
PLATINUM
A new Framework for Planning and Acting

Alessandro Umbrico1, Amedeo Cesta1, Marta Cialdea Mayer2, Andrea Orlandini1

1 Istituto di Scienze e Tecnologie della Cognizione
Consiglio Nazionale delle Ricerche, Roma

2 Dipartimento di Ingegneria
Università degli Studi Roma Tre

Abstract. This paper presents a novel planning framework, called PLATINUM

that advances the state of the art with the ability of dealing with temporal uncer-
tainty both at planning and plan execution level. PLATINUM is a comprehensive
planning system endowed with (i) a new algorithm for temporal planning with
uncertainty, (ii) heuristic search capabilities grounded on hierarchical modelling
and (iii) a robust plan execution module to address temporal uncertainty while ex-
ecuting plans. The paper surveys the capabilities of this new planning system that
has been recently deployed in a manufacturing scenario to support Human-Robot
Collaboration.

1 Introduction

The continuous improvements in robotics in terms of efficacy, reliability and costs are
fostering a fast diffusion in a large variety of scenarios where robots are required to
demonstrate more flexible and interactive features like, e.g., those for supporting and
interacting with humans. For instance, during the last decade lightweights robots are
being increasingly used in manufacturing cells to support human workers in repetitive
and physical demanding operations. The co-presence of a robot and a human in a shared
environment while operating actively together entails many issues that must be properly
addressed requiring the deployment of flexible controllers capable of preserving effec-
tiveness while enforcing human safety. In manufacturing, Human-Robot Collaboration
(HRC) challenges concern both physical interactions, guaranteeing the safety of the
human, and coordination of activities, improving the productivity of cells [7].

In such scenarios, the presence of a human, which plays the role of an uncontrol-
lable “agent” in the environment, entails the deployment of control systems capable
of evaluating online the robot execution time and continuously adapt its behaviors.
Namely, deliberative control systems are required to leverage temporal flexible mod-
els (such as in [6]) as a key enabling feature both at planning and execution time. In this
sense, standard methods are not fully effective as current approaches do not foresee/es-
timate the actual time needed by robots to perform collaborative tasks (i.e., tasks that
directly or indirectly involve humans). Indeed, robot trajectories are usually computed
online by taking into account the current position of the human and, therefore, it is not
possible to know in advance the time the robot will need to complete a task. Thus, it is



not possible to plan robot and human tasks within a long production process and take
into account performance issues at the same time.

Some plan-based controllers rely on temporal planning mechanisms capable of
dealing with coordinated task actions and temporal flexibility e.g., T-REX [17] or IXTET-
EXEC [10] that rely respectively on EUROPA [1] and IXTET [8] temporal planners. It
is worth noting how both these systems do not have an explicit representation of uncon-
trollability features in the planning domain. As a consequence, the resulting controllers
are not endowed with the robustness needed to cope with uncontrollable dynamics of
domains such as, for instance, the one needed in HRC scenarios.

This paper presents a new Planning framework, called PLATINUM, which inte-
grates temporal planning and execution capabilities that both explicitly deal with tem-
poral uncertainty, thus resulting as well tailored for flexible human-robot collaborative
scenarios. The system has been developed and deployed within the FOURBYTHREE
research project3 [12]. The PLATINUM planning and acting capabilities have been in-
tegrated in a software environment that facilitates the adaptation of a new robotic arm
in different HRC manufacturing scenarios. The proposed planning system has been
completely deployed in a realistic case study [16] demonstrating its ability to support a
productive and safe collaboration between human and robot. In particular, PLATINUM
has been able to find well suited task distribution between human and robot increasing
the productivity of the working cell, without affecting the safety of the operator.

2 Human-Robot Collaboration: needs from a case study

In manufacturing, HRC scenarios consist of a human operator and a robot that interact
and cooperate to perform some common tasks. Namely, the human and the robot repre-
sent two autonomous agents capable of performing tasks, affecting each other behaviors
and sharing the same working environment.

The motivations of this work rely on a research initiative related to the FOUR-
BYTHREE project funded by the European Commission. FOURBYTHREE is a research
project [12] whose main aim is to realize new robotic solutions that allow human opera-
tors to safely and efficiently collaborate with robots in manufacturing contexts. Specif-
ically, the project outcomes will be a new generation of collaborative robotic solutions
based on innovative hardware and software. The envisaged solutions present four main
characteristics (modularity, safety, usability and efficiency) and take into account the
co-presence of three different actors (the human, the robot and the environment). In this
context, the solution proposed by FOURBYTHREE is a combination of several hard-
ware and software components for implementing safe and effective HRC applications.
On the one hand, a brand new collaborative robotic arm has been designed and is under
validation. On the other hand, a set of software modules spanning from very high level
features, such as, e.g., voice and gesture commands detection, to low-level robot con-
trol have been developed. The resulting complex integrated robotic solution implements
two possible robot-human relationships in a given workplace without physical fences:

3 CNR authors are partially supported by EU project FOURBYTHREE (GA No.637095 –
http://www.fourbythree.eu).



(i) coexistence (the human and the robot conduct independent activities); (ii) collabora-
tion (the human and the robot work collaboratively to achieve a shared productive goal).
Validation tests are ongoing in four pilot plants, covering different types of production
process, i.e., assembly/disassembly, welding operations, large parts management and
machine tending.

In this paper, one of the pilots in FOURBYTHREE is considered as a relevant HRC
scenario for manufacturing. In such a scenario a robot and a human must cooperate in
the assembly/disassembly of metal dies for the production of wax patterns. Some tasks
of the process can be performed by both the robot and the human while other tasks that
require a special dexterity can be performed only by the human. The robot is endowed
with a screwdriver and therefore it can supports the human in all the screwing/unscrew-
ing operations of the process. Such HRC scenario can be addressed deploying Planning
and Scheduling (P&S) technology [4], i.e., modeling the control problem as a time-
flexible planning problem and, then, solving it by means of a hierarchical timeline-
based application [20]. The hierarchical approach provides a description of the problem
at different levels of abstraction ranging from the process definition level to the robot
task implementation level. Then, timelines coordinate the behaviors of the human and
the robot over time in order to achieve the desired production goals.

2.1 Planning with Timelines under Temporal Uncertainty

The formal characterization of the timeline-based approach defined in [6] is well-suited
to model HRC scenarios thanks to its capability of representing temporal uncertainty.
Indeed, temporal uncertainty plays a relevant role in HRC where the human represents
an uncontrollable element of the environment with respect to the robot. Thus, it is cru-
cial to properly represent and handle such uncertainty in order to produce robust plans
and dynamically adapt the behavior of the robot to the observed behavior of the human.
According to [6], a domain specification is composed by a set of multi-valued state
variables. Each state variable models the allowed temporal behaviors of a particular
feature of the domain that must be controlled over time. A state variable is formally
defined by the tuple (V,D, T, γ) where: (i) V is a set of values the feature can assume
over time; (ii) D : V → R>=0 × R ∪ ∞ is a duration function specifying for each
value the allowed non negative minimum and maximum duration; (iii) T : V → 2V is
a transition function specifying the allowed sequences of values over the timeline; (iv)
γ : V → {c, u} is a controllability tagging function specifying for each value whether it
is controllable or not. State variables model a single feature of a domain by describing
the local constraints that must be satisfied in order to build valid temporal behaviors
(i.e., valid timelines). Synchronization rules specify additional (temporal) constraints
that coordinate the behavior of different state variables in order to realize complex tasks
or achieve goals.

For instance, Figure 1 partially shows the domain specification for the collaborative
assembly/disassembly process in FOURBYTHREE. An Assembly Process state variable
models the high-level tasks that must be performed in order to carry out the desired col-
laborative process. A Robot and a Human state variables model the possible behaviors
of the robot and the human in terms of the low-level tasks they can perform over time.
Finally, Arm and Screwdriver state variables model respectively robot motion tasks and



Assembly 
Process Human

Robot

ScrewdriverArm

Idle
[1,	+INF]

Remove
Top	Cover
[1,	+INF]

Remove
Bottom
Cover
[1,	+INF}

Idle
[1,	+INF]

Unscrew
Boltj
[18,	27]

Unscrew
Bolti
[18,	27]

Mount
Robot	 Tool

[11,	32]

……

…

Idle
[1,	+INF]

Unscrew
Bolti
[5,	48]

Unscrew
Boltj
[5,	48]

…

Moving
[3,	42]

SetOn
Boltj

[1,	+INF]

SetOn
Bolti

[1,	+INF]

…
Un

Mounted
[1,	+INF]

Mounting
[11,	32]

Mounted
[1,	+INF]

Operating
[5,	5]

CONTAINS

DURING MEETS

Fig. 1: A partial timeline-based domain specification for a HRC scenario

tool management. It is worth to underscore the capability of the formal framework to
allow the modeling of uncontrollable dynamics in the considered scenario. The human
agent is modeled as an element of the environment and therefore all human tasks are
tagged as uncontrollable. In addition, a human may indirectly affect the behavior of the
robot in such a working scenario because the robot can slow-down or even interrupt
motion tasks in order to guarantee free-collision trajectories.Thus, the actual duration
of motion tasks is not under the control of the control system and, therefore, such tasks
are also tagged as uncontrollable. The dotted arrows in Figure 1 represent temporal con-
straints entailed by a synchronization rule defined for the value Remove Bottom Cover
of Assembly Process state variable. Such constraints specify operational requirements
needed to carry out a high-level task (Remove Bottom Cover) of the assembly/disas-
sembly process. A set of contains temporal constraints specify the low-level tasks the
human and the robot must perform. Specifically, they specify the bolts the human and
the robot must unscrew to remove the cover. Then, additional temporal constraints (dur-
ing and contains temporal constraints) specify how the robot must implement related
low-level tasks. To successfully unscrew a bolt the robot arm must be set on the related
location and the screwdriver must be activated.

In such a context, a plan is composed by a set of timelines and a set of temporal rela-
tions that satisfy the domain specification and achieve the desired goals. Each timeline
is composed by a set of flexible temporal intervals, called tokens describing the possi-
ble temporal behavior of the related feature of the domain. Temporal flexibility allows
timelines to encapsulate an envelope of possible temporal behaviors. Such a rich tempo-
ral representation together with controllability information can be exploited to generate
plans that can be dynamically adapted to the observed dynamics of the environment at
execution time.



2.2 A Hierarchical Modeling Approach for HRC scenarios

In general, the design of effective models is a crucial issue in the development of plan-
based controllers. Indeed, a planning model must capture the information about the
system to be controlled and the environment in which it works. A planning model is
to capture such complexity and to allow a Planner to make decisions at different levels
of abstraction. To this aim, hierarchical modeling approaches have been successfully
applied in real world scenarios. They support the planning process by encoding knowl-
edge about a particular problem to address. HRC scenarios are complex problems that
require to take into account several aspects from different perspectives. Thus, hierar-
chies are well-suited in such a context as they allow to model a complex problem from
different levels of abstraction and decompose the related complexity in sub-problems.

Pursuing the hierarchical modeling approach described in [20, 4], it is possible to
model a HRC scenario by identifying three hierarchical levels. A supervision level
models the process and the high-level tasks that must be performed. At this level of ab-
straction the model specifies the operational constraints that must be satisfied to carry
out the process regardless of the agent that will perform the tasks. The state variable
Assembly Process in Figure 1 is the result of such a level. A coordination level models
the decomposition of high-level tasks of the process into low-level tasks that the hu-
man or the robot can directly handle. At this level of abstraction the model specifies
the possible assignments of tasks to the robot and therefore the possible interactions
between a human and a robot. The state variables Human and Robot in Figure 1 model
the low-level tasks that the robot and the human may perform and the synchronization
rules connecting these values with state variable Assembly Process model possible as-
signments. An implementation level models the operations and the related requirements
that allow a robot to perform assigned tasks. The state variables Arm and Screwdriver
in Figure 1 and the synchronization rules connecting their values with the state variable
Robot model the motion tasks and the tool activations needed to carry out robot tasks.

3 A Framework for Planning & Execution under Uncertainty

The modeling and solving approaches described above have been implemented in a
general framework called EPSL (Extensible Planning and Scheduling Library) [20].
EPSL complies with the formal characterization given in [6] and initial steps have been
done in order to compare it with other state-of-the-art frameworks [19]. Nevertheless,
EPSL was not fully suited to address the needs related to task planning problems in
FOURBYTHREE. Most importantly, handling temporal uncertainty both at planning and
execution time results as a key capability for effectively and safely deploy P&S robot
control solutions. Thus, a new system, called PLanning and Acting with TImeliNes
under Uncertainty (PLATINUM), is presented here constituting a uniform framework
for planning and execution with timelines with (temporal) uncertainty4.

The capability of handling temporal uncertainty both at planning and execution time
allows the framework to address problems where not all the features of a domain are
under the control of the system. Moreover, the "combination" of temporal flexibility

4 https://github.com/pstlab/PLATINUm.git



and temporal uncertainty allows P&S controllers to generate flexible and temporally
robust plans that can be dynamically adapted at execution time without generating new
plans from scratch. Robust plan execution is particularly relevant in HRC scenarios in
order to avoid to continuously generate a new plan every time an unexpected behavior
of the human is detected (e.g., human execution delays).

Recent results [16] have shown the capability of a PLATINUM instance to re-
alize flexible collaborations by dynamically adapting the behavior of a robot to the
observed/detected behavior of a human. Before describing the deployment of PLAT-
INUM in a realistic collaborative assembly scenario, next sections provide a description
of how the P&S framework has been extended in order to deal with temporal uncer-
tainty at both planning and execution time.

3.1 Solving Timeline-based Problems with Uncertainty

Given a domain specification and a particular problem to solve, the role of a timeline-
based planner is to synthesize a set of flexible timelines that satisfy domain constraints
and achieve some goals. A plan includes a set of timelines each of which describes
the allowed temporal behaviors of a particular domain feature (i.e., state variables). In
such a context, a plan represents an envelope of possible solutions. Indeed, temporal
flexibility allows timelines to encapsulate an envelope of possible temporal behaviors.
Given the considered HRC scenario, a plan consists of a set of coordinated human and
robot beahviors that carry out a particular production task. The solving process of a
P&S application can be generalized as a plan refinement search. Basically, a solver
iteratively refines an initial partial plan until a valid and complete plan is found. The
refinement of a plan consists in detecting and solving a set of flaws that affect either the
validity or the completeness of the plan. However, the validity of a plan with respect to
the domain specification does not represent a sufficient condition to guarantee its exe-
cutability in the real world. The uncontrollable dynamics of the environment may pre-
vent the complete and correct execution of plans. Thus, from the planning perspective,
it is important to generate plans with some properties with respect to the controllability
problem [13, 21]. Dynamic controllability is the most relevant property with respect to
the execution of a plan in the real world. Unfortunately, it is not easy to deal with such
a property at planning time when the temporal behaviors of domain features are not
complete. Typically, such a property is taken into account with post-processing mech-
anisms after plan generation [5, 3, 13, 21]. Another property worth to be considered at
planning time, is the pseudo-controllability property which represents a necessary (but
not sufficient) condition for dynamic controllability [13].

The pseudo-controllability property of a plan aims at verifying that the planning
process does not make hypotheses on the actual duration of the uncontrollable activities
of a plan. Specifically, pseudo-controllability verifies that the planning process does not
reduce the duration of uncontrollable values of the domain. Consequently, a timeline-
based plan is pseudo-controllable if and only if all the flexible durations of uncontrol-
lable tokens composing the timelines have not been changed with respect to the domain
specification. Although pseudo-controllability does not convey enough information to
assert the dynamic controllability of a plan, it represents a useful property that can be



exploited for validating the planning domain with respect to temporal uncertainty. In-
deed, if the planner cannot generate pseudo-controllable plans, then it cannot generate
dynamically controllable plans either. Thus, the general solving procedure of EPSL
has been now extended in PLATINUM aiming at dealing with temporal uncertainty at
planning time. Algorithm 1 shows the new PLATINUM planning procedure.

Algorithm 1 A general pseudo-controllability aware planning procedure
1: function SOLVE(P , S,H)
2: Fpc, F 6=pc ← ∅
3: π ← InitialP lan (P)
4: // check if the current plan is complete and flaw-free
5: while ¬IsSolution (π) do
6: // get uncontrollable values of the plan
7: U = {u1, ..., un} ← GetUncertainty (π)
8: // check durations of uncontrollable values
9: if ¬Squeezed(U) then
10: // detect the flaws of the current plan
11: Φ0 = {φ1, ..., φk} ← DetectF laws (π)
12: // apply the heuristic to filter detected flaws
13: Φ∗ = {φ∗1 , ..., φ

∗
m} ← SelectF laws

(
Φ0,H

)
14: // compute possible plan refinements
15: for φ∗i ∈ Φ∗ do
16: // compute flaw’s solutions
17: Nφ∗

i
= {n1, ..., nt} ← HandleF law (φ∗i , π)

18: // check if the current flaw can be solved
19: ifNφ∗

i
= ∅ then

20: Backtrack(π,Dequeue(Fpc))

21: end if
22: for nj ∈ Nφ∗

i
do

23: // expand the search space
24: Fpc ← Enqueue (nj ,S)
25: end for
26: end for
27: else
28: // non pseudo-controllable plan
29: F¬pc ← Enqueue (makeNode (π) ,S)
30: end if
31: // check the fringe of the search space
32: if IsEmpty (Fpc) ∧ ¬IsEmpty (F¬pc) then
33: // try to find a non pseudo-controllable solution
34: π ← Refine (π,Dequeue (F¬pc))

35: else if ¬IsEmpty (Fpc) then
36: // go on looking for a pseudo-controllable plan
37: π ← Refine (π,Dequeue (Fpc))

38: else
39: return Failure
40: end if
41: end while
42: // get solution plan
43: return π
44: end function

Hierarchy-based Flaw Selection Heuristcs. The behavior of the planning procedure
shown in Algorithm 1 is determined by the particular search strategy S and the flaw se-
lection heuristic H. Specifically, flaw selection can strongly affect the performance of



the planning process even if it does not represent a backtracking point of the algorithm.
Indeed, each solution of a flaw determines a branch of the search tree. A flaw selection
heuristic is supposed to encapsulate smart criteria for suitably evaluating flaws during
planning. A good selection of the next flaw to solve can prune the search space by cut-
ting off branches that would lead to unnecessary or redundant refinements of the plan.
In addition, leveraging the hierarchical modeling approach presented in Section 2.2, a
suitable heuristics to guide the selection of flaws can be defined by means of the do-
main knowledge. The work [20] has shown that it is possible to define a hierarchy-based
heuristic capable of leveraging such information and improve the planning capabilities
of timeline-based applications.

Algorithm 2 The hierarchy-based flaw selection heuristic

1: function SELECTFLAWS(π)
2: // initialize the set of flaws
3: Φ ← ∅
4: // extract the hierarchy of the domain
5: Hπ = {h1, ..., hm} ← extractHierarchy (π)
6: for hi = {svi,1, ..., svi,k} ∈ Hπ do
7: if Φ = ∅ then
8: // detect flaws on state variables composing the hierarchical level hi
9: for svi,j ∈ hi = {svi,1, ..., svi,k} do
10: // select detected flaws
11: Φ ← detctF laws (svi,j)

12: end for
13: end if
14: end for
15: // get selected flawsts
16: return Φ
17: end function

Algorithm 2 depicts the SelectFlaws procedure in Algorithm 1 (row 14) according to
such hierarchy-based heuristic. The heuristic takes into account the hierarchical struc-
ture of the domain and select flaws that belong to the most independent state variables
of the domain (i.e., flaws concerning state variables that come first in the hierarchy).
The rationale behind the heuristic is that the hierarchical structure encapsulates depen-
dencies among the state variables composing a planning domain. Thus, the resolution
of flaws concerning state variables at the higher levels of the hierarchy (i.e., the most
independent variables) can simplify the resolution of flaws concerning state variables at
the lower levels of the hierarchy (i.e., the most dependent variables).

3.2 Timeline-based Plan Execution

The most innovative aspect in PLATINUM is its ability to perform also plan execu-
tion relying on the same semantics of timelines in the pursued planning approach [6].
Therefore, PLATINUM executives leverage information about temporal uncertainty in
order to properly manage and adapt the execution of plans. In general, the execution
of a plan is a complex process which can fail even if a plan is valid with respect to the
domain specification. During execution, the system must interact with the environment,



which is uncontrollable. Such dynamics can affect or even prevent the correct execu-
tion of plans. A robust executive system must cope with such exogenous events and
dynamically adapt the plan accordingly during execution.

Controllability-Aware Execution. The execution process consists of control cycles
whose frequency determines advancement of time and the discretization of the tempo-
ral axis in a number of units called ticks. Each control cycle is associated with a tick
and realizes the execution procedure. Broadly speaking, the execution procedure is re-
sponsible for detecting the actual behavior of the system (closed-loop architecture), for
verifying whether the system and also the environment behave as expected from the
plan and for starting the execution of the activities of the plan.

Algorithm 3 The PLATINUM executive control procedure

1: function EXECUTE(Π , C)
2: // initialize executive plan database
3: πexec ← Setup (Π)
4: // check if execution is complete
5: while ¬CanEndExecution (πexec) do
6: // wait a clock’s signal
7: τ ← WaitT ick (C)
8: // handle synchronization phase
9: Synchronize (τ, πexec)
10: // handle dispatching phase
11: Dispatch (τ, πexec)
12: end while
13: end function

Algorithm 3 shows the pseudo-code of the general PLATINUM executive proce-
dure. The procedure is composed by two distinct phases, the synchronization phase
and the dispatching phase. At each tick (i.e., control cycle) the synchronization phase
manages the received execution feedbacks/signals in order to build the current status of
the system and the environment. If the current status is valid with respect to the plan,
then the dispatching phase decides the next activities to be executed. Otherwise, if the
current status does not fit the plan, an execution failure is detected and replanning is
needed. In such a case, the current plan does not represent the actual status of the sys-
tem and the environment and therefore replanning allows the executive to continue the
execution process with a new plan, which has been generated according to the observed
status and the executed part of the original plan.

Algorithm 4 shows the pseudo-code of the synchronization procedure of the ex-
ecutive. The synchronization phase monitors the execution of the plan by determin-
ing whether the system and the environment are aligned with respect to the expected
plan. Namely, at each iteration the synchronization phase builds the current situation
by taking into account the current execution time, the expected plan and the feedbacks
received during execution. A monitor is responsible for propagating observations con-
cerning the actual duration of the dispatched activities and detecting discrepancies be-
tween the real world and the plan. The executive receives feedbacks about the successful
execution of dispatched commands or failure. The monitor manages these feedbacks in



order to detect if the actual duration of tokens comply with the plan. If the feedbacks
comply with the plan, then the execution of the plan can proceed. Otherwise, a failure
is detected because the current situation does not fit the expected plan and the executive
reacts accordingly (replanning).

Algorithm 4 The PLATINUM executive procedure for the synchronization phase

1: function SYNCHRONIZE(τ , πexec)
2: // manage observations
3: O = {o1, ..., on} ← GetObservations (πexec)
4: for oi ∈ O do
5: // propagate the observed end time
6: πexec ← PropagateObservation (τ, oi)
7: end for
8: // check if observations are consistent with the current plan
9: if ¬IsConsistent (πexec) then
10: // execution failure
11: return Failure
12: end if
13: // manage controllable activities
14: A = {ai, ..., am} ← GetControllableActivities (πexec)
15: for ai ∈ A do
16: // check if activity can end execution
17: if CanEndExecution (τ, ai, πexec) then
18: // propagate the decided end time
19: πexec ← PropagateEndActivity (τ, ai)
20: end if
21: end for
22: end function

Algorithm 5 The PLATINUM executive procedure for the dispatching phase

1: function DISPATCH(τ , πexec)
2: // manage the start of (all) plan’s activities
3: A = {ai, ..., am} ← GetActivities (πexec)
4: for ai ∈ A do
5: // check if activity can start execution
6: if CanStartExecution (τ, ai, πexec) then
7: // propagate the decided start time
8: πexec ← PropagateStartActivity (τ, ai)
9: // actually dispatch the related command to the robot
10: SendCommand (ai)
11: end if
12: end for
13: end function

Algorithm 5 shows the pseudo-code of the dispatching procedure of the executive.
The dispatching phase manages the actual execution of the plan. Given the current sit-
uation and the current execution time, the dispatching step analyzes the plan πexec in
order to find the tokens that can start execution and dispatches the related commands
to the underlying system. Namely, the dispatching step allows the executive to advance
execution and decide the next tokens to execute. Thus, a dispatcher is responsible for
making dispatching decisions of plan’s tokens. For each token, the dispatcher checks
the related start condition by analyzing the token’s scheduled time and any dependency



with other tokens of the plan. If the start condition holds, then the dispatcher can decide
to start executing the token (i.e., the dispatcher propagates the scheduled start time into
the plan).

3.3 Token Lifecycle

A plan and its temporal relations encapsulate a set of execution dependencies that
must be taken into account when executing timelines. Besides the scheduled tempo-
ral bounds, such dependencies specify whether the executive can actually start or end
the execution of a token. Let us consider for example a plan where the temporal rela-
tion A before B holds between tokens A and B. Such a temporal relation encapsulates
an execution dependency between token A and token B. The executive can start the
execution of token B if and only if the execution of token A is over. In addition, the
executive must take into account controllability properties of tokens. Different control-
lability properties entail different execution policies of tokens and therefore different
lifecycles.

Controllable tokens are completely under the executive control. In this case the
executive can decide both the start time and the duration of the execution of this type of
tokens. Both decisions are controllable. Partially-controllable tokens are not completely
under the control of the executive. Tokens of such a type are under the control of the
environment. The executive can decide the start time (i.e., the dispatching time) while
it can only observe the actual execution and update the plan according to the execution
feedbacks received from the environment. Finally, uncontrollable tokens are completely
outside the control of the executive. The executive can neither decide the start nor the
end of the execution. Both "events" are under the control of the environment. Execution
feedbacks concern both the start time and the end time of the execution and therefore
the executive can only update/adapt the controllable part of the plan accordingly.

4 Deployment in a Real Scenario

A separate work [16] describes how an instance of PLATINUM has been deployed in
a manufacturing case study integrating the task planning technology described above
with a motion planning system for industrial robots [15]. In that integration, PLAT-
INUM and its features are leveraged to implement an integrated task and motion plan-
ning system capable of selecting different execution modalities for robot tasks according
to the expected collaboration of the robot with a human operator. This is the result of
a tight integration of PLATINUM with a motion planning system. Indeed, the pursued
approach realizes an offline analysis of the production scenarios in order to synthesize
a number of collision-free robot motion trajectories for each collaborative task with
different safety levels. Each trajectory is then associated with an expected temporal ex-
ecution bound and represents a tradeoff between "speed" of the motion and "safety"
of the human. The integrated system has been deployed and tested in laboratory on an
assembly case study similar to collaborative assembly/disassembly scenario described
above. In [16], an empirical evaluation is provided in order to assess the overall produc-
tivity of the HRC cell while increasing the involvement of the robots (i.e., increasing



the number of tasks the robot is allowed to perform). The results show the effectiveness
of PLATINUM in finding well suited distribution of tasks between the human and the
robot in different scenarios with an increasing workload for the control system. Specif-
ically, the PLATINUM instance results as capable of increasing the productivity of the
production process without affecting the safety of the operator.

Before concluding the paper it is worth underscoring that for lack of space this paper
does not concern an experimental evaluation of PLATINUM features. Some focalized
experiments are contained in [16] while a wider experimental campaign is undergoing
and will constitute an important pillar for a future longer report.

5 Conclusions

In this paper, a recent evolution of a timeline-based planning framework has been
presented. In particular, taking also advantage of the needs coming from the FOUR-
BYTHREE project, the EPSL planner has been endowed of novel features for structured
modeling, synthesizing plans under uncertainty and plan execution functionality. The
obtained framework, called PLATINUM, is currently supporting the need of adapt-
ability in new domains. The table below summarizes the main features and capability
introduced in PLATINUM and points out differences with respect to EPSL.

EPSL PLATINUM

Representation Temporal Flexibility Temporal Flexibility with Uncontrollability

Solving Hierarchical Hierarchical with Uncertainty

Execution Not Supported Plan Execution with Uncertainty

PLATINUM represents a uniform framework for planning and execution with time-
lines under uncertainty. It relies on a well-defined formalization of the timeline-based
approach [6] and has proven to be particularly suited for addressing HRC scenarios.
It is worth underscoring how PLATINUM enters in the current state of the art in a
sub-area of planning systems for robotics together with CHIMP [18], HATP [9], meta-
CSP planner [11], FAPE [2] that creates a current generation of planners for robotics
whose goal is to evolve with respect to classical temporal frameworks such as, for in-
stance, EUROPA [1] and IXTET [8]. Finally, leveraging the work in [14], a current
research effort is related to the extension of the knowledge engineering framework for
PLATINUM to enable use by non specialist planning users. Our goal, as already said,
is to enable the use of our technology in different industrial settings. To this aim, creat-
ing a tool for non specialists for modelling, configuring and implementing plan-based
controllers is an important goal to pursue.

References

1. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J.,
Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization. In: ICKEPS 2012: the 4th Int. Competition on
Knowledge Engineering for Planning and Scheduling (2012)



2. Bit-Monnot, A.: Temporal and Hierarchical Models for Planning and Acting in Robotics.
Ph.D. thesis, Doctorat de l’Université Federale Toulouse Midi-Pyrenees (2016)

3. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and Verification Issues in
a Timeline-Based Planning System. Knowledge Engineering Review 25(3), 299–318 (2010)

4. Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A.: Towards a planning-based framework for
symbiotic human-robot collaboration. In: 21th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE (2016)

5. Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in terms of
timed game automata. In: The 22nd International Symposium on Temporal Representation
and Reasoning (TIME). IEEE (2015)

6. Cialdea Mayer, M., Orlandini, A., Umbrico, A.: Planning and execution with flexible time-
lines: a formal account. Acta Informatica 53(6-8), 649–680 (2016)

7. Freitag, M., Hildebrandt, T.: Automatic design of scheduling rules for complex manufactur-
ing systems by multi-objective simulation-based optimization. {CIRP} Annals - Manufac-
turing Technology 65(1), 433 – 436 (2016)

8. Ghallab, M., Laruelle, H.: Representation and control in ixtet, a temporal planner. In: 2nd
Int. Conf. on Artificial Intelligence Planning and Scheduling (AIPS). pp. 61–67 (1994)

9. Lallement, R., de Silva, L., Alami, R.: HATP: an HTN planner for robotics. CoRR
abs/1405.5345 (2014), http://arxiv.org/abs/1405.5345

10. Lemai, S., Ingrand, F.: Interleaving Temporal Planning and Execution in Robotics Domains.
In: AAAI-04. pp. 617–622 (2004)

11. Mansouri, M., Pecora, F.: More knowledge on the table: Planning with space, time and re-
sources for robots. In: 2014 IEEE International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7, 2014. pp. 647–654. IEEE (2014)

12. Maurtua, I., Pedrocchi, N., Orlandini, A., Fernández, J.d.G., Vogel, C., Geenen, A., Althoe-
fer, K., Shafti, A.: Fourbythree: Imagine humans and robots working hand in hand. In: 2016
IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA). pp. 1–8 (Sept 2016)

13. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic Control of Plans With Temporal Uncer-
tainty. In: International Joint Conference on Artificial Intelligence (IJCAI). pp. 494–502
(2001)

14. Orlandini, A., Bernardi, G., Cesta, A., Finzi, A.: Planning meets verification and validation
in a knowledge engineering environment. Intelligenza Artificiale 8(1), 87–100 (2014)

15. Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti, L.M., Tolio, T.: A probabilistic approach
to workspace sharing for human–robot cooperation in assembly tasks. {CIRP} Annals - Man-
ufacturing Technology 65(1), 57 – 60 (2016)

16. Pellegrinelli, S., Orlandini, A., Pedrocchi, N., Umbrico, A., Tolio, T.: Motion planning and
scheduling for human and industrial-robot collaboration. {CIRP} Annals - Manufacturing
Technology pp. – (2017)

17. Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous sys-
tems. In: AAMAS. pp. 583–590 (2010)

18. Stock, S., Mansouri, M., Pecora, F., Hertzberg, J.: Online task merging with a hierarchical
hybrid task planner for mobile service robots. In: Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. pp. 6459–6464 (Sept 2015)

19. Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: Steps in Assessing a Timeline-
Based Planner, pp. 508–522. Springer International Publishing (2016)

20. Umbrico, A., Orlandini, A., Cialdea Mayer, M.: Enriching a temporal planner with resources
and a hierarchy-based heuristic. In: AI*IA 2015, Advances in Artificial Intelligence, pp.
410–423. Springer International Publishing (2015)

21. Vidal, T., Fargier, H.: Handling Contingency in Temporal Constraint Networks: From Con-
sistency To Controllabilities. JETAI 11(1), 23–45 (1999)

http://arxiv.org/abs/1405.5345

	PLATINUm A new Framework for Planning and Acting

