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ABSTRACT Semantic understanding of drivers’ behavior features at intersections plays a pivotal role in the

proper decision-making of a platoon. This paper presents a flexible framework to automatically extract the

driver’s driving features from observed temporal sequences of driving raw data and traffic light information.

An approach, which contains two key sub-problems, is proposed to select the separated vehicles from the

platoon in the vicinity of the intersection. Then, the first sub-problem, accurately capturing the drivers’

driving behavior features under the impact of traffic lights, is addressed by using the Bayesian nonparametric

approach, which could segment drivers’ driving raw data temporal sequences into small analytically inter-

pretable components (called driving primitives) without using prior knowledge. In addition, the extracted

driving primitives are used to obtain the vehicle separation strategy (which is also the second sub-problem)

by considering safety, efficiency, and energy consumption. Finally, 200 groups of raw data of human-driven

vehicles approaching the intersection are used to validate the effectiveness of the proposed primitive-based

framework. Experimental results demonstrate that the acceleration indeterminacy of separated vehicles could

be decreased 37%-72% by segmenting the captured driving behavior features into 3×15 patterns. Moreover,

the vehicle separation strategy could not only increase the efficiency, but also the safety, and the energy

consumption could be decreased.

INDEX TERMS Platoon separation, nonparametric Bayes, platoon operating optimization at intersection,

increased operating safety and efficiency.

I. INTRODUCTION

Platoon separation scenario in this paper refers to the sce-

nario where multiple vehicles operating in the form of the

platoon are spatially close to the intersection [1]–[3]. Since

the limited green light duration, some vehicles have to cross

the intersection in the next green light phase or separate

from the platoon and cross the intersection by moving into

other lanes. Vehicle separation is one of the most common

driving scenarios [4]–[6] for platoon operating in the vicinity

of the intersection, which will increase the platoon number

and add communication pressure to the infrastructure [7]. The

latest statistical data of the National Highway Traffic Safety

Administration (NHTSA) indicates that around 40% of all

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurice J. Khabbaz .

crashes and 50% of severe collisions in the U.S. occur at

intersections [8], which indicates the importance of kepping

the intersection traffic scenario safe. Human driving behavior

is a dynamic and stochastic process in nature [9]. The road

users do not solely determine their behaviors based on their

current states but also predict the behaviors of others at

intersections [10]. The limited and obscured sight distances

and wrong intuition on gap acceptance are the main factors

in these accidents [11]. For a platoon, the typical process

of negotiating at intersections usually consists of a closed-

loop of perception, decision making, and control. Due to

uncertainties on the continuous state of nearby vehicles and

their potential discrete states such as braking and turning,

decision making is becoming the most crucial and challeng-

ing component [12]. Thus, in order to make platoon vehicles

able to interact with nearby human drivers smoothly and
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safely, the platoon intersection driving scenarios should be

thoroughly investigated.

Many solutions have been developed to analyze and model

the platoon driving behavior at intersections, thus providing

essential operating rules for platoons. For example, subjec-

tively decomposing the road in the vicinity of intersection,

into finite segments, within each segment, vehicles operate

under different control methods [13]. Researchers segment

the intersection connected road into three parts (approach

area, adjust area and maintain area), and then guide the vehi-

cles by using the double-loop Spatial Position Associating

Time Series (SPATS) method and the Acceleration Dynam-

ically Adjusting based on Predicted Trajectory (ADAPT)

method [14]. Slot-based intersections, which could replace

traditional traffic lights, have also been implemented to

reduce queues and delays. However, the approaches men-

tioned above cannot keep the integrity of the platoon; they

require the prior knowledge of, for example, road conditions

(e.g., intersection type) and signal information (e.g., signal-

ized and non-signalized traffic), which makes it restricted to

some specific conditions. For instance, Tachet et al. imple-

mented a space-time slot model to increase traffic efficiency

only at the non-signalized intersection [15]. Sarkar et al.

mainly focused on the left turn scenarios of traffic agents at

the T-shape intersection [16]. Weiming et al. mainly eval-

uated the energy consumption of the platoon in the green

light phase [17], while Alejandro focused on safety when

platoon gets through the intersection by adding the virtual

platoon [18]. The approaches aforementioned are suitable

to use under specific situations. However, it is practically

intractable for complicated scenarios because of insufficient

prior knowledge on the interactive driving patterns among the

traffic agents.

Recently, some driver feature cognitive methods have been

implemented to facilitate the decision-making process of

autonomous vehicles. For example, Haneen Farah collected

the data on the overtaking behavior of 100 drivers by ana-

lyzing the data features. The results show interesting and

significant differences in the overtaking behavior of drivers

depending on their age and gender [19]. Ilka evaluated the

Time to Intersection (TTI) time interval between field and

simulator at five simple urban intersections. The braking

behavior near urban intersections differs between real and

simulated experimental environments for drivers has been

proved [20]. Although these methods have been successfully

implemented in specific cases, they are still limited to be

used to understand the context behind the behaviors and

may need tremendous data storage resources. Thus, seg-

menting driver behavior into recognizable patterns can help

us understand the driver’s intention, and thereby facilitate

computational-cost and storage-cost algorithms to practice,

for example, Bayesian nonparametric. This method is a com-

mon and ïĆexible way to model multi-decision problems

under uncertainties of the intersection driving patterns by

providing a mathematically rigorous framework [21]. How-

ever, accurately capturing driver behavior characteristics is

computationally intractable, especially for the intersection

driving scenarios that contain unknown states and multi-

vehicles. Fortunately, both the internal fixed relation between

driving behaviors and the impact of the infrastructure on

driving behaviors could help to reduce the range of locked

driver features. For instance, Wenshuo analyzed the vehi-

cle following data and got the driver’s following behavior

characteristics [22], because the following behavior exists

all the time for two vehicles running in one lane. Since

Gipps proposed a deterministic lane-changing model concept

based on gap-acceptance, in which a driver’s behavior is

governed by two primary considerations: maintaining the

desired speed or being in the correct lane for an intended

turning maneuver [23]. Junjie got the driver’s overtaking

behavior features by setting three critical parameters based on

Gipps’s research work [24]. Thus, segmenting complex driv-

ing behaviors into discrete patterns can facilitate the decision-

making learning process and reduce the computational cost

and storage cost, especially for the issues in high dimensional

space.

According to the discussion above, it is necessary to

develop an approach that can accurately capture drivers’

behavior characteristics and semantically decompose the

complex interactive driving behavior at intersections into

discrete states with less prior knowledge. In addition, uncer-

tainties of the potential behavior feature patterns should be

considered. However, the complexity and uncertainty of the

driving environment make it hard to find a mathematically

rigorous united approach to capture the driving behavior fea-

tures and analyze the behaviors at all kinds of intersections.

Besides, the big traffic data in a high-dimensional and large-

scale space will overwhelm the human mind and heuristic

analysis [25].

This paper will introduce a primitive-based framework,

which can automatically decompose the drivers’ driving

behavior at intersections into several interpretable patterns

with less prior knowledge by integrating Bayesian nonpara-

metric learning algorithms. Also, this method could accu-

rately capture the driver’s driving behavior features at the

intersection.

Our work focuses on generating platoon separation

strategies by considering single human-driven vehicle

driver’s driving features and making full use of road

section resources by selecting the separation vehicles run-

ning on other lanes. So that we can consider there

is no V2V communication in the platoon(the strategy

can be generated by the platoon vehicle or by the

infrastructure).

The main contributions of this paper are threefold.

• Presenting a primitive-based framework to learn drivers’

driving features at intersections based on Bayesian nonpara-

metric statistics and the impact of the traffic light on driver’s

driving behavior.

• Developing an efficient vehicle separation strategy for

selecting vehicles from the platoon by considering safety,

efficiency, and energy consumption.
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FIGURE 1. Platoon operating in the vicinity of the intersection.

• Verifying the effectiveness of our proposed framework

for analyzing drivers’ driving behavior features through emu-

lation driving data.

The remainder of this paper is organized as follows.

Section 2 introduces the selection process of separated vehi-

cles. Section 3 introduces the developed primitive-based

framework. Section 4 introduces the vehicle separation strat-

egy based on safety and energy consumption. Section 5

discusses and analyzes the experimental results. Section 6

concludes this work and discusses future work.

II. VEHICLE SEPARATION SELECTION PROCESS

A platoon is a method of driving multiple vehicles together in

a single lanemaintaining a safe distance between the vehicles.

To cross the intersection within the green light duration, some

vehicles separate from the platoon and cross the intersection

by using other lanes. However, the motion patterns of human-

driven vehicles are unknown as drivers have different driving

behaviors at the traffic light, which makes it challenging to

select the separated vehicles. Through this paper, we propose

a vehicle separation selection process by analyzing the behav-

iors of drivers operating on the other lanes, at different traffic

lights. We also consider vehicle safety and energy consump-

tion. The vehicle separation scenario is shown in Fig. 1, and

the vehicle separation selection process is described below.

Step 1: The platoon uploads the raw operating data

(position, velocity, acceleration, vehicle number, time

headway, and vehicle length). Simultaneously, the infras-

tructure uploads traffic light information to the computing

center(inside the vehicle or the infrastructure), which decides

whether the platoon should be allowed to cross the intersec-

tion or not.

vp + apt0 = v′p ≤ v1. (1)

vpt0 +
1

2
apt

2
0 + v′p(tg − t0) ≥ (n− 1)vpt1 + ℓ+ L. (2)

where vp and v
′

p represent the velocity and accelerated veloc-

ity of the platoon. ap, t0, and t1 represent the acceleration,

the acceleration time, and the time headway of the platoon,

respectively. L represents the distance between leader vehicle

and intersection, v1 represents the limited road velocity, tg is

the remaining green light duration, n represents the vehicle

number of the platoon, and ℓ is the length of the vehicle.

If (2) is established, the platoon crosses the intersection by

accelerating; otherwise, the platoon separates some vehicles

to cross the intersection.

Step 2: Obtain the vehicle separation number n0.

vpt0 +
1

2
amax t

2
0 + v1(tg − t0) ≥ (n1 − 1)vpt1 + ℓ+ L. (3)

where amax represents the maximum acceleration, and n1
represents the maximum number of vehicles that can cross

the intersection if the platoon is moving in the original lane,

such that the number of separated vehicles is n0 = n− n1.

Step 3: The raw data (position, velocity, acceleration)

of human-driven vehicles (HV) moving in other lanes are

uploaded to the computer center, after which the time to the

intersection (TTI ) of the human-driven vehicle is obtained.

TTI =
sd

vd0
. (4)

where sd represents the distance between the human-driven

vehicle and the intersection, and vd0 represents the velocity

of the human-driven vehicle.

For the sake of simplicity, this paper assumes that there is

just one lane beside the original lane, and the human-driven

vehicle number is i and the time to collision between two

consecutive cars is TTC .

TTCr = TTIr − TTIr−1. (5)

where r represents the serial number of the human-driven

vehicle, and 1 ≤ r ≤ i.

Step 4: Get the range of TTI , velocity, and acceleration of

the driver, at the time when the traffic light influences the

driver, and then divide the above three parameters intoM , N ,

and Q levels, respectively. Finally, select the thresholds for

each parameter.
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Step 5: From Step 4, there are M × N × Q driving types

that represent different driving behaviors. This means that

the driver approaches the intersection in the velocity range

of vk (k ∈ (1,Q)), acceleration range of aj, (j ∈ (1,N )),

and within TTIα(α ∈ (1,M )). By counting the proportion

of different driving types, the driver’s driving behavioral

features can be treated as (TTIα, aj, vk ).

Step 6: As vehicles can form lane-changing zones, the sep-

arated vehicles from the platoon can overtake or follow the

human-driven vehicles in the lane-changing zones. After get-

ting the driving types of the human-driven vehicles, we learn

the maximum number of vehicles that can change the lane

safely.



















Z1 = q1,

Z2 = q2,

· · · · · ·

Zi+1 = qi+1

(6)

where Z represents the lane-changing zones and q represents

the number of vehicles that can safelymove in this zone. If the

zone is too short to accept even one vehicle, then q = 0.

Step 7: Select the vehicle as a separated vehicle if it has the

minimum acceleration for lane changing. In theory, there are

A
n0
n cases for selecting the separated vehicles. Assuming that

there are corresponding η zones for the above cases, there is,

q1 + q1 + · · · + qη ≤ n0. (7)

ca = min
(

max(ca1),max(ca2), · · · ,max(ca
A
n0
n ×A

η

i+16pt
)
)

(8)

where ca is the vehicle separation selection strategy. There

are A
n0
n × A

η

i+1 cases for n0 separated vehicles operating in η

lane-changing zones.

Step 8: Evaluate the energy consumption of each separa-

tion strategy as there are several strategies obtained in Step

7. If the maximum acceleration has the same value in each

strategy, then the optimized case is the one with the minimum

energy consumption.

ca = minEC[ca1, ca2, · · · , caδ4pt ] (9)

where EC is the energy consumption and δ is the case number

obtained in Step 7.

Two issues exist in the process of vehicle separation

selection: (1) determining driving style based on the influence

of the traffic light and (2) obtaining the optimized vehicle sep-

aration strategies after getting the driver’s driving style. This

paper addresses the two issues in Section 3 and Section 4,

respectively.

III. METHOD TO EXTRACT DRIVING PATTERNS

For analyzing the impact of a driver’s unknown driving style

on the vehicle separation function, this paper sets the traffic

parameters as follows: 7 vehicles in the platoon, the velocity

of platoon is 10m · s−1, vehicle length is 5m, the distance

between the leading vehicle and the intersection is 10m,

FIGURE 2. Acceleration range of the separated Vehicle when overtaking.

FIGURE 3. Acceleration range of the separated vehicle when following.

FIGURE 4. Structure of HMM.

the time headway is 2s, and there is only one vehicle in

the other lane moving parallel to the fourth vehicle. The

acceleration ranges of vehicle #3 and vehicle #5 are as shown

in Fig. 2 and Fig. 3, from which we can get the information,

as the vehicle separation has a wide range of acceleration

variation, the accurate lane-changing position and operation

patterns cannot be obtained.

The human-driven vehicle’s approaching the intersection

can be broken down into different driving primitives so that

the whole driving process is regarded as a combination of

a series of different operation primitives. This section will

detail three Bayesian nonparametric learning methods, which

are influential in modeling driver behavior in the case where

the number of primitive driving patterns is not precisely

known. Inwhat follows, we present the theoretical basis of the

HiddenMarkovmodel (HMM), Hidden Semi-MarkovModel

(HSMM), and Hierarchical Dirichlet processes (HDP).

A. HMM

The core of HMM consists of two layers: a layer of a hid-

den state and a layer of observation or emission, as shown

in Fig. 4, where the shaded nodes are observations, and the

unshaded nodes are latent states [26].
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FIGURE 5. Structure of HSMM.

Given a time-series data sequence B = {bt }
T
t−1 and a set of

hidden state A, each hidden state At at time t will be subject

to one entry of A. The transition probability from the hidden

state Ai to Aj is denoted as Ti,j with Ti = [Ti1,Ti2,Ti3, · · · ].

The observation bt at time t in given hidden state At is

generated byBt = f (Bt |At , xAt ), called the emission function.

Therefore, the HMM can be described as

Ai|Ai−1 ∼ TAi−1
. (10)

Bt |At ∼ f (xAt4pt ). (11)

where f (·) is the emission function and xAt4pt is the emission

parameter.

B. HSMM

The hidden semi-Markov model (HSMM), as an extension

of HMM, is traditionally defined by allowing the underlying

process to be a semi-Markov chain, which means that each

state has a variable duration [27], as shown in Fig. 5.

Several approaches can be used to define HSMM depend-

ing on the assumptions and applications. In this paper,

we assume that each hidden state’s duration is given over

an explicit distribution, also called explicit duration HMM.

Therefore, we augment the generative process of a standard

HMM with a random state duration time, drawn from some

a state-specific distribution when the state is entered. Here,

we use the random variable dt to denote the duration of a state

that enters at time t , and p(dt |At = i) denotes the probability

mass function for dt . Similar to HMM, we can define HSMM

by

Ai|Ai−1 ∼ TAi−1
. (12)

ds = g(ωs). (13)

Bt |At ∼ f (xAt4pt ). (14)

where g(ωs) is a state-specific distribution over the state

duration ds.

C. HDP

Drivers’ behaviors, however, are changing and opened, so that

the parameter space regarding hidden states in the model

becomes potentially infinite. More specifically, the dimen-

sion of the set space of hidden states |A|, is unknown. In such

situations, we have to define a prior probability distribution

on an infinite-dimensional space. A distribution on an infinite

dimensional space is a stochastic process with a specific path.

Usually, the Dirichlet processes (DP) rapidly yield intractable

computations. In what follows, we will introduce a hierarchal

DP (HDP) [28].

FIGURE 6. Graph model structure of DP.

We assume that the number of latent states is previously

unknown and these modes of HMM are subject to a specific

distribution defined over a measure space. The Dirichlet pro-

cess (DP) is a measure on measures, denoted by DP(α,H ),

and provides a distribution over discrete probability measures

with an infinite collection of atoms on a parameter space

that is endowed with a base measure H . The Graph model

structure of DP is shown in Fig. 6. Here, the weights βi
is sampled by a stick-breaking construction and we denote

β ∼ GEM (γ ), with β = [β1, β2, β3, · · · ] and
∑∞

i=1 βi = 1.

G0 =

∞
∑

i=1

βiδθi , θ ∼ H . (15)

βi = vi

i−1
∏

ℓ=1

(ℓ− vℓ), vi ∼ Beta(1, γ ). (16)

According to the above discussion, an HDP can be used to

define a prior state on the set of HMM transition probability

measures Gj,i.

Gj,i =

∞
∑

i=1

Tj,iδθi . (17)

where δθi is a mass concentrated at θ . Assuming that each

discrete measure Gj is a variation on a global discrete mea-

sure G0, thus the Bayesian hierarchical specification takes

Gj ∼ DP(α,G0), where G0 is draw from DP(γ,H ).

G0 =

∞
∑

i=1

βiδθi , β|γ ∼ GEM (γ ). (18)

Gj =

∞
∑

i=1

Tj,iδθi , Tj|α, β ∼ DP(α, β). (19)

D. STICKY HDP-HMM

For the sticky HDP-HMM (γ, α,H ), adding an extra param-

eter κ > 0 [29] biases the process toward self-transition in

(19) and increases the expected probability of self-transition

by an amount proportional to κ . The graphic illustration is

shown in Fig. 8; therefore, we can obtain

Ti|α, β, κ ∼ DP(α + κ,
αβ + κδi

α + κ
). (20)

All the hyperparameters are set as a Gamma distribution

for the convenience of estimating the posterior probability
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FIGURE 7. Structure of HDP-HMM.

FIGURE 8. Structure of Sticky HDP-HMM.

FIGURE 9. Structure of HDP-HSMM.

of hidden states, and this method has been proved in [22].

Based on the above discussion, by applying the HDP prior to

the HMM and HSMM, we can obtain the HDP-HMM, sticky

HDP-HMM, and HDP-HSMM, as shown in Figs. 7-9.

IV. SEPARATION STRATEGY UNDER SEC REQUIREMENTS

The optimized vehicle separation strategy should main-

tain the separated vehicle’s safety and efficiency. Also,

the remaining vehicles in the platoon should have minimum

energy consumption. In this paper, we call these SEC (Safety,

Efficiency, and Energy consumption) requirements.

The platoon can predict the human-driven vehicle’s behav-

ior after the drivers’ driving features are obtained. It is

necessary to study the secure condition of lane-changing,

the capacity of lane changing area for the separated vehicles,

and the restrictions of obtaining the optimized vehicle separa-

tion strategies. The next section will address the above three

issues in detail.

A. SAFE FOLLOWING DISTANCE BETWEEN THE TWO

VEHICLES

In this study, we assume that vr and vpr denote the velocity of

the rear vehicle and the preceding vehicle, respectively. The

distance between the two vehicles is H . a0 and a1 denote the

maximum deceleration of the rear vehicle and the preceding

vehicle, respectively. t3 denotes the reaction time of the driver,

and t4 denotes the time of deceleration increase. Once the

vehicles stop, the safe distance between the two vehicles

should be larger than ℓ1.

Two velocity relationships exist between the preceding

vehicle and the rear vehicle:

(1) The velocity of the rear vehicle is equal or greater than

that of the preceding vehicle.

H1 = vr t3 +
v2r

2a0
−
v2pr

2a1

+

∫ t4

0

(

(vr − vpr ) + (
a1 − a0

2t4
) · t2

)

dt + ℓ1 (21)

(2) The velocity of the rear vehicle is less than that of the

preceding vehicle.

H2 = vr t4 +
vr

a1

(

vpr − vr −

∫ t4

0

a1

t4
tdt

)

+ H1 (22)

For safety, the distance between the rear vehicle and the

preceding vehicle should larger than H1 or H2 under the

corresponding velocity relationship.

B. THE CAPACITY OF LANE CHANGE AREA FOR THE

SEPARATED VEHICLES

When computing the capacity of the lane changing area for

the separated vehicles, the safety lane-changing conditions in

Section A should be fully considered. This means that the

vehicle separation should keep the safety distance with the

human-driven vehicle after changing the lane. Also, when

several vehicles change the lane and enter the same lane-

changing zone, a safety following slot should be kept. Most

importantly, the state of human-driven vehicles should not be

impacted by the separated vehicle.

For the sake of simplicity, this paper assumes that there

is only one human-driven vehicle in the other lane, so that

two lane-changing zones are formed. Set the driver’s driving

style to (TTId , ad , vd ) when approaching the intersection.

To maintain the vehicle’s safety after separation, the overtak-

ing velocity is vs ≥ vd , or the following velocity is vs ≤ vd0.

The separated vehicles should keep a safe distance from the

preceding vehicle after overtaking the human-driven vehicle.

H1(vd , vs) + (nx − 1)H1(vs, vs) ≤ sd (23)

The capacity of the lane changing zone in the downstream

of human-driven vehicle is

nx ≤
sd − H1(vd , vs)

H1(vs, vs)
+ 1 (24)
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When the separated vehicles follow the human-driven

vehicle, all the separated vehicles should cross the intersec-

tion in the green light duration.

H2(vs, vd0)

vs
+ (ns − 1)

H1(vs, vs)

vs
≤ tr (25)

where tr represents the remaining green light duration after

the human-driven vehicle crosses the intersection.

tr = tg − (
sd

vd0
− TTId ) −

vd − vd0

ad

−
TTId · vd0 −

(3vd−vd0)(vd−vd0)
2ad

vd
(26)

so that the capacity of lane changing zone in the upstream

of the human-driven vehicle is

ns ≤
trvs − H2(vs, vd0)

H1(vs, vs)
+ 1 (27)

C. THE OPTIMIZED STRATEGY FOR THE VEHICLE

SEPARATION OPERATION

After getting the safety lane-changing conditions, we obtain

the capacity of lane change area for the separated vehicles,

the serial number of the separated vehicles, and the safety

velocity vhp,(p = 1, 2, · · · , n0, it is the serial number of

the separated vehicle. h = 1, 2, · · · , i + 1, it is the serial

number of the lane-changing zone) for the separated vehicle

running in the lane-changing zone. Setting the acceleration

time as ta for the separated vehicle when changing the lane,

the acceleration of the separated vehicle running in the lane-

changing zone is as follows:

ah =
vhp − vs

ta
(28)

The optimized acceleration is min|ah| for the separated

vehicle. The optimized lane-changing zone is the one that has

the minimum acceleration. When computing the minimum

acceleration of the separated vehicle, there are several opti-

mized results. This means that the optimized accelerations are

the same for the different separated vehicles, such that, when

selecting the separated vehicles, the energy consumption of

the remaining vehicles in the platoon is to be considered.

Li-Min et al. [30] has leveraged the numerical simula-

tion method to study the aerodynamic characteristics of a

serial vehicle platoon in the intelligent transport system.

Fig. 10 shows the variation of the drag coefficient of the car

with the number of vehicles in the platoon at a fixed distance.

At a fixed interval, as the number of vehicles in the platoon

increases, the drag coefficient of each vehicle is continuously

decreasing, and the maximum reduction is nearly 40%, but

the reduction is significantly low. The resistance of the sub-

sequent vehicles is generally lower than that of the previous

vehicles. However, as the number increases, the car with the

lowest resistance is roughly at the center of the platoon. The

analysis results for the platoon with seven vehicles showed

that the vehicle with the lowest drag coefficient was at the

center of the platoon, i.e., the fourth vehicle had the lowest

FIGURE 10. Drag coefficients of vehicles in different platoon.

FIGURE 11. Average drag coefficients of platoon with different size.

FIGURE 12. Average drag coefficient of the remaining vehicles after
separation.

drag coefficient. From the results of the average drag coeffi-

cient of the platoon in Fig. 11, the average drag coefficient

of the platoon is much smaller than that of the single vehi-

cle, and the average drag coefficient is reduced by 20% -

30%. The platoon operating mode significantly reduces fuel

consumption and exhaust emissions. Selecting the optimized

vehicle separation by comparing the drag coefficients of the

remaining vehicles in the platoon.

S = min(dc(♯1), dc(♯2), · · · , dc(♯ℜ)) (29)

where S represents the serial number of the separated vehi-

cles, dc(·) represents the drag coefficients of the remaining

vehicles in the platoon, and ℜ is the number of separated

vehicles that have the same optimized acceleration.

Fig. 12 shows the average drag coefficient of the platoon

after the separated vehicle moves out, and can be used to

select the optimized vehicle separation strategy.

V. DATA PREPROCESSING AND PARAMETERS SETTING

The real test site has the properties of a high cost, limited sce-

narios, and a long construction period. To address the above

issues, a virtual test was carried out [31]. We established an
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FIGURE 13. The structure diagram of VR based test platform.

interactive intelligent driving simulation platform in a virtual

reality environment, as shown in Fig. 13, which realizes a

high realistic interactive intelligent driving simulation expe-

rience. A virtual reality (VR) based test platform provides a

safer and time-saving test option for an autonomous vehicle

before a real physical testbed.

The VR based test platform consists of two parts: a high

realistic simulation environment and an interactive human

driver interface. A three-dimensional real-time simulation

environment is implemented, which covers the road network,

urban elements, and vehicles. The Logitech G27 racing steer-

ing wheel series hardware is used to achieve high immersion

intelligent driving. With the VM-I inertial sensor and 5DT

data glove, information about the driver’s arm that operates

the vehicle is dynamically collected in real-time. A com-

munication delay model is used to simulate the information

interactive process between vehicles. A series of high-fidelity

driving scenarios are implemented, including multiple driv-

ing behaviors and multiple intelligent level vehicles.

The influence of the communication quality on the test

result is taken into consideration. Furthermore, an SQL

database provides the services for the real-time drivers’ multi-

scene driving behavior data.

The application of the intelligent driving visual simulation

platform in this virtual environment can be summarized as

the following three aspects: Firstly, providing an online low-

cost test environment for an autonomous vehicle; secondly,

providing intelligent driving data acquisition and analysis

methods for developers; finally, it can also provide a high

immersion training platform for drivers.

To generate the data of drivers’ driving behavior when

approaching an intersection, 20 drivers(8 females and

12 males) were selected to drive in the VR simulation plat-

form. They have different driving experiences, and the driving

time varies from 6 months to 10 years. In the intersection

scenario, the human-driven vehicle is running on the two-lane

one-way road, the initial distance between the ego vehicle and

the signalized intersection is 300 meters. The human-driven

vehicle expects to cross the intersection, and at the same time,

we observe what driving behaviors the driver will do under

the influence of traffic lights. This paper repeated the exper-

iment 20 times for each driver in the same settings. Since

our work focus on the proposed method, which can get the

driver’s driving features from the generated raw data, so that

the amount of simulation data does not affect the correctness

of the method. The data format is shown in Table 1.

This paper got the driving primitives of a human-

driven vehicle approaching the intersection by using HDP-

HMM, Sticky HDP-HMM, and HDP-HSMM methods.

Fig. 14 shows the raw data of one vehicle moving in

the vicinity of the intersection, the classification results

of driving primitives, and the signal timing scheme in

the simulation experiment. In this experiment, the human-

driven vehicle approaches the intersection with a distance

of 260 meters. When the signal light changed from green to

yellow, the velocity of the human-driven vehicle was constant

and the acceleration was 0. Once the signal light changed to

red, the vehicle slowed down and came to a stop.

The most important thing to the platoon is to obtain the

driver’s driving behavior before the signal light changes from
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TABLE 1. Raw data of HV approaching the intersection.

FIGURE 14. Driving primitive obtained by leveraging three methods.

green to yellow. This means that the information about what

the human-driven vehicle will do at that specific moment

must be obtained. Only by getting this information does

the vehicle separation formulate a separation strategy. From

Fig. 14, we can get that, the primitive when the signal light

changes from green to yellow represents the influence of

the signal light on the driver. By using the three Bayesian

nonparametric learning methods, the driving primitive

TABLE 2. Variable segmentation.

zones(Z1, Z2, and Z3) can be obtained, as shown in the blue

brackets.

We can determine the velocity of the human-driven vehicle

and the distance between the human-driven vehicle and the

intersection from the left boundary of the primitive, as shown

by the red circles. Only by using these two parameters can we

get the TTI value. Also, we can attain the velocity value from

the right boundary of the primitive.

FromFig. 14, we can know that by using the three Bayesian

nonparametric learning methods, the driver’s stress response

moments are the same under the influence of the signal light,

which proves that our model is reliable, and the driver’s stress

response behavior exists in the real world, as shown by the

red circles. Also, compared with the Sticky HDP-HMM and

HDP-HMM, HDP-HSMMmethod can help us obtain the less

short duration driving primitives, which cannot be used to

represent the driving features. In summary, this paper gets

the driving primitives by using the HDP-HSMMmethod; the

statistical results of approaching intersection features param-

eters are in Table 2.

By classifying the driver’s driving feature parameters,

we can get the driver’s driving style of approaching the inter-

section. For each TTI , there are 15 kinds of driving styles.

ψ(m) =
φmij,k

∑

i,j

φmij,k
, (i ∈

i
v, j ∈ a, k ∈ TTI ) (30)

where m represents the serial number of the drivers, ψ(m)

represents the driver’s driving style. i, j, k represent the accel-

eration, velocity, and the TTI , respectively. φmij,k represents

the quantity of driving style of i, j under one kind of TTI .

The driving style probability distributions of four drivers are

shown in Figs. 15-17.

Figs. 15-17 show examples of the normalized frequency

distributions of primitive driving patterns for four drivers.

Green indicates that the driver has a higher probability of

acting in the particular pattern, and dark blue indicates that

the driver has a lower probability (nearly equal to zero) of

driving in the pattern. For instance, when approaching the
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FIGURE 15. Driver’s driving Style Probability in LT(Long Time) pattern.

FIGURE 16. Driver’s driving Style Probability in NT(Normal Time) pattern.

FIGURE 17. Driver’s driving Style Probability in ST(Short Time) pattern.

intersection in the long-time pattern (Fig. 15), driver 1 and

driver 2 prefer to cross the intersection within the general

crossing velocity, while driver 3 and driver 4 prefer to cross

the intersection rapidly. Additionally, drivers 1, 2, 3 prefer

to cross the intersection with the aggressive acceleration

or gentle acceleration, which means these drivers have a

higher velocity when approaching closer to the intersection.

However, driver 4 likes to accelerate the vehicle to a very

high velocity, then slow down and cross the intersection.

When approaching the intersection in the short time pattern

(Fig. 17), drivers 1 and 2 prefer to stop in front of the

FIGURE 18. Acceleration of separated vehicle under different Driver
patterns.

intersection by aggressive deceleration (the separated vehicle

can only overtake these vehicles to cross the intersection),

while drivers 3 and 4 prefer to rapidly cross the intersection

with the aggressive acceleration or gentle acceleration (the

separated vehicle could both overtake and follow the human-

driven vehicle to cross the intersection). When approaching

the intersection in the normal time pattern (Fig. 16), our
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FIGURE 19. Acceleration range of the separated vehicle with the established driving style.

proposed approaches can also provide an intuitive explana-

tion for researchers.

Assuming that there is a platoon operating on the road

with seven vehicles in it, the vehicle length is 5 meters,

and the time headway is 1 s, the velocity of the platoon is

20m · s−1, the remaining green signal light duration is 5s,

and the position of the human-driven vehicle is parallel to

the fourth vehicle of the platoon. Fig. 18 shows the accel-

eration of separated vehicle (set each vehicle as the separated

vehicle) when approaching the intersection, interactive with

the four drivers whose driving style is described above. If all

vehicles have different accelerations, then the vehicle with

the minimum acceleration should be selected as the separated

vehicle (for instance, when interacting with driver 1, vehicle

#4 should be selected as the separated vehicle). Once more

than two vehicles have the same acceleration, for instance,

vehicle #1(leader vehicle), #2, #3, and #4 have the same

accelerations when interacting with driver 2, the average drag

coefficient is used to select the separated vehicle. For the

above instance, vehicle #1 should be selected as the separated

vehicle since it has the minimum platoon drag coefficient

according to Fig. 12.

The platoon should predict the driver’s driving style before

selecting the separated vehicles. The traffic parameters are set

as discussed in section 3; the acceleration range of the sepa-

rated vehicles(ah) with the obtained driving style(ad and vd )

is shown as Fig. 19, from which a comparison is made with

the situations where the driver’s driving style is unknown, and
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the acceleration variation range of the separated vehicles is

reduced by an average of 37%–72%.

VI. CONCLUSION

This paper provided a platoon vehicle separation approach

with unsupervised learning to learn the driving patterns of the

human-driven vehicle at intersections with SEC requirements

to select the optimized separation strategy. The Bayesian

nonparametric learning was employed to segment the drivers’

driving raw data into driving primitives, and selecting the

separated vehicle by considering the safety, efficiency, and

energy consumption. Experiment results from simulation

driving data indicate that the human driving patterns at inter-

sections could be decomposed into finite kinds of semanti-

cally interpretable groups. We investigated the distributions

of driving primitives of several drivers, which demonstrated

that the distribution of human driving patterns could be used

as an indicator to identify the types of approaching the

signalized intersection. Furthermore, the SEC requirements

could help to select the optimized separation strategy. The

platoon vehicle separation approach presented in this paper

is suitable to select the separated vehicle to guarantee all the

platoon vehicles cross the signalized intersection in the green

light duration. Although just another one lane is considered

because of the limitation of data, our proposed algorithm

could be easily extended to the multi-lane signalized inter-

sections, which will be part of our future research.

The Bayesian nonparametric method developed in this

paper is based on a mathematically rigorous framework,

which can be used to analyze other raw driving data such

as the following behavior and overtaking behavior data. The

SEC requirements considered the aspects of safety, effi-

ciency, and energy consumption, which can be used to select

the optimized vehicle operating strategies. The collected data

in this paper only consists of the two-lane one-way signal-

ized intersection. Hence, our future work will be articulated

around two axes. The first one is to extend the developed

method to the multi-lane intersection. In this way, more fea-

tures of vehicles presenting at intersections can be extracted,

thus allowing us to take further analysis of complex interac-

tions among road users. The second objective is to consider

other factors that could impact interactions between human

drivers, such as weather, traffic light, and intersection types.

Semantically understanding the drivers’ driving patterns at

signalized intersections could provide a set of recognizable

discrete states about complex dynamic systems, thereby help-

ing decision-making design to guarantee traffic efficiency;

SEC requirements could provide an essential criterion to

select the optimized strategies.
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