
picm := "http://cis.cs.tu-berlin.de/modeltrafo#picm".
uml :=

//// Schema:

Class [typeOf -> { Property, CoreElement, EntityType,
ElementType, ConnectorType, ComponentType }].

CoreElement [
subClass -> ElementType [
subClass -> EntityType [

subClass -> ConnectorType;
subClass -> ComponentType]]].

rdf:Property [typeOf -> {properties, requires, provides,operations}].

properties [domain -> CoreElement; domain -> Operation; range -> Property].
requires [domain -> EntityType; range -> Interface].
provides [domain -> EntityType; range -> Interface].
operations [domain -> Interface; range -> Operation].
annotation [domain -> CoreElement; range -> Literal].
...

//// Instances:

Interface [typeOf -> { IPlanner, IQueryCapabilities, QC }].
ComponentType [typeOf -> { Planner, QCManager }].
uml:Class [typeOf -> { IQueryCapabilities, Parameter, ResultAttribute }].

Planner [
provides -> IPlanner; requires -> IQueryCapabilities; annotation -> "Client"].

QCManager [
provides -> IQueryCapabilities; annotation -> "Server"].

IQueryCapabilities [
operations -> op1 [

name -> "getQCSet"; result -> Set(QC); annotation -> "Query"]].
QueryCapabilities [

realizes -> QC; aggregates -> { Parameter, ResultAttribute };
annotation -> "Data"].

Fig. 7. Example – Triple Specification of the Platform Independent Model

Specification with TRIPLE. The features chosen by the developer deter-
mine which transformation is appropriate for the specific application. To manage
transformation variants in our framework we use a Triple representation again.
Figure 9 shows an instance of the feature metamodel namely the feature model
(FM) shown in figure 8, which is used for the mapping selection. A feature model
instance (FI) is a feature model without any variants. It represents the features
chosen by the developer and is the input for the PIM-PSM transformation. For
example the FI at the end of figure 9 requests a transformation based on remote
distribution and optimized procedure calls (distributed configuration).

3.2.3 PIM-PSM Transformation. Starting from the PIM of a mediator and
the feature model for EJB architectures we show two possible transformations to
a EJB-based PSM. In our example the transformation is based on patterns [11,
1] that were developed to optimize EJB communication and performance. We
will discuss a local and a distributed configuration of the mediator components.

Platform Independent Model Transformation Based on Triple 505

Fig. 8. Feature diagram for EJB-based architectures

...
fm := "http://cis.cs.tu-berlin.de/modeltrafo#featureModel".

//// Instance of the feature metamodel as input for mapping selection:

Item [typeOf -> { EJB_PSM_Architecture, Distribution, Performance,
Local, Remote, Optimized_procedure_calls, Optimized_transmitted_data}].

Xor [typeOf -> xor1].

EJB_PSM_Architecture [
mandatory -> Distribution [

var -> xor1 [
mandatory -> {Local, Remote}]];

mandatory -> Performance [
optional -> {Optimized_procedure_call, Optimized_transmitted_data}]].

//// Instance of the feature model as a result of a mapping selection:

EJB_PSM_Architecture [
mandatory -> Distribution [

mandatory -> Remote];
mandatory -> Performance [

mandatory -> Optimized_procedure_call]].

Fig. 9. Example – Feature Models in Triple

Example: Local Configuration. This transformation is done according to the
features that were chosen by the developer: both components are co-located and
optimized for the amount of transmitted data. Using the patterns in [11, 1] the
transformation results in the PSCM shown in figure 10. The Planner component
as a client in this example is mapped into a Session Bean, because it is used as a
business logic component, e.g. it provides computations. The QCManager, which
includes the QC data structure (determined by the relationship to an element
with a Data annotation), is mapped into three Entity Beans, as it presents
persistent data. We don’t need an extra QCManager Bean as this component
would introduce another layer of indirection. Instead, we directly access the
persistence layer. This leads to optimized data transfer, as we don’t have to
collect all data of the persistence layer and send it to the Planner component.
Instead, data is returned in form of a set of references to locally available QC
Entity Beans. The operation to get all QC is renamed to findQCSet as described
in the profile. If the Planner needs parameters or return attributes, additional
calls are performed to obtain the queried entities.

506 Andreas Billig et al.

Fig. 10. Example – PIM-PSM Transformation for a Local Configuration

In order to save space, only the Planner component in figure 10 shows all
parts of an EJB according to the profile. Otherwise, we only show interesting
parts of a bean and represent other elements as small boxes.

Example: Distributed Configuration. The distributed transformation op-
timizes remote procedure calls between distributed Planner components and a
single QCManager component. Again, the transformation is based on the cho-
sen features from the feature model. Regarding the EJB platform, several pat-
terns for performance optimization were developed. We will use the Data Trans-
fer Object pattern (DTO)[11, 1] and the Data Transfer Object Factory pattern
(DTOF)[11] for the PIM-to-PSM transformation in this example.

Figure 11 shows the mapping result. The QCManager component is mapped
into a stateless session bean following the DTOF pattern that provides a facade
to the persistence layer consisting of three Entity Beans. The QCManager locally
assembles Data Transfer Objects for each query by calling the Entity Beans. In
difference to the local mapping these objects are copies of persistent data. Thus,
a query of the Planner component results in a single remote procedure call.

Platform Independent Model Transformation Based on Triple 507

Fig. 11. Example – PIM-PSM Transformation for a Distributed Configuration

Specification with TRIPLE. The specification of the mappings for our trans-
formation described before consists of two parts: the first one defines the general
mapping from PIM elements to EJB, the second one defines the mapping de-
pending on the possible features.

Figure 12 shows the general mapping definition from PIM models to session
or entity beans. The arguments of the bean mapping are the resource variables
X, PIM, and Kind. PIM is the context of the mapping source, X is the element
from that source which shall be mapped, and Kind states whether a session or an
entity bean shall be the result. The mapping definition consists of one rule which
expresses the following: If a element with an appropriate provides/realizes-
structure can be derived within the source context (left hand side of the rule)
then a bean and the remote/home interfaces corresponding to the Enterprise EJB
standard will be generated (right hand side of the rule). The instantiation of the
type-variables in the target structure depends on Kind. The target operation TF
is the result of a special predicate convertst called with the source operation
F. This predicate adds the stereotypes defined by the EJB profile.

Figure 13 shows the specific PIM-to-PSM-mapping depending on possible
feature model instances. Within the utility mapping util two specific FIs are
considered: the distributed and the local configuration variant. The mapping

508 Andreas Billig et al.

... // namespaces and abbreviations

FORALL X,PIM,Kind @ beanMapping(X,PIM,Kind) { // general mapping to a bean

FORALL B,R,H,Y,F,TF,P

(X [P -> Y [operations -> F]]@ PIM,
convertst(F,TF),(P = provides OR P = realizes)),

cond(Kind = "Entity",
B = EJBEntityBean, R = EJBLocalInterface, H = EJBLocalHomeInterface),

cond(Kind = "Session",
B = SessionBean, R = EJBRemoteInterface, H = EJBSessionHomeInterface),

-->
X [type -> B;

implements -> X||’Bean’ [
type -> EJBImplementation;
EJBRealizesRemote -> X||’Remote’ [

type -> R;
operations -> TF];

EJBRealizesHome -> X||’Home’ [
type -> H;
instantiate -> X||’Remote’]]

}

Fig. 12. Example – General Bean Mapping

pim2psmMapping has two parameters: the context of the pim source PIM and
the context of the feature instance FI. The body of the mapping contains the
mapping rules according to the variants of transformation explained above:

– Any client element is mapped to a session bean.
– A server will become a session bean if the variant of remote distribution is

chosen.
– All aggregated elements of a data element are mapped to entity beans.
– A data element x also become an entity bean. If the variant of local data is

chosen then an EJB conform conversion of any Query-annotated operation
which uses the interface of x is placed within the home interface of the
generated bean.

4 Conclusions

In this paper, we presented a model transformation framework that is able to
express and process customized PIM-to-PSM mappings. Contrary to existing
tools, the framework handles several component technologies as it is based on
the platform independent component model (PICM). PICM allows describing
components on different levels of abstraction. Thus, it provides the foundation
for PIM-to-PSM mappings, which is a feature that is not provided by exist-
ing modeling tools. As PICM is based on an architecture description language
(ADL), it facilitates easy integration of new component-based technologies. How-
ever, instead of using an existing ADL, PICM is based on Triple/RDF. Its main
purpose is to perform explicit reasoning on the selection of component mappings
and to allow declarative rule specifications between model representations.

Platform Independent Model Transformation Based on Triple 509

... // namespaces and abbreviations

FORALL FI @ fm:util(FI) { // utility predicates for feature model instances

fm:Distribution [fm:mandatory -> fm:Remote] @ FI,
fm:Performance [fm:mandatory -> fm:Optimized_procedure_call] @ FI --> remoteCall.

fm:Distribution [fm:mandatory -> fm:Local] @ FI,
fm:Performance [fm:mandatory -> fm:Optimized_transmitted_data] @ FI --> localData.

}

FORALL PIM, FI @ pim2psmMapping(PIM, FI) { // pim-to-psm mapping

FORALL X,T
X [annotation -> "Client"] @ PIM, T @ beanMapping(X,PIM,"Session")
--> T.

FORALL X,T
X [annotation -> "Server"] @ PIM, T @ beanMapping(X,PIM,"Session"),
remoteCall @ fm:util(FI)
--> T.

FORALL T,X,Y

X [annotation -> "Data"; aggregates -> Y] @ PIM, T @ beanMapping(Y,PIM,"Entity")
--> T.

FORALL X,Ifc,T,F,TF,U,H

X [annotation -> "Data"; realizes -> Ifc] @ PIM, T @ beanMapping(X,PIM,"Entity")
-->

T,
(localData @ fm:util(FI),

F [annotation -> "Query"] @ PIM, use(F,Ifc), convert(F,TF),
U [EJBRealizesHome -> H] @ beanMapping(X,PIM,"Entity")
-->

H [operations -> TF]).
}

Fig. 13. Example – Specific PIM-PSM Transformation Rules

Triple/RDF is a model representation and transformation language. It is
suitable to represent and interrelate terminological structures such as feature
models as well as conceptual models like UML class diagrams. It allows describing
both the model and the instances in a uniform and simple syntax.

The second contribution of the paper is the combination of mappings with
feature models. A feature model facilitates the selection of particular mappings
depending on certain user requirements. This gives our framework the flexibility
to choose appropriate model transformations in a particular situation. To the
best of our knowledge there is no existing modeling tool for component-based
systems that provide this flexibility.

Currently, the model transformation tasks are realized by services of the
Ontology-Based Domain Repository ODIS [3]. Future developments will inte-
grate the presented model transformation framework as a service in the Evolu-
tion and Validation Environment (EVE) [17]. EVE allows executing arbitrary
services on UML models that were extracted from UML modeling tools. EVE
is based on a MOF repository and uses XMI to get models from these tools.
At present it supports ArgoUML and Rational Rose. As a consequence, we will

510 Andreas Billig et al.

be able to directly transform UML models, which were created with a modeling
tool, into representations in several component technologies either as UML PSM
or as source code. This will be a further step in the direction of a model-driven
software engineering.

References

1. Alur, D., Crupi, J., and Malks, D. Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall / Sun Microsystems Press, 2001.

2. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O.,

Laqua, R., Muthig, D., Paech, B., Wüst, J., and Zettel, J. Component-
based Product Line Engineering with UML. Component Software Series. Addison-
Weseley, 2002.

3. Billig, A. ODIS - Ein Domänenrepository auf der Basis von Semantic Web Tech-
nologien. In Tagungsband der Berliner XML Tage (2003), XML-Clearinghouse.
english version: http://www.isst.fhg.de/~abillig/Odis/xsw2003.

4. Clements, P., and Northrop, L. Software Product Lines: Practices and Pat-
terns. Kluwer, 2001.

5. Czarnecki, K., and Eisenecker, U. Generative Programming - Methods, Tools,
and Applications. Addison-Wesley, 2000.

6. Czarnecki, K., and Helsen, S. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture (Anaheim, October 2003).

7. Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood, A. Trans-
formation: The missing link of MDA. Lecture Notes in Computer Science 2505
(2002).

8. Greenfield, J. UML Profile For EJB. Tech. rep., Rational Software Corporation,
May 2001. http://www.jcp.org/jsr/detail/26.jsp, Java Community Process
(JCP).

9. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, nov 1990.

10. Kifer, M., Lausen, G., and Wu, J. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM 42 (Juli 1995), 741–843.

11. Marinescu, F. EJB Design Patterns: Advanced Patterns, Processes, and Idioms.
John Wiley & Sons, Inc., 2002.

12. Mellor, S. J., Clark, A. N., and Futagami, T. Model-driven development.
IEEE Software 20, 5 (2003), 14–18.

13. Miller, J., and Mukerji, J. Model Driven Architecture(MDA). Tech.
Rep. ormsc/2001-07-01, Object Management Group(OMG), Architecture Board
ORMSC, July 2001.

14. Object Management Group (OMG). Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP, April 2002. http://www.omg.org/cgi-bin/apps/

do doc?ad/2002-04-10.pdf.
15. OMG. UML Profile for CORBA Specification V1.0, 2000.
16. Sintek, M., and Decker, S. TRIPLE - A Query, Inference, and Transformation

Language for the Semantic Web. In Proceedings of International Semantic Web
Conference ISWC 2002 (2002), Lecture Notes in Computer Science, Bd. 2342,
Springer.

Platform Independent Model Transformation Based on Triple 511

17. Süß, J. G., Leicher, A., Weber, H., and Kutsche, R.-D. Model-centric en-
gineering with the evolution and validation en vironment. In UML 2003 - The
Unified Modeling Language: Modeling Lan guages and Applications, 6th Interna-
tional Conference, San Francisco, CA, USA (2003), P. Stevens, J. Whittle, and
G. Booch, Eds., vol. 2863 of LNCS, Springer, pp. 31 – 43.

18. Süß, J., Leicher, A., and Busse, S. OCLPrime - Environment and Language
for Model Query, Views, and Transformations. In OCL 2.0 - Industry standard or
scientific playground?, Workshop on the 6th Int. Conf. UML 2003 (2003).

19. van Deursen, A., and Klint, P. Domain-specific language design requires fea-
ture descriptions. Journal of Computing and Information Technology (2001).

20. W3C. Resource Description Framework (RDF) Model and Syntax Specification.
URL: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

21. Wiederhold, G. Mediators in the Architecture of Future Information Systems.
In Readings in Agents, M. N. Huhns and M. P. Singh, Eds. Morgan Kaufmann,
San Francisco, CA, USA, 1997, pp. 185 – 196.

	1 Introduction
	1.1 Objectives
	1.2 Related Work

	2 Overview of the Ontology-Based Framework
	2.1 General Architecture of the Framework
	2.2 Platform Independent Models
	2.3 A Platform Specific Component Model for EJB
	2.4 Triple Realization

	3 PIM-PSM Model Transformation Explained
	3.1 Customized Model Transformation
	3.2 Example
	3.2.1 Platform Independent Model (PIM).
	3.2.2 Variants of the PIM-PSM Transformation.
	3.2.3 PIM-PSM Transformation.

	4 Conclusions
	References

