
Software & System Modeling (2005) 00: 1–19
DOI 10.1007/s10270-005-0091-4

SPECIAL ISSUE PAPER

Pierre-Alain Muller · Philippe Studer ·

Frédéric Fondement · Jean Bezivin

Platform independent Web application modeling and development
with Netsilon

Received: 31 May 2004 / Revised version: 23 November 2004 / Published online: 15 June 2005
c© Springer-Verlag 2005

Abstract This paper discusses platform independent Web
application modeling and development in the context of
model-driven engineering. A specific metamodel (and asso-
ciated notation) is introduced and motivated for the model-
ing of dynamic Web specific concerns. Web applications are
represented via three independent but related models (busi-
ness, hypertext and presentation). A kind of action language
(based on OCL and Java) is used all over these models to
write methods and actions, specify constraints and express
conditions. The concepts described in the paper have been
implemented in the Netsilon tool and operational model-
driven Web information systems have been successfully de-
ployed by translation from abstract models to platform spe-
cific models.

Keywords MDA · PIMs · PSMs · Web application
development

1 Introduction

At the end of the year 2000, the OMG proposed a radical
move from object composition to model transformation [1],
and started to promote MDATM [2] (Model-Driven Archi-

P.-A. Muller (B)
INRIA Rennes, Campus de Beaulieu, Avenue du Général Leclerc,
35042 Rennes, France
E-mail: pierre-alain.muller@irisa.fr

P. Studer
ESSAIM/MIPS, Université de Haute-Alsace, 12 rue des Frères
Lumière, 68093 Mulhouse, France
E-mail: ph.studer@uha.fr

F. Fondement
École Polytechnique Fédérale de Lausanne (EPFL) School of
Computer and Communication Sciences CH-1015 Lausanne,
Switzerland
E-mail: frederic.fondement@epfl.ch

J. Bezivin
ATLAS Group, INRIA & LINA, Université de Nantes, 2,
rue de la Houssinière, BP 92208, 44322 Nantes, France
E-mail: jean.bezivin@lina.univ-nantes.fr

tecture) a model-driven engineering framework to manipu-
late both PIMs (Platform Independent Models) and PSMs
(Platform Specific Models). The OMG also defined a four
level meta-modeling architecture, and UML was elected to
play a key role in this architecture, being both a general
purpose modeling language, and (for its core part) a lan-
guage to define metamodels. As MDA will become main-
stream, more and more specific metamodels will have to be
defined, to address domain specific modeling requirements.
Examples of such metamodels are CWM (Common Ware-
house Metamodel) and SPEM (Software Process Engineer-
ing Metamodel). It is likely that MDA will be applied to a
wide range of different domains. We found it interesting to
apply the MDA vision to Web engineering, a field where tra-
ditional software engineering has not been very successful,
mostly because of the gap between software design concepts
and the low-level Web implementation model [3].

We believe that model engineering gives the opportunity
to re-inject good software engineering practices into Web
application developments. Models, together with views,
favor the collaborative work while preserving different
stockholder’s points of view. Graphic designers should be
able to create static presentation artifacts, and the software
engineers should use models to explain how these static ar-
tifacts (or part of them named fragments) get combined and
augmented with dynamic business information coming from
the Business Model and hypertext logic from the Hypertext
Model.

We will present a metamodel specific to dynamic Web
page composition and navigation. This metamodel has to
be used as a companion metamodel of UML in order to
build PIMs for Web information systems. A graphic nota-
tion, based on directed graphs, will also be presented. The
work described in this paper has been done in the context of
the development of Netsilon [4] a visual model-driven en-
vironment dedicated to Web application development. The
paper is organized as follows: Sect. 2 provides an overview
of Web application development. Section 3 presents the kind
of models that we use for Web application modeling. Sec-
tion 4 details the novel modeling elements that we have

2 P.-A. Muller et al.

introduced for composition and navigation modeling. Sec-
tion 5 presents the Xion language that we use to express both
constraints and actions. Section 6 discusses the transforma-
tion of PIM into PSM. Section 7 examines related work. Fi-
nally, in the last section we draw conclusions and outline
future work.

2 Web applications

A Web application is an information system which supports
user-interaction through Web based interfaces. Typical Web
applications feature data persistence, transaction support
and dynamic Web page composition, and can be considered
as hybrids between a Hypermedia [5] and an information
system.

A Web application is split into a client-side part, which
is running in a Web browser, and a server-side part, which
is running on a Web server (which may be composed of
several processors). The client-side is responsible for page
rendering while the server-side is responsible for business
process execution and Web page construction. The process
of page construction varies widely in dynamicity, ranging
from completely static, in the case of predefined HTML
pages, to totally dynamically constructed pages (which vary
in terms of content, presentation and navigation), when the
HTML pages are the result of some computation on the
server.

A Web interaction can be decomposed into three steps:

• Request. The user sends a request to the Web server, usu-
ally via a Web page already visualized in a Web browser.
Requests can be sent to the server either as forms or as
links.

• Processing. The Web server receives the request, and per-
forms various actions so as to elaborate a Web page,
which contains the results of the request. This Web page
is then transferred to the Web browser from where the re-
quest originated.

• Answer. The browser renders the results of the request,
either in place or in another browser window.

A Web page may be composed of several kinds of
graphic information, both textual and multimedia. These
graphic components are mostly produced with specialized
authoring tools, using direct manipulation and WYSIWYG
editors.

When it comes to visualizing a Web page in a Web
browser, these various components have to be glued together
by HTML formatted text, which is either embedding some
of the page content (for instance the text) or referencing
the files that contains the data (for instance the images).
This process may involve translations as well, for instance
to translate XML code into HTML.

In case of dynamic Web pages, the final HTML format-
ted text is not stored on the server, but is generated at run-
time, by programs either compiled (like Java) or interpreted
(like PHP). These programs integrate into Web pages the
graphic elements and the information coming from many

kinds of data sources (like databases, files, sessions or con-
text variables. . .). To increase performance, pages may be
cached, so that dynamic pages do not have to be generated
when their sources have not been modified.

Building Web applications requires several different
qualifications. Typical worker roles include:

• Marketing to define the target audience and the content to
be delivered.

• Graphic designers to define the visual appearance (includ-
ing page layout, fonts, colors, images and movies).

• HTML integrators to develop HTML pages and fragments
to adapt the visual appearance to the Web.

• Programmers to write programs (in Java, PHP or other
scripting languages) which will generate the dynamic
pages, by combining HTML fragments and information
coming from databases and current context.

• Content writers to feed the application with value added
information.

Page layout and graphic appearance is an area where
a lot of creativity comes into play. Graphic designers use
imaging and drawing tools to generate images (as well as
animation and movies) stored in binary files. Graphic de-
signers often collaborate with HTML integrators, who know
how to write efficient HTML code. HTML integrators im-
plement the graphic chart into Web pages; this involves com-
pressing and splitting the images, mapping the fonts to style
sheets, establishing links, making buttons, writing Javascript
for rollovers and writing HTML text to embed all these var-
ious components. Occasionally, they also have to integrate
the data produced by the content writers. They use Web au-
thoring tools, automatic or semi-automatic HTML genera-
tors, which store their production into files, either as tex-
tual notation (HTML) or as some binary data (GIF, JPEG,
FLASH. . .). Current tools mainly export HTML (and not
XML), and the separation between page content and page
layout is poor.

As long as these teams used to produce static Web sites,
they had no real technical problems. Things changed as they
started to develop more and more dynamic sites with the
help of programmers. Web applications are far more de-
manding; they are real software systems, and they require
following a software development process. This was kind of
a cultural shock; a lot of Web agencies were unable to over-
come the challenge. Nowadays, Web applications are mostly
built by software houses; they have gained in dynamicity, but
they do not really progress in graphic creativity, because it
is difficult to write the programs that would animate sophis-
ticated graphic charts. It is also difficult to define an optimal
development process; communication and coordination be-
tween all these different roles is often a challenge [6].

Fraternali [7] provides very good criteria to classify tools
and approaches for developing Web-applications, and these
criteria are very convenient to understand the scope of a
research project related to Web engineering. He presents the
development of Web applications as a multi-faceted activity,
involving technical, organizational, managerial, social and

Platform independent Web application modeling and development with Netsilon 3

even artistic issues. He distinguishes three major design di-
mensions: the structure, the navigation and the presentation.
He classifies the tools in five categories: Visual editors and
site managers, Web-enabled Hypermedia authoring tools,
Web-DBPL (Database Programming Language) integrators,
Web form editors, report writers and database publishing
wizards, and Model-driven application generators.

As we have seen, Web application development is be-
coming an important challenge and the generative aspects
are more and more apparent in the associated process. We
believe that model engineering and MDA, is an excellent op-
portunity to reconcile graphic designers with programmers,
and to increase the overall productivity. The challenge is to
define the right modeling concepts; to find how to introduce
the power of model transformation in the world of graphic
designers and Web application developers.

3 Modeling Web applications

3.1 Definitions

Model-driven engineering has received a lot of attention re-
cently, especially with the raise of the MDA initiative of
the OMG. Meanwhile, there has been a blossoming of new
terms [8] and TLAs (Three Letter Acronyms), like PIM or
PSM. However, basic notions like the platform concept itself
are still loosely defined, and therefore for the sake of preci-
sion (and in the context of the work presented in this paper)
we will explain what we mean by the following notions:

• By (Web) platform we refer to an execution environment
for Web applications, based on two fundamental technical
items: databases and application servers.

• By PIM we refer to a model which is independent of
the (Web) platform. This means that the specificities of
databases and/or application servers are totally abstracted
away from the PIM.

• By PSM we refer to artifacts which depend on the Web
platform. We consider executable programs as some kind
of PSM.

• By presentation we refer to the visual elements that
compose a Web page. These elements contain textual,
graphic and multimedia elements (images, animations,
movies. . .).

• By navigation we refer to the network of paths within the
Web application, in other words all the possible scenarios
of pages a user can browse through.

• By composition we refer to the process of constructing a
Web page by combining several fragments together.

• By fragments we refer to excerpts of Web pages which
become meaningful in the context of a container.

• By Business Model we refer to the description of the busi-
ness classes and their relations.

• By dynamic Web application we refer to the late binding
between the content of the information base and the Web
pages delivered to the client.

• By models we refer to descriptions which conform to
metamodels which in turn conform to the MOF.

• By model-driven we refer to an engineering process
which takes models as input and generates models and
other artifacts as output.

3.2 Context and scope of the work

The research presented in this paper takes place in the con-
text of the development of Netsilon, a visual model-driven
tool for Web application development.

The main target is the Business-to-Consumer segment
of the Web application development market. These applica-
tions are characterized by strong constraints in terms of us-
ability and performance. The number of users can be large,
and the application must be able to react reasonably, even
during rush hours (when the number of simultaneous ses-
sions can grow by several orders of magnitude). Users are
very sensitive to the quality of the interaction, both in terms
of visual presentation and in terms of navigation. Often, the
content, presentation and navigation are customized, based
on explicit or implicit profiling of the users, and usage statis-
tics are gathered to enhance the business processes.

From a lifecycle point of view, we provide support
mainly for the development activities, but we seek to replace
code-driven development by model-driven development. We
do not want to develop a new method for Web application
development, nor do we want to enforce a specific methodol-
ogy. Gomez et al. [9] have listed the common notions shared
by the most relevant methods and methodologies for Web
development (UWE [10], WebML [11], OO-H [9]. . .). The
major similarities are:

• A specific navigation model and an agreement that a new
notation is required.

• A clean separation between the content, navigation and
presentation spaces.

• The necessity of a constraint language to augment the pre-
cision of Web application models.

We have taken these common notions as a basis of our
work, and we have focused our attention on the navigation
model, by defining novel modeling concepts dedicated to
Web application modeling, with the double goal of total code
generation and total freedom of the graphic designers. In ad-
dition, we want to provide tool support for incremental and
iterative development, in the content, navigation and presen-
tation spaces.

3.3 Web platform for dynamic Web applications

As defined earlier, a Web platform is an execution environ-
ment for Web applications, based on two fundamental tech-
nical items: databases and application servers.

An application server is an execution environment,
integrated with a HTTP server, which is able to host and
execute server-side code, to support the Web interactions

4 P.-A. Muller et al.

defined in Sect. 2. The server-side code implements the
business logic (which is Web-independent) and the user
interaction logic (which is Web-dependent) implemented as
application server scripts.

Some examples of concrete application servers are:

• J2EE servers which support the Java language (Servlets
and Java Server Pages), and include Tomcat, JBoss, BEA
WebLogic, IBM Websphere, Oracle Application Server
and Sun Java System Application Server.

• Microsoft proprietary.Net Windows Server
• PHP application servers

In addition to application servers, Web applications re-
quire databases, most usually relational, like MySQL, Ora-
cle or SQL Server.

A Web platform can therefore be considered as a tuple
(application server, database server). In our context, a model
which contains no information specific to either application
server or database is said to be platform independent.

Based on this definition, the level of dependence of a
model to the Web platform can then be analyzed more in
details. The dependences that we have identified and taken
care of are summarized in Table 1.

These dependences have to be abstracted away from the
PIM. In the Netsilon tool, they are specified as parameters of
the platform (we talk about deployment site), and only used
late in the process of application generation, when the PIMs
are translated into the final executable PSMs, see Sect. 6.1
for more details.

Table 1 Platform dependences

Source of dependence Kind of dependence

Application server URL or IP address of the HTTP server
Root path of the Web application
Mode of file transfer (copy or FTP) for

automatic deployment purpose. In case of
FTP (URL or IP address of the server,
port, login, password, and remote
directory). In case of copy (remote
directory).

Session information stored in URLs,
cookies or both (using URL if cookie
technology is not available on the client).

Target language (PHP, JSP, Servlet. . .) In
case of PHP (target language extension
as.php,.php4, etc.). In case of Java
(compiler, jar tool, class path, etc.).

Database server Support of SQL (MySQL does not support
inner queries).

Support for local transactions
Name or Id of the database
Table prefix (to restrict them to a category

of names).
DB access from the IDE (server name and

port, user and password) for automatic
deployment purpose.

DB access from the generated application
server scripts (server name and port, role
name, user and password)

3.4 The business model

Once the requirements have been gathered (via techniques
such as usecases and activity diagrams), the Web application
is modeled from three points of view, the Business Model,
the Hypertext Model, and the Presentation Model. These
models are independent of the Web platform; they capture
a comprehensive description of the Web application. With
the help of Xion, an action language described later in the
paper (in Sect. 5), they contain enough information to drive
the generation of the final Web application.

The Business Model describes the organization of the
business concepts managed by the Web application. For an
e-business application, typical examples of such concepts
are products, catalog, or cart. We use UML class diagrams
to represent business classes, their attributes, operations and
relations. The implementation of methods is specified with
the action language Xion.

The Business Model is used as an input of the model-
driven process which generates the business layer of the
Web application. Object persistence is provided by a rela-
tional database, whose schema is derived from the Business
Model, using guidelines as described for instance by Marcos
et al. [12]. The object-to-relational mapping is designed so
that incremental modifications to the Business Model have
as little impact as possible on existing information in the
database; we talk of M0 preserving transformations.

The relational database is completely abstracted away.
The classes from the Business Model are all persistent by
default, the code is completely generated.

The advantage is that the designer does not have to care
about persistence, the process of creating and updating the
database schema is completely automated, and implementa-
tion classes for the Business Model are generated in the Web
platform target language (either Java or PHP).

The drawback is that persistence does not work with
an already populated database, because the M0 preserving
transformations do not work with arbitrary database schema,
and therefore legacy databases cannot be readily reused.
Data must be imported in the object database, and this may
raise some synchronization issues. However, this is not nec-
essarily an issue for the Internet (versus Intranet), as the
databases which are online (hosted by Web access provider)
are usually different from those in the organizations.

Besides business descriptions, Netsilon uses this model
to automate Web specific concerns, like session manage-
ment, personalization, profiling, search or statistics. When
required, packages may be used to partition the Business
Model.

3.5 The hypertext model

The second model, the Hypertext Model, is an abstract de-
scription of composition and navigation between document
elements and fragments of document elements. In the con-
text of Web modeling this model describes how Web pages
are built and linked. In a wider context, it can also be used

Platform independent Web application modeling and development with Netsilon 5

to handle multi-channels distribution, mixing electronic and
paper documents, as we have experienced in earlier work
about document modeling [13].

Composition describes the way the various Web pages
are composed from other pages (fragments) as well as the
inclusion of information coming from the Business Model
or current context (like sessions). Again, Xion is used as
a query language to extract information from the Business
Model and as a constraint language to express the various
rules, which govern page composition. As an example for
an e-business application, the page which shows the content
of a cart is typically composed of the repetition of another
page showing the details of a given product. The current cart
can be retrieved from the current session and the products
in the presented cart and a Xion expression would retrieve
the products. This collection is then iterated for including
the product presentation page, which is given the product to
show as a parameter, into the cart presentation page.

Navigation details the links between the Web pages.
Navigation includes the specification of the parameters that
will be transferred from page to page, as well as the ability
to specify actions to be applied when triggering a link (typ-
ically to execute a method defined in the Business Model).
The Xion language allows the specification of the actions
to be performed when transitioning from one page to an-
other and the declaration of predicates that lead to the se-
lection of a particular path between pages according to the
current context and the Business Model. For instance, a link
labeled “Add to cart” would add a given product to the
cart.

The Hypertext Model makes it possible for a tool to en-
sure the consistency and the correctness of the navigation at
model checking time. This removes all the troubles related
to parameter passing and implementation language bound-
ary crossing (mix of interpreted languages, un-interpreted
strings, parameter passing conventions. . .) encountered
when programming Web applications by hand. The graphic
notation for composition and navigation is presented later,
in Sect. 4.4.

3.6 The presentation model

The third model, the Presentation Model, contains the de-
tails of the graphic appearance of Web applications. As men-
tioned earlier, we do not want to restrict the field of possible
graphic designs and technologies. We want to be able to gen-
erate any kind of Web user interface.

We have defined the Presentation Model with the goal to
make it possible for graphic designers and HTML integra-
tors to keep their work habits and to be able to build dynamic
Web applications while using conventional tools which pro-
duce static HTML pages or fragments.

It does not make sense to create another way of spec-
ifying the graphical appearance of Web pages. Therefore,
we have not provided explicit support to model the graph-
ical appearance of the user interface, because we consider
that WYSIWYG authoring tools are already available, and

Fig. 1 At runtime, the placeholder is replaced by the component text

perform a reasonable job to cover this aspect. We believe
that existing tools must be integrated, without change, in the
process of dynamic Web page development, but that their
production must be able to be controlled by an implicit Pre-
sentation Model. The Presentation Model is therefore em-
bedded in the Netsilon Tool which provides a repository for
the files produced by the graphic designers.

In this vision, a dynamic Web application is composed
of fragments, which can be developed as static HTML, sup-
plemented with some special placeholders, easily identifi-
able by graphic designers and HTML integrators. When-
ever some dynamic information must be inserted into a Web
page, the graphic designers simply designate the spot in the
file where this information must be inserted (see Fig. 1). The
Presentation Model is not limited to HTML and can be used
to manage any other textual formalism like JavaScript, XML
or SVG.

The consequence is that we have shifted the focus of
modeling to the parts that are out of the scope of these Web
authoring tools, and that typically require to program com-
plex behavior, using conventional programming languages
like Java or PHP.

We have made a tradeoff between freedom of the pro-
grammer and freedom of the Web designer, clearly in favor
of the latter. Our goal is to provide an automated solution for
the software part, able to embed any kind of artistic produc-
tion of the Web designers, and then to generate a reasonable
implementation.

Figure 2 shows how the Web application results from the
weaving of the three different kinds of models described in

Fig. 2 Multi-view modeling of Web applications

6 P.-A. Muller et al.

the previous subsections. A much more detailed discussion
of the generation process is given in Sect. 6.

3.7 Reusing models

Reusability is an important concern in software develop-
ment. It is of paramount importance to be able to cluster a
consistent and generic set of modeling elements addressing
generic purposes (classes, relations, decision centers, Web
files, zones, HTML files. . .) in a reusable Web application
component. These Web application components can then be
further reused in Web applications models, or by other Web
application components. Examples of such “off the shelf”
Web components are Logging and Forum. It is interesting to
note that the Forum component can actually reuse the Log-
ging component.

To achieve such reusability, we have defined a stan-
dalone packaging element (the WebModule), and, for the
sake of interoperability, the concepts of required and pro-
vided interfaces, which are featured by both Web applica-
tions and Web modules. Interfaces are either business inter-
faces in the Business Model (defining operations only), or
Web file interfaces in the Hypertext Model (defining the pa-
rameters to be exchanged with the realizing Web file, and
whether it should be a fragment or not).

Web models that use these Web modules must define for
each required interface the realizing element, with the con-
straint that this element must fulfill the surrounding contract.
We will further call such realizing element a mapped real-
ization. A mapped realization can be either an element of
the Web application, or a provided interface of a used Web
module. Note that the same Web module can define both a
required interface and a provided interface that can realize it.
For the Web application to be executable or compilable, all
required interfaces must be matched by exactly one mapped
realization. An action on a required interface will actually
end up in an action on the mapped realization, e.g. instantiat-
ing a business interface will actually instantiate the mapped
business class.

In the next section, we will detail the novel modeling ele-
ments that we use for Web page composition and navigation
modeling.

4 Model elements for web page composition
and navigation

Our goal is to achieve total code generation from models,
while making no restrictions on the visual appearance of
the Web application. Therefore, we have been defining novel
modeling constructs, for the description of the composition
of Web pages from various sources of information, and for
the specification of the navigation between pages. These
models are precise, abstract and independent of the platform.
They are later transformed into executable code which runs
on the Web platform. The new modeling elements have been
packaged in a new metamodel (see Fig. 3).

4.1 Metamodel or profile

We found that it is not obvious to choose between making a
new metamodel or profiling an existing one.

A metamodel defines a specific domain language. It may
be compared to the formal grammar of a programming lan-
guage, i.e. the abstract syntax. The MOF [14] (Meta Object
Facility) can be used to specify metamodels; this involves
defining classes, attributes, relations and constraints.

A lighter alternative to making new metamodels, is to
customize existing ones. Therefore, MDA provides facilities
(known as profiles) to extend or constrain existing metamod-
els (by means of stereotypes, tags and constrains). However,
with such extension technique, it is difficult to define con-
cepts that are radically different from those already defined
by the metamodel before profiling. Interestingly, some meta-
models may also be defined as UML profiles, as it is the case
for SPEM [15].

In this paper we define metamodelling as the approach
consisting of writing brand new domain languages wrt pro-
filing as the customization of an existing metamodel. The
relations between these two approaches are still generat-
ing much debates going beyond the scope of this paper.
We take here the position that creating a new metamodel
and associated notation will make more sense when the
semantic distance between existing UML modeling ele-
ments and newly defined modeling elements is becoming too
large.

The Conallen [16] extensions describe subtypes of
coarse-grained Web implementation artifacts and profiling
UML classes or components is fine for that. In our case, we
have defined new modeling concepts, which have little in
common with classes, objects or states. There is no obvious
inheritance between our modeling elements and UML mod-
eling elements. Desfray [17], who has been very active in
the definition of UML profiles, explains that defining a new
metamodel instead of a profile is justified when the domain
is well-defined and has a unique well-accepted main set of
concepts; this is precisely the case for Web-based user inter-
faces. We also had a practical reason to define a metamodel;
as explained by Atkinson et al. [18], metamodeling in terms
of stereotypes lacks transitivity in the derivation of proper-
ties, and inheritance-based approach was important in the
design of our tool. A last reason that pushed toward a meta-
model (and associated notation) was the fact that we could
not reuse existing UML tools anyway, because their user
interfaces were not aware of the specific behavior that we
wanted to give to our modeling elements (most notably by
using position in graphics to convey ordering information).

Therefore, considering the context of our work, we es-
timated that profiling UML was not adapted and that it was
justified to define a new metamodel to be used in conjunc-
tion with UML.

4.2 Web files and zones

Figure 3 presents an overview of our metamodel for Web
page composition and navigation.

Platform independent Web application modeling and development with Netsilon 7

Fig. 3 Excerpt of the hypertext metamodel for Web page composition and navigation

We have started by defining an abstract metaclass
WebElement derived from ModelElement. Web ele-
ments are intended to capture Web design elements at any
kind of granularity (specifically with much finer grain than
URLs), so that individual links and fragments of text or lay-
out can be taken into account.

Web Elements are specialized in WebFiles
(which contain presentation artifacts) and Zones and
Polymorphic Zones (which both refer to presentation
artifacts). Web Files may be standalone or fragments, in
which case they are necessarily included in some enclosing
Web File (potentially also a fragment) until a non-fragment
Web File is reached. HTML tag filtering and striping makes
it possible to use Web-authoring tools for the design of
fragments as easily as for the design of entire pages.

Each Web File has a context WebContext that de-
scribes its entry parameters. A parameter is described by
WebVariable and has a type, which is an instance of
Classifier. At the time of transformation of PIMs into
executable PSMs, the top-level non-fragment Web Files be-
come entry points in the Web application. They are trans-
lated into target language, and are executed on the server
(they can be referred to by an URL). Web Files make it pos-
sible to describe Web pages at a purely conceptual level, es-
tablishing a very clean separation between business and nav-
igation logic, and presentation. Using Web Files, software
engineers can model a Web user interface without entering
in the presentation details, while graphic designers can fo-
cus on appearance, using conventional tools as if they were
doing static Web sites.

Zones provide support for late binding to their actual
content which can be generated or retrieved at runtime.
Therefore, it is possible to generate and release a generic
model-driven Web application, which can be customized
later by graphic designers and content writers, without hav-
ing to get back to programmers. A zone is a representa-
tion for some chunk of information, which makes sense
in a given context. A zone is not aware of the type of
content it refers to. Zones are not limited to Web devel-
opment; they can be used to represent any kind of con-
tent. In the specific case of Web pages, a zone refers to
some characters stream, which can be understood by a Web
browser; the simplest example of zone content would be
some HTML formatted text. As this paper focuses on Web
development, we will often refer to HTML text in the fol-
lowing lines, although there is no limitation to HTML for
zones.

Web Files can also be specialized as Polymorphic Zones.
A Polymorphic Zone is the means to introduce the notion of
polymorphism in the Hypertext Model (based on a subtype
in the Business Model). In fact, a Polymorphic Zone is as-
sociated to an operation defined in a class (of the Business
Model) which is in charge of producing the content. Since
the operation can be implemented by overridden methods
in the subclasses, the content can be generated according
to the real class of an instance of the Business Model. To
reinforce the separation between the Business Model and
the Hypertext Model, we introduce a subclass of Method
named DisplayMethod that is associated to a WebFile.
The production of content by an operation implemented

8 P.-A. Muller et al.

Table 2 Definition of decision centers and graphic representations

Icon Name Description

Composer Composers compose fragments into pages. A composer selects a target fragment to be inserted in place
of the placeholder

Value displayer Value Displayers display single values. A value displayer evaluates a Xion expression, converts the result
in a character string and inserts this string in place of the placeholder in the generated text.

Collection displayer Collection displayers display collections of values. A collection displayer acts as a composer applied
iteratively to all the items in the collection denoted by a Xion expression. For each element a specific
target fragment may be chosen.

Linker Linkers link Web Files to other non-fragment Web Files. Linkers augment the navigation power of static
HTML links, because they can point to various targets, and change the state of the system when
activated.

Form Forms link Web Files to other non-fragment Web Files. Forms handle the HTML forms. All input ele-
ments that can appear in a form are considered as local variables in the context of the form and are
initialized with the values posted during the submission of the form.

System variable displayer System variable displayers display platform specific system environment variables, like HTTP server
name, server root path, or target language extension.

by one or more display methods is thus realized by Web
files.

4.3 Decision centers

DecisionCenters explain how Web Files relate to-
gether. Decision centers represent variation points in the
Web user interface. Each of these centers is responsible
for a decision to be taken at runtime, while the user is in-
teracting with the system. Decision Center define variation
points in the Hypertext Model. A decision center has an
entryAction, a unique id to identify its placeholder,
local variables (WebVariable) and an ordered sequence
of DecisionConstraint. A decision constraint defines
a guard whose evaluation to true leads to the selection of
its associated WebFile.

We have identified six kinds of decision centers to cover
the complete range of variation points in Web user inter-
faces. Table 2 gives the definition and graphic representation
of these six kinds of decision centers.

Composers, Collection Displayers, Link-
ers and Forms require a least one target Web File. Po-
tential targets are ordered in a sequence, and each target is
guarded by a Boolean condition written in Xion. At run-
time, when the Web page is generated, the decision center
evaluates the conditions in the order of the sequence, and the
first expression that resolves to true determines the choice of
the target Web File. In case there is no such true condition,
the decision center selects no Web File and an empty string
replaces the placeholder. It is possible to specify a default
decision, which will be chosen if no other was taken.

At transformation time, the PIM is translated into PSM
and decision centers are translated into programs (either in
Java or in PHP), which are downloaded on the application
server. At execution time, they are executed (actually, the
programs which were generated from them), and the dy-
namic Web pages are generated on the fly. The content of
these pages will then vary accordingly to the abstract de-
scription captured by the Hypertext Model.

4.4 Graphic notation

We have rendered the composition and navigation model un-
der the shape of a directed graph whose principal nodes are
Web Files. The edges represent either composition relations
between pages and fragments (or between fragments them-
selves) or hypertext links between pages. In fact, on a finer
level of granularity, the composition relations or hypertext
links are themselves nodes of the graph and are modeled by
decision centers. An example of Hypertext Model for com-
position and navigation is given in Fig. 4.

While on a static picture this kind of graph may seem
somehow similar to a class diagram it is important to note
that the behavior of the user interface is fundamentally dif-
ferent from a class diagram editor. Differences have to do
with ordering of the modeling elements (evaluation based on
relative vertical position), elided cycle representation, repre-
sentation of conditions and several other minor details.

As hypertext graphs can be huge, we have defined vi-
sualization principles, which focus on one Web element at
a time. The view is split in three swim lanes; the left most
contains the current Web File, the middle one shows all the
decision centers which belong to the current Web File, and

Fig. 4 Example of hypertext model for composition and navigation

Platform independent Web application modeling and development with Netsilon 9

Fig. 5 Example of split view of the hypertext model

the right most one the several targets for the current decision
center. The graph is directed from the left to the right. Thus
in the case of a composition, the left most element is likely
to contain one or more elements of the right-hand side and in
the case of navigation, the left most element is the hypertext
link holder, while an element of the right-hand side repre-
sents a potential target Web File (see Fig. 5 for an example).

5 The Xion action language

A stated by Mellor et al. [19]: “An action language, in con-
junction with UML, can be used to build complete and pre-
cise models that specify a problem at a higher level of ab-
straction than a programming language or a graphical pro-
gramming system.”

We have implemented such an action language (named
Xion) in the Netsilon tool, in order to be able to generate
fully executable Web applications from platform indepen-
dent models. Xion is used in the Business Model to express
the methods and in the Hypertext Model whenever a con-
straint or a behavior has to be expressed. Xion is not used
in the Presentation Model, which contains only presentation
artifacts.

The behavior of dynamic Web applications depends on
the overall state of the system. This state is stored for part
in databases (which implement persistence of the Business
Model) and files (HTML templates or cookies for instance),
but also in volatile memory (data of the currently active ses-
sions and parameters). Xion has been designed to provide
uniform access to all kinds of state in the system, and is used
to describe queries, constraints and actions. A typical exam-
ple would be to have the possibility to look for a specific set

of objects according to some constraints, like retrieving a
customer command from a character string carried by a Web
page parameter or contained by a cookie.

In the next paragraphs we present code generation ap-
proaches adopted by CASE tool vendors, examine two spec-
ifications related to UML (the Action Semantics and the Ob-
ject Constraint Language) and finally describe the Xion lan-
guage more in detail.

5.1 Code generators

One of the key ideas of the MDA is that models can be used
to build programs using model transformations, therefore
moving the modeling process from contemplative to produc-
tive [1]. Many CASE tools generate useful code fragments
out of models. We may distinguish three categories of code
generators depending on the degree of completeness of the
PIM and resulting PSM: skeleton generation, partial gener-
ation, and full generation.

Skeleton generation has been adopted by most CASE
tools, especially UML CASE tools. This kind of generation
is a partial generation of the system which deals only
with the static structure. For object-oriented technologies,
this means generating classes, attributes, relations and
operations, but not method bodies. However, this can
be considered as MDA as it is a transformation from an
abstract model to a specific set of programming languages
and execution environments (for instance generating code
for CORBA/C++ or EJB/JAVA). The code generation
remains incomplete and further refinements have to be
done at code level. This rupture raises synchronization
issues, between the generated and the hand-modified code,
and ruins the platform independence. Some tools propose
specific annotations (comments in the code) to instruct the
code generator not to overwrite code which was modified
out of their scope, at the expense of making the code less
readable; in the end, the PSM becomes the reference model.
Other tools perform the refinement job directly in the source
model, making it thus platform specific as well. Anyhow,
changing the target platform means developing again these
refinements, according to the selected platform. An example
of such a tool is AndroMDA [20].

Partial generation is going one step further than skele-
ton generation by taking a more complete specification as
input for the code generation. Behavior, when considering
UML, may be modeled by statecharts, collaboration dia-
grams, sequence diagrams or activity diagrams. However,
these diagrams are most of the time “incomplete” at PIM
level, mainly because there is no precise relation between
the dynamic and static models. For instance, there is no stan-
dard way to specify a terminate action or control flows like
if-then-else or loop statements. The result of a partial gen-
eration is code that needs to be further refined to integrate
these changes, even if it already integrates this time some
significant pieces of behavior implementation. Examples of
such tools are Parallax [21], which specifies behavior in

10 P.-A. Muller et al.

collaboration diagrams, and UMLAUT [22], which takes
statecharts as input complemented with pieces of Eiffel
code. Once more, changing generation platform means man-
ually refining the generated code.

The last kind of generation is the full generation. In this
case, tool vendors introduce a new PIM language to com-
plement the modeling elements. Generated applications can
then be fully functional without any refinement required at
PSM level. One of the drawbacks of this kind of approach
is that developers must learn a new language. Another issue
is that it supposes to have a development environment for
the new language, including syntactic editor, debugger and
high-quality code generators. There are several examples of
such kind of approach, like iUML [23], Projtech BridgePoint
[24], Kabira Object Switch [25], or Telelogic Tau architect
and developer [26].

5.2 Action semantics

In late 2001, the OMG has integrated support for the
description of actions [19] in UML (the abstract syntax is
standardized as part of UML 1.5 [27]). The Action Seman-
tics is a model for specifying actions at the PIM level. The
Action Semantics is not a concrete action language. Action
languages are free to provide more sophisticated constructs,
as long as these constructs can be translated into the basics
concepts defined by the Action Semantics. The details of
concrete syntaxes are left to so-called surface languages,
which have to comply with the Action Semantics. This
is indeed what tools supporting the Action Semantics
have done. For instance iUML [23] has defined the ASL
language, BridgePoint [24] the AL language, Object Switch
the AS language and Tau has even defined two syntaxes: a
textual one and a graphical one [26]. All these languages
have the Action Semantics as their abstract syntax. This
makes theoretically possible to exchange “executable”
UML models among them; exactly like compiled Java
programs are supposed to work the same way whatever
virtual machine is actually interpreting them.

The Actions Semantics specification considers that all
actions may execute concurrently, unless explicitly stated
differently, either by a data flow or by a control flow. The
goal is to allow reorganization of the actions to achieve the
most efficient implementation as possible.

The Action Semantics can be used to define:

• entry, exit and do activities of states in statecharts,
• effects of transitions in statecharts,
• stimulus and message triggered activities in interaction di-

agrams (collaboration and sequence diagrams),
• method and constructor bodies in class diagrams,
• expressions that are used in many places like initial values

of attributes, derived attributes and associations, transition
guards, event conditions, etc.

The specification is very detailed and describes notably
how to query and manipulate the static models, i.e.:

• create and delete objects,
• get and set attribute values,
• call an operation,
• create, delete and traverse links.

The Action Semantics is an imperative and structured
language that allows control flow, like conditional and loop
statements. The language can be used on its own, or in com-
plement of other diagrams, like statecharts or interaction di-
agrams.

5.3 Object constraint language

OCL stands for Object Constraint Language [28], but OCL
is actually much more than a language to express constraints.
OCL has been defined with several different purposes in
mind:

• as an object-oriented query language,
• to specify invariants on Classes, Types and Stereotypes,
• to describe pre- and post-conditions on Operations and

Methods,
• to describe Guards,
• to specify derivation rules for Attributes,
• for any expression over a UML model.

OCL derives from earlier work done in the context of
Business Modeling within the IBM insurance division, un-
der the influence of Syntropy [29] itself influenced by Z [30].
The language has been defined both mathematically [31] and
as a MOF 2.0-compliant metamodel, which defines the con-
cepts and semantics of the language.

OCL is a textual formal language, used to describe ex-
pressions on UML models, that remains easy to read and
write for the average business or system modeler. With OCL
it is possible to refer directly to elements in UML mod-
els, like classes, attributes, operations, roles, associations. . .
OCL is a pure specification language; an OCL expression
cannot change anything in the model and it simply returns
a value. The evaluation of an OCL expression is instanta-
neous; the states of objects in a model cannot change during
evaluation.

OCL is not a programming language, although it may
be used to specify a state change (e.g., in a post-condition).
Like the Action Semantics, OCL is a platform independent
language. OCL has become rapidly very popular in the
UML community because of its simple yet powerful
capability to navigate through model instances, especially
class-diagrams. Another reason is that the OCL designers
managed to provide a syntax quite easy to use for the average
programmer, despite the strong mathematical foundations of
the language. OCL is used in numbers of other projects deal-
ing with the UML or its MOF subset. For instance, the OCL
plays an important role in the upcoming QVT standard [32]
which aims at querying, viewing and transforming models:
the OCL is a good candidate for the query part, and can ease
the task of selecting parts of models to transform or view.

Platform independent Web application modeling and development with Netsilon 11

5.4 Description of the Xion language

Xion is a platform-independent action language which ab-
stracts away the details of data access, while being translat-
able into different target languages (like PHP or Java – see
Sect. 7).

Xion is based on OCL and not the Action Semantics
for historical reasons. When we defined Xion, OCL was al-
ready a standard but the Action Semantics specification was
not yet completed. If we had to design Xion nowadays, we
would certainly take a subset of the Action Semantics, al-
though there is no standard way to “remove” elements of
an abstract syntax. Nevertheless, we would still face the is-
sue of defining a concrete syntax, and as navigation is so
important to us, we would certainly base this syntax on the
one of OCL again. Xion has to provide support to query the
Business Model and to express methods and state changes.
OCL is a good candidate for querying instances of the Busi-
ness Model, and further, as shown by other declarative ap-
proaches, like the B predicates [33] or the Alloy [34] lan-
guage, OCL could also be used to define the state changes
performed by methods, via constraints to specify the state
before and after the method execution. However, we did not
chose that solution, because generating efficient code out of
a declarative specification is still an open issue [19], and be-
cause most software developers are more used to the impera-
tive approach, like the Action Semantics, with a well-defined
sequence of actions to perform.

Thus, we have decided to extend the OCL query expres-
sions to define a new imperative language, Xion, for our ac-
tions and queries needs. This means to add side-effects ca-
pability to OCL, and to provide imperative constructs, like
blocks and control flows. In the context of the Business
Model, supporting side-effects means:

• create and delete an object,
• change an attribute value,
• create and delete links,
• change a variable value,
• call non-query operations.

It was also necessary to remove some constructs of the
OCL, which are out of the scope of our approach:

• context declaration, only useful for defining constraints,

Fig. 6 Business model for a family management system

• @pre operator and message management, only meaning-
ful in the context of an operation post-condition,

• state machine querying, as there is no equivalent concept
in the Web architecture we propose.

Since most Web application developers are already fa-
miliar with the Java language, we re-used part of its concrete
syntax. Constructs we took from Java are:

• instruction blocks, i.e. sequences of expressions,
• control flow (if, while, do, for),
• return statement for exiting an operation possibly sending

a value,
• “super” initializer for constructors.

Moreover, for Xion to look like Java as much as possible
we decided to keep Java variable declaration, and operators
(==, !=, +=, >>, ? ternary operator, etc.) rather than those
defined by OCL. The standard OCL library was also slightly
extended, by adding the Double, Float, Long, Int,
Short and Byte primitive types, whose size is clearly de-
fined unlike the OCL Integer or Real. As Web applica-
tion often deals with time, we have also added the Date and
Time predefined types.

In the following paragraphs, we present some examples
of Xion code.

Considering the Business Model shown in Fig. 6, an ex-
ample of the Xion language for implementing the marry op-
eration of the class Person is provided below in Fig. 7.

As we can see here, Xion looks like Java with if/else
control blocks, the null value and the return statement.
Notice that this and self can be used indifferently. We
can also see that enumeration literals are treated as OCL 1.3
prescribes, starting with a # sign.

Another example is provided in Fig. 8. Here, we can
better feel the OCL affiliation of the language. This example
is a parameter transmitted to a Web file of the Hypertext
Model. The target Web file is in charge of displaying the
given list of Person. This Web file is integrated into the
calling Web file by means of a “Composer” decision center.
The purpose, here, is to display sisters of a given person,
represented by the person variable. First we navigate the
parents association end. This navigation returns the set of
Person instances representing the parents of the person
instance. To get all children of these parents, we then nav-
igate from the obtained instances through the children

12 P.-A. Muller et al.

Fig. 7 Example of Xion code, implementation of a method

association end. Note that this last navigation directly comes
from the implicit collect predefined operation call de-
fined in the OCL (UML 1.5, Sect. 6.6.2.1) [27]; we obtain
indeed a bag of Person instances, which is the union of
navigation results from each parent over the children associ-
ation end.

As a consequence, the Person instance and his/her sib-
lings, with the same father and the same mother, will appear
twice in the resulting collection. “Half siblings” will only
appear once for they have only one common parent. As we
are not interested in making a difference between sisters and
half sisters, we remove duplicate instances with the asSet
OCL predefined operation. To remove person from this
collection, we use the OCL excluding predefined opera-
tion. In this list, we only want sisters of person; this can be
done by selecting only instances which are declared to have
a female literal value in their gender slot. This is achieved
by the OCL select predefined operation. The select
operation is what OCL calls an iteration operation, i.e. an
operation that applies a given expression iteratively to each
element of the input collection. The “iterated” element can
be given a name by being declared just before the parame-
ter of the operation. This is the purpose of the “p :” in the
expression. In real OCL, this should be done by a “p |”,
but Xion defines the | operator as the Java bitwise or op-
erator, which is why this iterating variable declaration ends
with a column. Once the select predefined operation has
performed, we want the obtained collection to be ordered by
name. This is achieved by another predefined iteration oper-
ation sortedBy.

In the former example, we examined a Xion expression
very similar to an OCL query. The following expression

Fig. 8 Xion expression to query the sisters of a person

stresses two of the main differences between OCL and Xion,
i.e. control flow and side effects:

if (person.gender == #female)
person.children

−>select(c : c.status == #asleep)
−>collect(c: c.status = #eating);

This expression is used to wake up children in the morn-
ing. The person variable represents the Person instance
supposed to play the role of the mother. Therefore, we use
an if statement to make sure that the procedure is only per-
formed when person is a female. Then, her children which
are still sleeping are selected. For all of them, the attribute
status is updated with the eating enumeration literal,
using the collect iterating predefined operation. As for
OCL, collect gathers the results of an iteration expres-
sion for each element of the input collection. In this case,
the expression is an attribute assignment. In Xion, an assign-
ment returns a Void value. As a collection of Void is not
meaningful, the result of the expression is Void as well,
rather than Bag(Void).

We have only given an overview of the Xion language
here, and provided small examples of Xion statements. An
exhaustive presentation of the language is given in the help
of the Netsilon tool, and some practice is required to appre-
ciate the language.

We have presented in this section an action language
based on OCL and extended with some Java constructs, and
we have described shortly its concrete syntax.

At the time we designed Xion we have had to implement
the abstract syntax from scratch. Today we could have ben-
efited from the advance of the UML standard, in two ways.
We could either extend the OCL abstract syntax which is
defined by a MOF metamodel (OCL 2, Sect. 8) [28] via the
profile mechanism or we could use parts of the Action Se-
mantics. Going one step further, we could also define model
transformations to translate Xion expressions from abstract
syntax trees (conform to a profiled OCL metamodel) to valid
Action Semantics models, for instance for interchange pur-
poses. As a summary, although it has been originally defined
on top of OCL, Xion can be seen as a concrete syntax for a
subset of the Action Semantics.

6 Translation from PIM to PSM

The combination of the Business Model, Presentation
Model, and Hypertext Model defines a complete specifica-
tion for a given Web application. However, in order to de-
ploy the application, it is still necessary to integrate configu-
ration data of the platform, as introduced in Sect. 3.3. From
this point, the Netsilon tool can then generate and deploy the
fully executable code for the selected platform.

Platform independent Web application modeling and development with Netsilon 13

Fig. 9 Overview of the Web application generation process

In the following paragraphs, after an overview of the
Web application generation process, we introduce the PIM
to PSM transformation process of the Netsilon tool, discuss
the process on a concrete example, and highlight perfor-
mance issues to be solved to build real applications beyond
simple prototypes.

6.1 Overview

The Web application is generated as a three-tier application.
Figure 9 shows how the three kinds of models are trans-
formed into the different layers.

The Business Tier Generation transformation reads the
Business Model and creates both Business and Data Tiers.
The User Tier Generation transformation reads the Hyper-
text and Presentation Models and creates the User Tier.

In addition, a generic Web application (the Object Ad-
ministrator) is generated by derivation of the Business
Model, for the purpose of administrating the objects stored
in the database. The Object Administrator application is ac-
tually generated in a two-step process by the Object Admin-
istrator Generation transformation which derives Hypertext
and Presentation Models from the Business Model, and then
by the User Tier Generation which generates the generic
user interface of the tool. Such derivation of the Hypertext
and Presentation Models from the Business Model is achiev-
able because the user interface of the Object Administrator
does not have to be customized, and can therefore follow
simple user interaction patterns.

The Object Administrator is very similar to the php-
MyAdmin [35] tool, with the notable difference that inter-
action is achieved at the object level. Objects can be created
and deleted, their attributes can be updated, links can be cre-
ated between objects, and operations can be executed. This
administration tool is very helpful, and is used both for ini-
tialization of the object database and for data maintenance
purposes.

6.2 Compilation process

As already stated in Sect. 3.3, we consider our platform to
be the composition of a database and an application server.

As a consequence, the possible number of different deploy-
ment platforms is the Cartesian product of the supported
databases and application servers. Netsilon supports the fol-
lowing technologies:

• MySQL, Oracle 8i, and PostgreSQL for the database,
• PHP, JSP and Servlet for the application server.

The translation from PIM to PSM goes through two
PSM steps: a platform-dependent layer, and a technology-
dependent layer.

The transformation process from the PIM to the
technology-dependent code is presented in Fig. 10. The
PIM is the combination of the three platform-independent
models: Business Model, Hypertext Model, and Presentation
Model.

Xion is considered part of the Business Model, but can
be used in the Hypertext Model, which is actually referring
to both Business and Presentation Models.

The first layer of the PSM is the combination of the
SQL Abstract Syntax and a generic application server script,
called Intermediate Language. The SQL Abstract Syntax is
a subset of the SQL 92 language, supposed to be managed
by most RDBMS. This syntax allows managing database
schemas (Schema Management), for creating, deleting, or
modifying table schemas. This SQL abstract syntax also
allows data access to the recordsets (Data Access), for
instance by Select queries (Query). The Intermediate
Language is an abstraction of the concepts of scripts that ap-
plication servers handle. The Classes can define structure of
Web application classes. Behavior is expressed by Instruc-
tions, possibly database manipulations (Database Request),
depending on the above-mentioned Data Access. Scripts are
specialized in integrating pieces of server-side behavior in
files to be sent to the client, expressed with Instructions.

Since business information is to be stored in a database,
a transformation Object Relational Mapping creates a
database schema from the Business Model. In the case a
database schema already exists, the transformation will al-
ter it as necessary. The business information, to be easy to
integrate and reuse, is encapsulated into proxy server-side
classes by the PSM Business Logic transformation. Behav-
ior in the Business Model, described in Xion statements as
bodies of constructors and methods, are also translated by
this PSM Business Logic transformation inside correspond-
ing server-side classes, taking advantage of the Xion to In-
termediate transformation. The Presentation Model and the
depending Hypertext Model are compiled together by the
Navigation to Scripts transformation to produce Scripts of
the Intermediate Language.

Dynamic Web pages may be cached in files to avoid sys-
tematic computation each time a page is called (with the
same parameters’ values). The current implementation is
based on timestamps. A better approach would be to trace
a cached page back to the values that were actually taking
part in the computation of the page, and then to remove the
page from the cache whenever one of the values is updated.
This is an area that we would like to explore in future work
by using trace in model transformations.

14 P.-A. Muller et al.

Fig. 10 The Netsilon compilation process

The transformation Business Tier Generation introduced
in Sect. 6.1 is the composition of the Object Relational Map-
ping and PSM Business Logic transformations. Both trans-
formations take as input the Business Model and produce
respectively the Data Tier layer and the Business Tier layer.
The User Tier Generation, which is responsible for generat-
ing the User Tier embeds the Navigation to Scripts trans-
formation. Finally, the two transformations Business Tier
Generation and User Tier Generation use a target language
transformation to refine the Intermediate Language into the
concrete PHP, JSP or Servlet technologies.

This transformation phase, and the following deploy-
ment phase, cannot be performed without a precise plat-
form description. Some additional information must be pro-
vided to resolve the platform dependencies as described in
Sect. 3.3. This generation configuration is provided as a de-
ployment model whose metamodel is presented in Fig. 11.

The Site metaclass is the main container of the
complete deployment information. It can define sev-
eral DeploymentSite, which conform either to
JSPDeploymentSite, ServletDeploymentSite,
or PHPDeploymentSite, for defining which application
server is to be targeted, and where to export generated
and static Web Files. Each deployment site uses a certain
number of databases for storing business information. The
chosen platform for generation is referenced in the site
by the currentDeploymentSite association end.
Deploying the same Web application on another platform is
done by changing the DeploymentSite referenced in the

currentDeploymentSite association end. Creating a
new deployment platform is done by providing information
requested in Sect. 3.3, without changing anything in the
PIM for Web application.

Some strong assumptions are made in the Intermediate
Language about what an application server can deal with.
These assumptions may limit target technologies: it may be
difficult to integrate the ASP technology that is not object-
oriented. However, these choices are reasonable and worked
well considering the Java and the PHP technologies, and one
can imaging easily integrating the .Net application server
technology by generating C# code.

6.3 SQL optimization

As stated in Sect. 5, the Xion language is responsible for
manipulating business information. This business informa-
tion is stored in relational databases and is encapsulated in
proxy scripts served by a Web application server. In the pre-
vious paragraph, we have explained how the compilation
process translates Xion statements into scripts that access
these proxies.

Unfortunately this approach leads to inefficient code be-
cause it generates too many database requests. In order to
reduce the number of requests, and the amount of data to be
transferred between the application server and the database
server, we have had to insert an SQL optimization pass in
the transformation process from PIM to PSM.

Platform independent Web application modeling and development with Netsilon 15

Fig. 11 Excerpt of the metamodel for Web platform specific information

We will get back to our example to discuss this issue
of optimization. The database schema produced from the
model presented in Fig. 6 is the following:

person (person id, name, surname, gender,
status)

person person (#parents, #children)
marriage (marriage id, date, #wife,
#husband)

The first table named person stores Person in-
stances. This table contains four fields: the person id,
as a primary key, is a unique identifier for stored objects;
the name, surname, gender, and status store the at-
tributes of the person. The person person table imple-
ments the association between parents and children.
It defines two primary keys: parents and children,
that are also foreign key on the person id field of the ta-
ble person. The marriage table stores the Marriage
association-class. Because Marriage is both a class and
a recursive association on the Person class, the table de-
fines the marriage id, wife and husband primary
keys, with wife and husband also foreign keys on the
person id field of the table person. Pseudo-code snip-
pets of the proxy script for encapsulating the data about per-
sons are provided in Fig. 12.

The proxy is a script class that provides access to the
data through SQL queries on the database. This class has
a reference on the corresponding record in the database by
means of an attribute, named OID in the Fig. 12. This at-
tribute has the same value as the primary key in the record
corresponding to the object, in this case person id. Each
attribute defined in the Business Model is encoded in the
script in getter and setter methods, plus an attribute acting
as a reading cache for the value. The first time an attribute
is read, the activate method is invoked and performs an
SQL query for initializing the name attribute which is used

as a cache for the name. The getter method, get name in
the example, requests an activation, which is only performed
if needed, and returns the value of the associated cached at-
tribute. The setter method, as set name in the example,
sends an update to the database, and updates the cache.

Access to association-ends is performed in a slightly dif-
ferent way, as there is no reading cache in this case. This
is due to the fact that attributes are not well suited for stor-
ing associations. In this case, only getter and setter meth-
ods are provided, using SQL queries and updates, as shown
by get parents and get children getter methods.
Methods and constructors in the Business Model are also
translated into scripts, but this is not shown in the example.

The translation for the Xion statement responsible for
retrieving sisters of a person, which is previously presented
in Fig. 8, is provided below in Fig. 13.

Some temporary variables are used here, as t1. The first
for statement retrieves siblings of person, with the dupli-
cate problem already explained in Sect. 5.4. An iteration is
made for each parent of person, who is queried for all its
children. The result is made available in the t1 tem-
porary variable. Duplicates are then removed by the prede-
fined operation asSet, and person is removed from the col-
lection by means of the excluding predefined operation.
The second for statement iterates on this modified collec-
tion, and tests for each Person instance whether his/her
gender is female. In this case, the instance is added to a new
collection in another temporary variable t4. The last for
statement iterates on this collection, and references each el-
ement in the t7 temporary variable, result of the query.
The latter variable is of a special collection type, specialized
in ordering elements according to a certain criteria, using
the insert sort algorithm [36]. This algorithm was chosen
because it allows cascading sorts (to support the Xion lan-
guage which allows cascading sortedBy predefined op-
erations). In this example, the criterion is the name of the
element.

16 P.-A. Muller et al.

Fig. 12 Snippets of the person script class

Fig. 13 Script for querying a person’s sisters

Now, let’s imagine that the person person has fs sisters
and fb brothers with exactly the same parents, and hs half sis-
ters and hb half brothers. A first query is sent to the database
by the application server, because of the get parents
method; the answer is composed of the identifiers of the
two parents. Two more SQL queries are sent to each of
the two parents to ask for their children; the global an-
swer is composed of hs + hb + 2(f s + f b) person iden-
tifiers, received twice for sibling with the same two parents.
Then, f s + hs + f b + hb other queries are sent from the
get gender method to determine the gender of each sib-
ling, to make a difference between brothers and sisters; ac-
cording to the reading cache mechanism, the answer, for
each query, is composed of a recordset containing values
for each one of the three attributes declared in the Person
business class, this means 3(f s + hs + f b + hb) values.
The sort iteration does not send any more SQL query, be-
cause the reading cache has already cached the gender
value for each sibling. In this example, we end up with
1+2+ f s +hs + f b+hb SQL queries sent to the database,
leading to the transmission from the database server to the
application server of 2+hs+hb+2(f s+ f b)+3(f s+hs+

f b+hb) = 2+4(hs+hb)+5(f s+ f b) values for this sim-
ple example, where attribute values are of a reasonable size.

This has to be compared with the single SQL query
shown below in Fig. 14, which would limit the number of
transmitted values to hs + hb.

As a conclusion, to cope with performances, we had to
translate Xion to SQL rather than application server scripts
as much as possible. Unfortunately, this is not possible for all
Xion statements, like while or return. However, many
Xion expressions may be expressed in SQL; since Xion ex-
pressions are derived from OCL expressions, this is a task
which is pretty similar to translating OCL expressions to
SQL queries; a work related to the OCL to SQL compiler of
the Dresden OCL Toolkit [37]. The SQL optimization step
is a refinement of the Xion to Intermediate transformation
shown by Fig. 10, to make it generate as much Database
Request instructions of the Intermediate Language as possi-
ble, i.e. SQL statements.

The optimization operates on Xion abstract trees dec-
orated with type checking information. The type checking
information together with the object-to-relational mapping
as computed by the Object Relational Mapping transforma-
tion is mandatory for the optimization to be aware of tables

Fig. 14 SQL for querying a person’s sisters

Platform independent Web application modeling and development with Netsilon 17

where business information is stored. For instance, when en-
countering an attribute query, the optimization need to have
information on what field in the database corresponds to
this attribute in order to build the right SQL statement. The
Netsilon tool concentrates on optimizing Xion queries. This
is performed in a sequential way, analyzing query expres-
sions, wherever they are used, from left to right. Different
optimization elements are specialized in optimizing a pre-
cise kind of node of a Xion abstract tree, by creating SQL
queries with the SQL Abstract Syntax of Fig. 10. Since there
are many differences in the SQL dialects of the different
RDBMS that Netsilon targets, some optimization elements
are platform-dependent, and can process only if the corre-
sponding platform is selected.

7 Modeling Web applications—related work

Several different approaches are undertaken in the modeling
community to model Web applications, among which:

• The WebML [11] project has defined four models: the
structural model (data content, entities and relation), the
Hypertext Model (composition and navigation), the Pre-
sentation Model (layout and graphic appearance of page)
and the personalization model (individual content based
on users and groups).

• Conallen [16] focuses on notation and has defined a UML
profile; the main advantage of this approach is that UML
modeling tools may be reused to model the Web; the
drawback is that Conallen mainly represents implementa-
tion, and is therefore suitable for PSMs rather than PIMs.

• Schattkowsky et al. [38] are defining an approach for
small- to medium-size applications; they plan to generate
page and code skeletons. They stay close to the current
state of UML tools, like Rational Rose, which generate
code skeletons. We take a more radical position; we want
to be able to build PIMs from which totally executable
applications can be generated.

• The UWE [10] team has defined a methodology cover-
ing the whole life-cycle of Web application development
proposing an object-oriented and iterative approach based
on the standard UML and the Unified Software Develop-
ment Process. The main focus of the UWE approach is the
systematic design followed by a semi-automatic genera-
tion of Web applications. Again, we seek total automation
of the application generation.

• OO-H [9] is an object-oriented method which centers
on the authoring process and provides views that extend
UML to provide a Web Interface model. A code genera-
tion process is then able to generate a Web interface from
the extended diagrams and their associated tagged values.

The major differences with these related works are:

• The finer granularity of the novel modeling concepts that
we have defined for composition and navigation, because
we want be able to model and generate any kind of Web

applications, with no restriction on their visual appear-
ance.

• The availability of the Xion language which is used to
express precisely constraints and actions.

• The ability to generate fully executable (and ef-
ficient) Web applications from platform-independent
models.

However, it must be stressed that our modeling elements
for composition and navigation could be used to implement
the navigation models of all these related approaches. This
would certainly be a way to raise the productivity of Web
developments, because automation would be applied at a
higher level in the development process.

8 Conclusion and future work

We have applied model-driven engineering in the field of
Web engineering. We believe that the MDA initiative is a
good opportunity to raise the level of abstraction, and in-
crease the productivity in the development process of Web
applications, provided that the overall process does not
change the working habits of graphic designers and HTML
integrators. Model developments remain the duty of soft-
ware developers.

We have favored the development of a specific meta-
model dedicated to Web application development (instead of
a profile) to better cope with specialized behavior and tool
user-interface. This metamodel has to be used in conjunc-
tion with UML and promotes concerns’ separation between
graphic development and software development.

Our experience shows that Web user interfaces can be
modeled using a small and well-defined set of modeling ele-
ments (3 types of Web Files and 6 types of decision centers).
An obvious question about this work has to do with com-
pleteness of the metamodel; do we have identified enough
concepts to model any kind of Web applications? In fact,
we have followed a very iterative approach, and the meta-
model has been validated by the development of about a
dozen of significant totally model-driven Web applications
(for online examples visit http://www.topmodl.org a model-
driven Wiki Wiki Web site, and http://www.domaine.fr a dy-
namic Web application which features domain names sell-
ing and account management). We have achieved complete
model-driven engineering; we can generate various exe-
cutable PSMs from the same PIM.

Another question is about level of abstraction; what
about the granularity of our Web modeling concepts? We
have been looking for a balance between expressiveness and
design freedom, and so our modeling elements should be
considered as relatively fine grained. As a consequence, the
modeling elements that we have introduced for composition
and navigation modeling are very general, and we could de-
velop patterns to support the modeling approaches presented
in the WebML, UWE or OO-H methods.

We have noticed that almost all the applications that
have been developed with Netsilon had to maintain state

18 P.-A. Muller et al.

information for all active sessions. This is currently im-
plemented in the Business Model with a hidden class
whose attributes implement the states. We would like to put
explicit support for state machines in our tool, by adding
some support for statecharts to model these sessions.

It would also be interesting to re-align our action lan-
guage with the on-going standardization efforts led by the
OMG; this involves better understanding the interactions be-
tween OCL, the Action Semantics and QVT [31]. Another
major point would be to make the PIM to PSM transfor-
mations explicit, and therefore allow customization of the
code generation phase. Some of us are currently working
on a new metamodeling infrastructure [39] that we intend
to substitute to our current programmed technology. We be-
lieve that this kind of customization ability, by explicit mod-
els and metamodels, is essential in the process of adoption
of model-driven tools by programmers.

This work may be viewed as an experimentation in plat-
form modeling and PSM generation. It is obviously far
from bringing definitive answers to these complex problems.
However the presented material may contribute, with many
other ongoing research works on similar subjects, to a better
understanding of hard related research problems.

References

1. Bezivin, J.: From object composition to model transformation
with the MDA. In: Proceedings of TOOLS’2001, pp. 350–354
IEEE Press Tools#39 (2001)

2. Object Management Group, Inc.: MDA Guide 1.0.1. omg/2003-
06-01 (June 2003)

3. Gellersen, H.-W., Gaedke, M.: Object-oriented Web application
Development. IEEE Internet Computing, pp. 60–68 (1999)

4. El Kaim, W., Burgard, O., Muller P.-A.: MDA Compliant Product
Line Methodology, Technology and Tool for Automatic Genera-
tion and Deployment of Web Information Systems. Journées du
Génie Logiciel, Paris (2001)

5. Nielsen, J.: Hypertext and Hypermedia: The Internet and Beyond.
Academic Press (1995)

6. McDonald, A., Welland, R.: Web engineering in practice. In: Pro-
ceedings of the fourth WWW10 Workshop on Web Engineering
pp. 21–30 (2001)

7. Fraternali, P.: Tools and approaches for developing data-intensive
Web applications: a survey. ACM Computing Surveys (3), 227–
263 (1999)

8. Mellor, S.J., Clark, A.N., Futagami, T.: Model-driven develop-
ment. IEEE Software, pp 14–18, (2003)

9. Gomez, J., Cachero, C.: OO-H Method: Extending UML to Model
Web Interfaces, pp. 144–173. IDEA Group Publishing (2003)

10. Koch, N., Kraus, A.: The expressive power of UML-based Web
Engineering. In: Schwabe, D., Pastor, O., Rossi, G., Olsina, L.
(eds.), Proc. 2nd Int. Wsh. Web-Oriented Software Technology
(IWOOST’02), CYTED (2002)

11. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language
(WebML): a modeling language for designing Web sites. In: Ninth
International World Wide Web Conference (2000)

12. Marcos, E., Vela, B., Cavero, J.-M.: A methodological approach
for object-relational database design using UML. Soft. Syst.
Mode. 2(1), 59–72 (2003)

13. Roch, M.-C., Muller, P.-A., Thirion, B.: Improved flexibility of
a document production line through object-oriented remodeling.
In: Second Congress IMACS, Computational Engineering in Sys-
tems Applications, Hammamet, CESA’98, vol. III, pp. 152–159.
Vabeul-Hammamet Tunisie, (98)

14. Object Management Group, Inc.: Meta Object Facility (MOF),
1.4. formal/02-04-03 (2002)

15. Object Management Group, Inc.: Software Process Engineering
Metamodel (SPEM), 1.0. formal/02-11-14 (2002)

16. Conallen, J.: Building Web Applications with UML. The Addison-
Wesley Object Technology Series (2000)

17. Desfray, P.: UML Profiles versus Metamodeling Extensions. . . an
Ongoing Debate. Uml In The.Com Enterprise: Modeling CORBA,
Components, XML/XMI And Metadata Workshop, Palm Springs,
6–9 (Nov. 2000)

18. Atkinson, C., Kuehne, T., Henderson-Sellers, B.: To meta or not
to meta—that is the question. J.Object-Oriented Program. 13(8),
32–35 (2000)

19. Mellor, S.J., Tockey, S., Arthaud, R., Leblanc, P.: An action lan-
guage for UML: proposal for a precise execution semantics. UML
98, LNCS1618, pp. 307–318 (1998)

20. AndroMDA: http://www.andromda.org/
21. Silaghi, R., Strohmeier, A.: Parallax, or viewing designs through

a prism of middleware platforms. In: Proceedings of the 38th
Annual Hawaii International Conference on System Scienes,
HICSS, Hilton Waikoloa Village, Big Island of Hawaii, HI, USA,
January 3–6, 2005, part of the Mini-track on Adaptive and Evolvs-
ble Software Systems, AESS. IEEE Computer Society (Digital
Library), 2005. Also available as Technical Report IC/2004/69,
Swiss Federal Institute of Technology in Lausanne, Switzerland,
August (2004)

22. Sunyé, G., Pennaneac’h, F., Ho, W.-M., Le, Guennec, A.,
Jézéquel, J.-M.: Using UML action semantics for executable
modeling and beyond. In: Dittrich, K.R., Geppert, A., Norrie,
M.C. (eds.), Advanced Information Systems Engineering, CAiSE
2001, vol. 2068 of LNCS, pp. 433–447. Interlaken, Switzerland,
Springer (2001)

23. iUML AS: Kennedy Carter, Ltd.: UML ASL Reference Guide,
ASL Language Level 2.5, Manual Revision C (2001)

24. ProjTech AL: Project Technology, Inc., Object Action Language
TM Manual. vol. 1.4 (2002)

25. Kabira: http://www.kabira.com
26. Telelogic, A.B.: UML 2.0 Action Semantics and Telelogic

TAU/Architect and TAU/Developer Action Language. vol. 1
(2004)

27. Object Management Group, Inc.: UML 1.5. formal/03-03-01
(2003)

28. Object Management Group, Inc.: UML 2.0 OCL Final Adopted
specification. ptc/03-10-14 (2004)

29. Cook, S., Daniels, J.: Object-Oriented Modelling with Syntropy,
1st edition. Prentice Hall (1994)

30. Spivey, J.: The Z Notation: A Reference Manual, Second edition.
Prentice Hall (1992)

31. Richters, M.: A Precise approach to validating UML models and
OCL constraints. PhD Thesis, Universität Bremen, Biss Mono-
graphs vol. 14 (2002)

32. Object Management Group, Inc.: MOF 2.0 Query/Views/
Transformations RFP. ad/02-04-10 (2002)

33. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
34. Jackson, D.: Alloy: A Lightweight Object Modelling Notation.

Technical Report 797, MIT Laboratory for Computer Science,
Cambridge, MA (2000)

35. phpMyAdmin: http://www.phpmyadmin.net/
36. Knuth, D.E.: The Art of Computer Programming, Sorting and

Searching, Second Edition. vol. 3. Addison-Wesley (1998)
37. Hussmann, H., Demuth, B., Finger, F: Modular Architecture for

a Toolset Supporting OCL. Sci. Comput. Program. (Special issue
on UML 2000) 44(1), 51–69 (2002)

38. Schattkowsky, T., Lohmann, M.: Rapid development of modular
dynamic Web sites using UML. In: UML 2002 Conference, LNCS
2460, pp. 336–350 (2002)

39. The TopModL Open Source Initiative: http://www.topmodl.org

Platform independent Web application modeling and development with Netsilon 19

Pierre-Alain Muller is an asso-
ciate professor of Computer Sci-
ence at the University of Mulhouse,
France, he is currently spending
two years with INRIA in Rennes,
France. His research interest in-
cludes software engineering and
model-driven engineering; he is
leading the TopModL open source
initiative. Before joining academia,
he has been CEO of ObjeXion Soft-
ware from 1999 to 2002 and Con-
sultant with Rational Software from
1988 to 1993. He has authored “In-
stant UML” in 1997 and founded
the 〈〈UML〉〉 series of conferences
(with J. Bezivin) in 1998.

Philippe Studer is a research fel-
low at the University of Mulhouse,
France, his area of interest in-
cludes compilation, parallel compu-
tation and model-driven engineer-
ing. From 1999 to 2002, he was
CTO of ObjeXion Software, where
he led the development of the Net-
silon tool. In the early nineties
he was involved in research about
parallel Postscript interpretation on
Transputers applied to large scale
textile printing.

Frédéric Fondement is a
PhD student at the Software
Engineering Laboratory of the
Swiss Federal Institute of Tech-
nology in Lausanne (EPFL).
His area of interest includes
model- and language-driven soft-
ware engineering. In 2002 he
was a research engineer at IN-
RIA Rennes, part of the MTL
model transformation language
development team. After re-
ceiving his master degree in
computer science in 2000 from
the University of Mulhouse,
he joined the research and de-
velopment team of ObjeXion

Software, under the direction of Pierre-Alain Muller and Philippe
Studer.

Jean Bezivin is professor of Com-
puter Science at the University of
Nantes, France, member of the AT-
LAS research group recently cre-
ated in Nantes (INRIA & LINA-
CNRS) by P. Valduriez. He has
been very active in Europe in the
Object-Oriented community, start-
ing the ECOOP series of conference
(with P. Cointe), the TOOLS series
of conferences (with B. Meyer), the
OCM meetings (with S. Caussarieu
and Y. Gallison) and more recently
the 〈〈UML〉〉 series of conferences
(with P.-A. Muller). He also orga-
nized several workshops at OOP-
SLA like in 1995 on “Use Case

Technology”, in 1998 on Model Engineering with CDIF, on Model
Engineering at ECOOP in 2000, etc. His present research interests in-
clude model engineering, legacy reverse engineering and more espe-
cially model-transformation languages and frameworks.

