
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002 1317

Platune: A Tuning Framework for
System-on-a-Chip Platforms

Tony Givargis and Frank Vahid

Abstract—System-on-a-chip (SOC) platform manufacturers are
increasingly adding configurable features that provide power and
performance flexibility in order to increase a platform’s applica-
bility. This paper presents a framework, called Platune, for perfor-
mance and power tuning of one such SOC platform. Platune is used
to simulate an embedded application that is mapped onto the SOC
platform and output performance and power metrics for any con-
figuration of the SOC platform. Furthermore, Platune is used to
automatically explore the large configuration space of such an SOC
platform. The versatility, in terms of accuracy and speed of explo-
ration, of Platune is demonstrated experimentally using three large
benchmark examples. The power estimation techniques for pro-
cessors, caches, memories, buses, and peripherals combined with
the design space exploration algorithm deployed by Platune form
a methodology for design of tuning frameworks for parameterized
SOC platforms in general.

Index Terms—Design space exploration, low-power design, pa-
rameter tuning, platform-based design.

I. INTRODUCTION

T HE GROWING demand for portable embedded com-
puting devices is leading to new system-on-a-chip (SOC)

platforms intended for embedded systems. Such SOC platforms
must be general enough to be used across several different
applications, in order to be economically viable, leading to
recent attention to parameterized SOC platforms. Different
applications often have very different power and performance
requirements. Therefore, these parameterized SOC platforms
must be optimally configured to meet varied power and perfor-
mance requirements of a large class of applications.

A platform is a predesigned computing system, typically con-
sisting of a parameterized microprocessor [3], parameterized
memory hierarchy [1], parameterized interconnect buses [14],
and parameterized peripherals [9]. An intellectual property (IP)
platform comes in the form of a hardware description language.
An integrated circuit (IC) platform comes in the form of a chip.
An IC platform can be oriented toward prototyping or can be ori-
ented toward implementation in a final product. In recent years,
a number of commercial platforms have become available and
studied in the literature [12], [16], [18].

Manuscript received September 26, 2001; revised March 26, 2002. This work
was supported in part by the National Science Foundation under Grants CCR-
9811164 and CCR-9876006 and by a Design Automation Conference Graduate
Scholarship. This paper was recommended by Associate Editor R. Camposano.

T. Givargis is with Information and Computer Science, the Center for Em-
bedded Computer Systems, University of California, Irvine, CA 92697 USA
(e-mail: givargis@ics.uci.edu).

F. Vahid is with the Department of Computer Science and Engineering, Uni-
versity of California, Riverside, CA 92521 USA. He is also with the Center for
Embedded Computer Systems, University of California, Irvine, CA 92697 USA
(e-mail: vahid@cs.ucr.edu).

Digital Object Identifier 10.1109/TCAD.2002.804107

As a specific example, Motorola has announced a version of
an MCORE processor IC with a configurable cache [11]. The
MCORE cache is a four-way set-associative unified cache, in
which one or more of the ways can be disabled. In the past,
when power was not a key issue, there was not a strong reason
to disable ways, since this could only hurt performance. How-
ever, with power becoming a key issue, shutting down ways can
reduce power per cache access by reducing the number of power
costly tag comparisons per access and eliminating the power
necessary to drive the bit-lines and word-lines. If this reduction
is greater than the increase caused by more cache misses and
hence power costly accesses to the next level of memory, then
overall power is reduced.

Platform developers typically provide extensive software de-
velopment and debug environments for their platform users but
often leave the platform user on his/her own when it comes to
tuning. However, as more configurable features get added to
platforms, we argue that platform developers should also pro-
vide a tuning environment to assist the user in finding the best
configuration for his/her application and constraints. Platune
is one such tuning environment and the subject matter of this
paper.

The remainder of this paper is organized as follows. In
Section II, related work is introduced. In Section III, the
Platune framework is outlined and the underlying SOC plat-
form is described. In Section IV, the simulation models as
well as the power models used in Platune are described. In
Section V, the exploration techniques utilized by Platune are
described. In Section VI, experimental results are given. In
Section VII, concluding remarks are stated.

II. PREVIOUS WORK

There has been considerable effort in designing tools that
enable a designer to measure various performance metrics of
instruction-set processors and memory subsystems. We have
examinedWARTS, SimpleScalar, SimICS, SimOS, WATTCH,
SimplePower, Avalanche, and an approach based on theTOSCA
codesign framework. We are unaware of any framework/tools
for measuring the performance metrics of a complete parame-
terized SOC composed of peripherals in addition to the instruc-
tion-set processor and memory subsystem.

The Wisconsin Architectural Research Tool Set [7] (WARTS)
is a collection of tools for profiling and tracing programs and
analyzing program traces, mostly intended for cache and
memory hierarchy exploration. The collections of programs
included in WARTS areQPT, a profiler and tracing system,
CPROF, a cache performance profiler, andTycho/Dinerocache
simulators. Trace-driven simulation has the advantage of being

0278-0070/02$17.00 © 2002 IEEE

1318 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

fast and accurate for measuring certain performance metrics,
such as cache hit or miss rates, but is too coarse for measuring
other types of performance metrics, such as power and timing
behavior of processors as well as peripheral devices.

The SimpleScalar [4] toolset is a set of architecture simula-
tors. SimpleScalarsimulates a MIPS-like (actually, a superset
of the MIPS-IV instruction set) architecture at the instruction
level. It provides five different simulators that focus on dif-
ferent aspects of the architecture (i.e., high-to-low abstraction
level). At the highest abstraction level,Sim-Fastis a functional
simulator providing quick results without too much statistics
and without timing information. At the lower abstraction level,
Sim-Outorderis a detailed low-level simulator that simulates
the microarchitecture cycle by cycle. The SimpleScalar toolset
provides the basic simulation infrastructure that is necessary to
evaluate modern processor architectures and memory subsys-
tems as well as the effect of particular design implementations
(e.g., pipelining, branch prediction, etc.). SimpleScalar does not
support power analysis.

SimICS [10] is an instruction level simulator developed at the
Swedish Institute of Computer Science. The design objectives
of SimICS are to be fast and memory efficient, support complex
memory hierarchies, and simulate multiple processors (i.e., sim-
ulate interprocessor interrupts, message passing, and external
TLB invalidations). The statistics that are gathered by SimICS
are memory usage, frequency of important events, and instruc-
tion profiling. As with SimpleScalar, while these metrics can
be used to explore the memory hierarchy design space, the tool
does not provide power consumption estimates.

The SimOS [13] simulator is designed to enable the study
of uniprocessor and multiprocessor systems. The SimOS simu-
lator is capable of simulating the computer hardware at the right
amount of detail to run an entire operating system. The tool does
provide flexibility in the tradeoff between simulation speed and
the amount of detail and statistics that is collected. However,
power consumption is not directly modeled. Instead, the focus
of the simulator design has been to enable the simulation of priv-
ileged operating system software, as SimOS is intended to allow
a researcher to gain insight in the behavior of a processor system
given a realistic application workload.

WATTCH [2] is a system that extends the SimpleScalar
simulator for power analysis. Here, power analysis is done
at the architectural level and the simulation is built on top of
the Sim-Outorder simulator of the SimpleScalar toolset. The
WATTCH simulator provides a framework to analyze different
configurations, optimizations, and strategies to save power.
Since WATTCH is based on SimpleScalar, it focuses on the
processor and memory subsystem.

As with WATTCH, SimplePower [17] too is based on the
SimpleScalar simulator. SimplePower augments the Sim-
pleScalar simulator with power models in order to estimate the
processor core power consumption, memory subsystem power
consumption, bus power consumption, and I/O pad power con-
sumption. The SimplePower tool is intended to provide means
for optimizing power consumption of the circuits, architecture,
and the application software. However, this tool mainly focuses
on the processor, memory, and the bus subsystem.

Avalanche is a system-level power estimation framework
making use of a trace-based approach, which in turn is done
by WARTS, and deploying a mix of analytical models (for in-
struction cache, data cache, and main memory) and instruction
set simulators (ISS) [6]. The Avalanche framework optimizes
system parameters in order to minimize energy dissipation
of the overall system. Moreover, the tradeoff between system
performance and energy dissipation is also explored. This
framework focuses on the processor and memory subsystem.

An approach based on the TOSCA codesign framework is
proposed by [5]. Their approach performs register–transfer level
analysis of power for control-oriented embedded systems, im-
plemented into a single ASIC. The main goal has been to offer
a power-oriented codesign methodology, with particular em-
phasis on power metrics, to compare different design solutions
described at high abstraction levels. Unlike the other work pre-
sented here, their approach starts with the application specifica-
tion and seeks to derive a power optimal design by integrating
power estimation techniques into a codesign synthesis environ-
ment. Platune, on the other hand, assumes a fixed but parameter-
ized SOC platform and explores parameter configurations with
respect to a fixed application mapped onto the architecture.

Most of the tools outlined so far are designed for evaluating
research ideas pertaining to predominantly performance issues,
or tuning of design parameters and subsystems toward optimum
performance. Specifically, the focus has been geared toward the
memory subsystems. The later efforts have extended the ear-
lier efforts to account for power and system-level design explo-
ration as well and have included the bus power consumption to
the other metrics of interest. Platune extends such work further
by allowing for power and performance analysis of an entire
parameterized SOC platform, including the peripheral compo-
nents found on the SOC platform. Furthermore, while the ear-
lier work has focused on simulation of a user-selected config-
uration, Platune allows for automatic search and exploration of
Pareto-optimal configurations.

III. PLATUNE FRAMEWORK

A. Overview

Platune is an environment (i.e., framework or tool) for en-
abling an embedded system designer (i.e., user of the SOC plat-
form) to select appropriate architectural parameter values, for
a given application that is to be mapped on the parameterized
SOC platform, in order to meet performance and power goals.
This process is also referred to as platform tuning, architecture
optimization, parameter selection, and so on. We distinguish be-
tween anembedded system designer(e.g., builder of a digital
camera) and desktopcomputer architecture designer, which is
what most previous tools have targeted. Platune is closely tied
to a specific architecture, namely the architecture that is to be
tuned. This architecture is depicted in Fig. 1. Platune is com-
posed of the following two components.

Closely integrated simulation models for each of its SOC
components (e.g., processors, memories, interconnect buses,
and peripherals). These simulation models capture dynamic
information essential for computing power and performance
metrics.

GIVARGIS AND VAHID: PLATUNE: A TUNING FRAMEWORK FOR SYSTEM-ON-A-CHIP PLATFORMS 1319

Fig. 1. Parameterized SOC platform.

Power models for each of its SOC components. Each of
these power models must be parameterized according to the pa-
rameterization of the respective SOC component.

Platune is capable of performing the following tasks.

Compilation of a C program and linking of runtime sup-
port libraries in order to map an application to the SOC platform
prior to simulation or exploration.

Simulation for the purpose of generating a report on
power consumption and execution time given a particular
configuration of the SOC platform that is determined by the
designer.

Simulation for the purpose of generating a report on
power consumption and execution time given a range (i.e., a
subset) of configurations of the SOC platform that is deter-
mined by the designer.

Exploration (automatic) of all possible configurations of
the SOC platform for the purpose of generating a report on
the possible power and execution time tradeoffs available to a
designer.

Platune is designed with the following implementation goals
in mind.

To compute power and execution time metrics that are
of high enough accuracy to distinguish inferior configurations
from superior ones. The goal isnot to compute metrics that are
accurate in an absolute sense but rather in a configuration-to-
configurationrelativesense.

To simulate the SOC platform at the highest possible ab-
straction level for rapid simulation and exploration.

To explore the configuration space in an efficient manner
since the configuration space is exponential in size.

To avoid simulation whenever possible and use informa-
tion gathered in previous simulation runs, in order to compute
power and execution time for new configurations.

To provide a single tool that is composed of closely cou-
pled (i.e., integrated) components that interoperate with each
other efficiently (i.e., shared memory instead of trace/toggle
files, etc.) in order to achieve high-speed simulation and
exploration.

In the next section, we will introduce the parameterized SOC
platform and explain various tunable parameters.

B. Parameterized SOC Platform

The underlying parameterized SOC platform that Platune is
based on is depicted in Fig. 1. The SOC platform works as
follows. A MIPS R3000 processor, instruction cache, and data
cache communicate over two processor-local buses, namely the
CPU-instruction-cache bus and the CPU-data-cache bus. The
on-chip memory is connected to the two caches via another bus,
namely the cache-memory bus. The universal asynchronous re-
ceiver and transmitter (UART) peripheral and the discrete co-
sine transform (DCT) CODEC peripheral are connected to the
peripheral bus. The peripheral bus is in turn bridged over to the
CPU-data cache. The various components of this platform are
configurable. Likewise, the Platune framework allows for modi-
fying these parameters in its representation of the SOC platform.

The MIPS can be set to run at 32 different voltage levels (1.0
to 4.2 V in increments of 0.1 V) and thus 32 different frequen-
cies. Each of the two caches are five-way set-associative (1, 2, 4,
8, and 16), there are five line-sizes settings (4, 8, 16, 32, and 64
byte), and ten total cache sizes (128 to 64 Kb in power of 2 in-
crements). The four interconnect buses (CPU-instruction-cache,
CPU-data-cache, cache-memory, and peripheral bus) are each
in turn composed of a data bus and an address bus. Each one
of the buses can be set to one of four different widths (4, 8, 16,
and 32 wires) and three different encodings (binary, bus-invert,
and gray). The UART peripheral’s transmitter as well as the re-
ceiver buffer sizes can be set to one of four values (2, 4, 8, and
16 bytes). The DCT CODEC peripheral’s pixel resolution can
be set to one of two widths (16 or 24 bits).

In summary, there are a total of 26 parameters and a config-
uration space in excess of 10configurations. In the following
sections, the simulation model and power models of Platune will
be described in detail.

IV. SIMULATION AND POWER MODELS

Platune is composed of a collection of closely coupled and
integrated simulators, each corresponding to the various com-
ponent (CPU, cache, interconnect buses, and peripherals) of its
SOC platform. In addition to performing a functional simula-
tion, each simulator 4pis designed to gather activity information
that, combined with power models, is used to compute the dy-
namic power consumption of the SOC platform.

The simulator and power models of each of the components
will be described in the subsequent sections. We first give the
general CMOS power model and technology related parameters
that lie beneath all power models described in this paper. Dy-
namic power for a switching element is given by the following:

In this equation, is the average capacitance of the switching
element. The term (a number between 0 and 1.0) is a measure
of switching activity of the element. The term is the clock
frequency applied to the switching element. The termis the
supply voltage applied to the switching element. The term,
clock frequency, is a (near linear) function of the supply voltage

, as shown in the following [8]:

1320 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

TABLE I
TECHNOLOGY PARAMETERS

The term is the threshold voltage of the underlying
CMOS technology. The term is the maximum supply
voltage that can be applied to the SOC platform. The term

is the maximum allowable clock frequency of the SOC
platform at maximum supply voltage, i.e., .

Other technology related parameters include (the
width/length of a transistor), (the unit length of the
shortest interconnect wire), (the average capacitance of a
single transistor), (the average capacitance of the shortest
interconnect wire, i.e., capacitance per unit length), and
(the approximate length of the on chip interconnects buses).
Typical values for all of the technology parameters are given
in Table I.

In general, each simulator within Platune collects and com-
putes the switching activity, i.e., theterm, during a simulation
run. Subsequent to simulation, power consumption of each com-
ponent (which in turn may be composed of subcomponents) is
computed and ultimately summed up to obtain the total power
consumption. It must be noted that power consumption and (or)
execution time of the SOC platform for pockets of configura-
tions is often obtainable without the need for repeated simu-
lation. As an example, a single simulation can be used to ob-
tain performance metrics for all configurations where the supply
voltage is the only varying parameter. This is as a result of our
power models analytically linking voltage, power, and clock fre-
quency. Platune is optimized to avoid simulation whenever pos-
sible by reusing simulation results of previous runs. In the next
sections, we examine each component individually.

A. Processor

The processor simulator maintains detailed statistics on its
internal activity, e.g., fetches, stalls, instruction execution fre-
quency, register file access, floating-point activity, etc. Such sta-
tistics is used in a post simulation analysis to compute power
and performance metrics. The technique used here is an exten-
sion to previously given instruction-based approaches [15]. The
power consumed by the processor core (excluding caches, in-
terconnect buses and peripherals) can be broken down into the
following components

The summations are over all instructions that where executed by
the processor (in the case if) and register file access
(in the case of) during the simulation run. The term

is the simulated time (in seconds) of the application running on
the SOC platform. The term is the average energy
consumption of theth instruction that is executed during simu-
lation. The is the average energy consumption of theth
register file access. The is assumed to be constant for
any read or write accessand is derived from gate-level simula-
tion and power analysis and normalized for a supply voltage of
one Volt. The term is given in the following equation

is the previously executed instruction.

The function is derived from gate-level simulation and
power analysis of the CPU and assumed to be a constant two-di-
mensional lookup table that is normalized for a supply voltage
of one Volt. Both and are integers in the range of ,
where is the number of instructions supported by the pro-
cessor. Note that it’s important to consider inter-instruction de-
pendencies as the currently executing instruction can have an
impact on the energy consumption of the next instruction. For
example, a multiply successor to a branch instruction may re-
quire more energy to compute!

The time complexity of the processor power estimation ap-
proach is linear with respect to the length of the application soft-
ware running on the target processor.

B. Caches

The cache simulators of Platune are fully parameterized mod-
ules that operate on a stream of memory references that is gen-
erated by the processor simulator during simulation. In addi-
tion to the standard cache metrics, such as number of misses
used for execution time evaluation, the Platune cache simulators
maintain additional activity statistics, e.g., number of tag com-
parisons, word-line activity, and bit-line activity, that is used to
compute the power consumption. The power model for caches
is defined as follows

The summation is over all cache accesses performed during a
simulation run. The term is the simulated time (in seconds) of
the application running on the SOC platform. The term
is the average energy consumption of the storage, tag, and house
keeping (valid and dirty) transistors during a single cache ac-
cess, i.e., a single cache line (block) read/write operation. This
value is a function of the cache parameters(line size), (as-
sociativity), (total size), and supply voltage as shown

The term is the total number of transistors that are in-
voked during each cache access. The factor 2 is based on the
assumption that a one-bit memory cell in the cache is composed
of a pair of transistors. In the energy equation, the 1/2 term and
the term follow from the power equation given earlier. The

GIVARGIS AND VAHID: PLATUNE: A TUNING FRAMEWORK FOR SYSTEM-ON-A-CHIP PLATFORMS 1321

term is a measure of the average switching ca-
pacitance. The 1/4 term is a measure of switching activity of
the transistor. It is assumed that, on the average, half of the ac-
cesses to the cache cause half of the bits in question to switch.
This metric can be improved by keeping more detailed simula-
tion data at the expense of slowing down the simulation time.
The random data assumption, however, has been shown to work
very well [14]. Note that the clock frequency term is left out
since we are computing the energy and not the power.

The term is the average energy consumption of the
word-lines that get activated during a single cache access. This
value is a function of the physical width of the cache, which is
dependent on the parameters(line size), (associativity), and

(total size), as well as the supply voltageas shown

The term is the width of a word-line. Here, we as-
sume that all transistors in a row are laid out side-by-side with
the word-lines routed straight through them. The factor 2 is
based on the assumption that a one-bit memory cell in the cache
is composed of a pair of transistors. This is certainly not an exact
assumption, but a reasonable one that allows us to compare two
candidate cache architectures in a relative way. The
term is the average switching capacitance of a word-line. The

is based on the power equation given earlier. The
switching activity parameter is one and hence removed from the
equation. The clock frequency term is left out since we are com-
puting the energy and not the power.

The term is the average energy consumption of the
bit-lines that get activated during a single cache access. This
value is a function of the physical height of the cache, which is in
turn dependent on the parameters(line size), (associativity),
and (total size), as well as the supply voltageas shown

The term is a measure of the height of a bit-line.
Here, as with the word-lines, we assume that all transistors
in a column are laid out side-by-side with the bit-lines routed
straight through them. The term is the average
switching capacitance of a bit-line. The is based on the
power equation given earlier. The switching activity parameter
is since that many bit-lines are energized during each
cache access. The factor 2 is based on the assumption that
a one-bit memory cell in the cache is composed of a pair of
transistors. The clock frequency term is left out since we are
computing the energy and not the power.

The term is the average energy consumption of the
index decode logic. This value is a function of the index range of
the cache, which is dependent on the parameters(line size),

(associativity), and (total size), as well as the supply voltage
as shown

-

The term is the index range of the cache. The term
is an estimate of the number of transistors required

to implement a decoding unit that can be used to index into
the cache. The term is based on the power equation
given earlier. The switching activity is assumed to be half of the
transistors making up the decode logic switching per access.

It must be noted that the cache structure that is modeled here
is very generic and simple in design. The power models given
here are intended to for comparing relative quality of caches
with different parameters but still identical in structure.

The time complexity of the cache power estimation approach
is linear with respect to the length of the application software
running on the target processor for the first configuration and
constant for subsequent configurations. For the first configu-
ration, the application software is simulated on the target pro-
cessor to obtain the necessary statistics. For subsequent config-
urations, the statistics are used along with the above equations
and new parameter settings. Certain system configurations may
require a re-simulation of the applications software.

C. Memory

The memory simulator of Platune operates on a stream of
memory references that are generated by the processor, cache,
and bus simulators during simulation. The power models for
memory component works as follows

The summation is over all memory accesses performed during
a simulation run. The term is the simulated time (in seconds)
of the application running on the SOC platform.

The on-chip memory power model is simply a per access
energy lookup based on weather the access is a first time
memory read/write operation (e.g., first read/write from a page
in burst mode) or a subsequent read/write operation from a
page in burst mode. Note that the access type of a reference
(first or next) is accounted for during the simulation run. The
term - (the energy of a first read/write operation)
is derived from gate-level simulation and power analysis of
the memory and assumed to be a constant normalized for a
supply voltage of one Volt. Likewise, the term
(the energy of a subsequent read/write operation from a page
in burst mode) is derived from gate-level simulation and
power analysis of the memory and assumed to be a constant
normalized for a supply voltage of one Volt.

The time complexity of the memory power estimation ap-
proach is linear with respect to the length of the application soft-
ware running on the target processor for the first configuration

1322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

and constant, for subsequent configurations. For the first con-
figuration, the application software is simulated on the target
processor to obtain the necessary statistics. For subsequent con-
figurations, the statistics are used along with the above equations
and new parameter settings. Certain system configurations may
require a re-simulation of the applications software.

D. Interconnect Buses

Like the previous simulators, the bus simulators in Platune
also operate on a stream of data and memory references that are
generated by the processor, cache, and memory modules and
accumulates bus wire bit toggle statistics that are used for sub-
sequent power consumption computation. Without lack of gen-
erality, and for the following discussion, we assume that a bus
is either an address bus or data bus of one of the four buses with
the term , the bit switching activity for the parameter

(width) and (encoding), computed during simulation. The
following will compute the power consumption of the bus

The term is the simulated time (in seconds) of the application
running on the SOC platform. The value is based on the
power equation given earlier. To compute , we consider the
relative spacing of the bus, i.e., the fewer the wires, the larger
the spacing between adjacent bus wires. In our assumption, the
routing area devoted to interconnect buses is constant

Here, the constant 1 factor accounts for the wire capacitance re-
sulting from coupling to the ground and substrate planes. The

factor accounts for the coupling capacitance to the
neighboring wire. Note that the bus width is normalized such
that at max width (32 wires) the capacitance ratio due to cou-
pling to ground/substrate equals that due to coupling to neigh-
boring wires.

The time complexity of the bus power estimation approach
is linear with respect to the length of the application software
running on the target processor for the first configuration and
constant, for subsequent configurations. For the first configu-
ration, the software is simulated on the target processor to ob-
tain the necessary statistics. For subsequent configurations, the
statistics are used along with the above equations and new pa-
rameter settings. Certain system configurations may require a
re-simulation of the applications software.

E. Peripherals

Much work has concentrated on system-level modeling of
microprocessors, caches, memories, and buses. But for gen-
eral-purpose peripherals, such as the UART and DCT CODEC,
there has been little previous work established. In Platune, pe-
ripherals are viewed as executing a sequence ofinstructions.
Classically, an instruction represents an atomic action available
to a microprocessor programmer. We use the terminstruction
more generally as an action that, collectively with other ac-
tions, describes the range of possible behaviors of a peripheral
core. We have extended the instruction-level power modeling

approach that was previously used for microprocessor cores, for
use with peripheral cores. In building the power models for our
peripherals we have performed a number of steps that are de-
scribed in what follows.

The first step is selecting instructions for our peripherals. For
the UART and DCT CODEC, we have first broken the func-
tionality into a set of instructions. These instructions have the
property that they collectively cover the entire functionality of
the particular core. As with the instructions of an instruction-set
processor, each instruction operates on some input data and pro-
duces some output data. For example, for the UART, one might
select the following instructions:Reset, Enable_tx, Enable_rx,
Send, andReceive. SendandReceivemay operate on bytes of
data.

The second step is instruction data-dependency modeling of
our peripheral cores. For each instruction, we have determined
how dependent that instruction’s power consumption is on that
instruction’s input data. Let us define an instruction’spower-de-
pendency characteristicas one of:dependentdirectly on its
input data, dependent on astatisticalcharacterization of its input
data (e.g., the density of 1s in a vector of bits), orindependent
of its input data. For example, for the UART core, we ran ex-
periments that provided different data to each instruction. Then,
we determined that the power-dependency characteristic for all
instructions was “independent.” In other words, theSendin-
struction consumed approximately a constant amount of power
regardless of the data being sent; likewise for theReceiveand
other instructions.

The next step is core power-mode modeling. Very unlike
microprocessors, certain instructions executed on a peripheral
core can drastically change the power consumption of suc-
ceeding instructions. In particular, certain instructions change
the mode of the peripheral core. This concept of mode is
very different from that of measuring interinstruction power
dependencies (e.g., a load following a store may consume more
power than a load following an add). To account for this, we
determined the set of modes of the two peripheral cores in
question that caused the cores to consume significantly more
or less power per each execution of their instructions. With our
UART core, we found four power modes:Idle, Tx_enabled,
Rx_enabled, andTx_rx_enabled.

The final step is gate-level power evaluation. We use gate-
level simulation to obtain per-instruction power data and cap-
ture this information in lookup tables. This procedure involves a
methodical way of creating a set of testbench models that, when
simulated at gate-level, capture the power consumption of each
instruction, in each particular mode, with each particular pa-
rameter setting. As an example, Table II gives the lookup table
for the UART peripheral. The rows correspond to instructions
while columns correspond to the UART’s buffer size parameter
values. The entries are repeated for each one of the four modes.

The time complexity of our peripheral power estimation ap-
proach is linear with respect to the length of the application soft-
ware running on the target processor for the first configuration
and constant, for subsequent configurations. More specifically,
for the first configuration examined, the time complexity of the
estimation approach is a function of how frequently a particular
peripheral device is accessed by the application software.

GIVARGIS AND VAHID: PLATUNE: A TUNING FRAMEWORK FOR SYSTEM-ON-A-CHIP PLATFORMS 1323

TABLE II
UART’S POWER LOOKUP TABLE

V. EXPLORATION

So far, we have described the simulation model and power
analysis techniques used in Platune. In this section, we define
the exploration problem and outline the techniques used for per-
forming it automatically. Our SOC platform is composed of nu-
merous parameters. We enumerate each of these parameters as

, , . Each of these parameters can be assigned a
value from a finite set of values, namely its domain. A complete
assignment of values to all the parameters is aconfiguration.
The problem is to efficiently, compute thePareto-optimalcon-
figurations, with respect to power and performance, for a fixed
application executing on the SOC platform. In our problem, a
configuration is Pareto-optimal if no other configuration
has better power as well as performance than .

A. An Exhaustive Exploration Algorithm

We start by outlining an exhaustive algorithm to solve the ex-
ploration problem. In this exhaustive algorithm, first, power and
performance are evaluated for all configurations. Then, config-
urations are sorted by nonincreasing execution time (i.e., higher
performance). Last, in the sorted order, a walk through the space
is performed while all configurations that result in power con-
sumption above the minimum seen thus far are eliminated. The
remaining configurations are Pareto-optimal. The algorithm is
given below.

Al gor i t hm 1:
list compute_Pareto_configurations(space

) {
list all, Pareto;
float min_power 1e100; /* infinity */
for each configuration in space {

simulate_SOC();
all.push();

}
all.sort(/* key is execution time */);
while(!all.empty()) {

all.pop();
if(.power min_power) {

min_power .power;
Pareto.push();

}
}
return Pareto;

}

The problem with this approach is that the configuration
space is likely to be very large, making the approach imprac-
tical in many cases. The exhaustive approach is practical when
applied to a small subset of the solution space consisting of
one or two varying parameters while all others held constant.
We have found that many parameters in an SOC platform have
little interdependency among each other. Two parameters are
interdependentif changing the value of one of them impacts the
optimal parameter value of the other. For example, it may be
that the set-associativity and line size parameters of the instruc-
tion cache are interdependent. However, the set-associativity
parameter of the instruction cache and the line size parameter
of the data cache are not interdependent. An efficient algorithm
can take advantage of such interdependencies of parameters (or
lack of it) to prune the configuration space.

B. Parameter Interdependency Model

We have used a graph model to capture the parameter inter-
dependencies. Such a graph is constructed with its nodes rep-
resenting parameters and edges representing interdependencies
between parameters. Generally, a path from a nodeto a node

indicates that the Pareto-optimal configurations ofshould
be calculated once the Pareto-optimal configurations of all the
nodes from to , residing on the path, are calculated, in that
order. During that calculation all other parameters not on the
path can be temporally fixed to some arbitrary value. A path
from a node to a node and back to , which forms a cycle,
indicates that the Pareto-optimal configurations of all the param-
eters on the cycle need to be calculated simultaneously. During
that calculation all other parameters not on the path can be tem-
porally fixed to some arbitrary value. The Pareto-optimal con-
figurations of an isolated node can be computed by temporally
setting all other parameters to some arbitrary value. The depen-
dency graph used by Platune is depicted in Fig. 2. We assume
that the designer of the SOC platform determines the interde-
pendencies among the parameters. Often these interdependen-
cies follow from the structure of the SOC platform. For example,
given an optimal configuration of the instruction cache, one can
tune the data cache parameters without affecting the optimality
of the instruction cache, since an optimally performing instruc-
tion cache will maximize instruction cache hit rate and no data
cache configuration can have an effect on the instruction cache.
In our graph, there are no edges going from, , or to ,

, or , stating that the instruction cache and data cache are not
interdependent. If the designer cannot establish the interdepen-
dency of two or more parameters, than he or she should conser-
vatively assume that they are interdependent. In future work, we
plan to automate this dependency determination.

C. An Efficient Exploration Algorithm

Given an interdependency graph, our algorithm works as
follows.

1324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 2. Target SOC interdependency graph.

Al gor i t hm 2:
list compute_Pareto_configurations_2

(graph) {
list sub_graphs, Pareto;

sub_graphs
strongly_connected_components();
// part 1

for each subgraph in sub_graphs {
Pareto

compute_Pareto_configurations(.space);
eliminate configurations. in .space

not in Pareto;
}
// part 2
while(!sub_graphs.size()! 1) {

sub_graphs.pop_front();
sub_graphs.pop_front();

union ;
sub_graphs.push_back();
Pareto

compute_Pareto_configurations(.space);
eliminate configurations. in .space

not in Pareto;
}
return Pareto;

}

The algorithm can be broken down into two phases. The first
phase performs a local search for Pareto-optimal configurations.
The second phase iteratively expands the local search to dis-
cover global Pareto-optimal configurations.

The first phase of our algorithm performs clustering of in-
terdependent nodes in the graph. This is the same problem as
finding strongly connected components of a graph (e.g., a depth

first search can be used to accomplish this). In addition, if two
clusters are connected (but not strongly), then they are topolog-
ically ordered. Here, each cluster represents a disjoint subspace
of the overall configuration space. We use our exhaustive al-
gorithm for calculating Pareto-optimal configurations for each
of the clusters. Then, we restrict possible configurations of that
cluster to the Pareto-optimal configurations only. This pruning
is justified since if a configuration is not Pareto-optimal within
a cluster, it cannot be part of a Pareto-optimal configuration for
the entire configuration space. Conversely, if a configuration is
Pareto-optimal within a cluster, it may or may not be Pareto-op-
timal given the entire configuration space, and thus must re-
main. Our exhaustive approach applied to clusters is usually fea-
sible since these clusters represent only a small subspace of the
total configuration space. Nevertheless, heuristics such as prob-
abilistic exploration techniques can be used to search within a
cluster when the exhaustive method is too time consuming.

The second phase of our algorithm combines pairs of clus-
ters into a single cluster and computes Pareto-optimal configura-
tions within it. Then, it limits the space of this new cluster to the
Pareto-optimal configurations only. This procedure is repeated
until all the clusters have been merged and a single cluster re-
mains. The Pareto-optimal configurations within this last cluster
represent Pareto-optimal configurations of the entire configura-
tion space.

The worse case time complexity of the algorithm is bounded
by , where denotes the number of initial
strongly connected components (i.e., clusters) computed in part
1, denotes the number of parameters, anddenotes the
upper bound on the number of values each parameter can re-
ceive. Note that for our target architecture, depicted in Fig. 1,

, , and . Here, the factor
bounds the running time of the exhaustive computations of the
Pareto-optimal points, while bounds the number of times
the first/second part of the algorithm iterate. In the worst case,1

GIVARGIS AND VAHID: PLATUNE: A TUNING FRAMEWORK FOR SYSTEM-ON-A-CHIP PLATFORMS 1325

TABLE III
EXPERIMENTAL RESULTS: ESTIMATION ACCURACY AND SIMULATION SPEED

when (all parameters are interdependent) the run-
ning time is exponential, namely . In the best case, when

(all parameters are independent) the running time is
linear, namely . For most practical cases the running time will
be closer to the best case since the factor will decrease
very rapidly as increases.

VI. EXPERIMENTS

In this section, we intend to experimentally demonstrate
three qualities of Platune, namely, accuracy of power and
performance estimates, speed of simulation, and speed of ex-
ploration. In all our experiments, Platune is used to explore the
configuration space of some application software executing on
the hardware architecture depicted in Fig. 1. The architecture
and its parameters are described in Section III.

To demonstrate the accuracy of power estimates generated by
Platune, we compared the power breakdown of the various SOC
components generated by Platune (e.g., processor, memory,
buses, and peripherals) to gate-level power estimations. Since
Platune is a cycle accurate simulator, the performance (i.e.,
execution time) statistics reported are exact in terms of the
number of cycles. For this experiment, we used thePowerStone
[11] jpeg benchmark, an implementation of the JPEG image
decompression standard that is roughly 620 lines of C code. The
inverse DCT (IDCT) function of this algorithm was mapped
to the DCT CODEC peripheral while Huffman decoding and
dequantization was mapped to the MIPS processor of our
parameterized SOC platform. The results are given in Table III.
Here, only two configurations of the SOC platform are shown.
However, in the table, the average accuracy error is computed
by looking at 48 different configurations of the SOC platform.
In the first configuration, the instruction and data caches are set
to 1024 byte, direct mapped, and 4 byte/line, and the CODEC
is configured to perform 24-bit IDCT computations. In the
second configuration, the instruction and data caches are set to
4096 bytes, two-way set-associative, and 4 byte/line, and the
CODEC is configured to perform 12-bit IDCT computations.
In all, we examined 48 random configurations and computed
the average power estimation error. The average error for the
total SOC power consumption was 8%.

1Our analysis only holds for the worse case because on the average, clusters
will not always receive an equal number of parameters, thus the algorithm will
be more accurately bounded byO(K �M).

Fig. 3. Simulation speed of Platune and gate-level simulation.

TABLE IV
EXPERIMENTAL RESULTS: DESIGN SPACE EXPLORATION

To demonstrate the simulation speed, we compared the time
taken to simulate 48 configurations of thejpegexample running
on Platune with the time taken performing gate-level simulation.
The results are shown in Fig. 3. On the average, Platune required
23 s, while gate-level simulation required 47 490 s (over 13 h)
per configuration. Platune is over 2000 times faster than gate-
level simulation. The experiments ran on a machine with dual
500-MHz Sun Ultra Spark II processors.

To demonstrate the exploration speed of Platune, in addi-
tion to jpeg we used two other PowerStone benchmark appli-
cations, namelyg3fax, a group three fax decoder (single level
image decompression) at roughly 652 lines of C code, andv42,
a modem encoding/decoding algorithm at roughly 743 lines of
C code. The results are given in Table IV. For thejpegexample,
a total of 18 611 configurations where examined, which took
about 3 days. Of those, 157 were Pareto-optimal with respect to
power and performance. For the g3fax example, a total of 14 350
configurations where examined, which took about 1.6 days. Of
those, 134 were Pareto-optimal with respect to power and per-
formance. For thev42 example, a total of 15 731 configura-
tions where examined, which took about 1.7 days. Of those, 133
were Pareto-optimal with respect to power and performance.
The power and performance tradeoff are shown in Fig. 4. We
repeated our experiments for the remaining PowerStone bench-
marks with similar conclusion. We discovered that the discon-
tinuities in the plots occurred when the size, line or set-asso-
ciativity of the caches crossed the working set boundary of the
particular application that was being executed. In general, cache
parameters unlike others (e.g., processor voltage setting) do not

1326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 4. Pareto-optimal set with respect to power and performance.

affect power and performance metrics monotonically. We note
that the average of 1 to 3 days taken to perform the exploration
is reasonable when considering that tens of thousands of design
alternatives are examined and the optimal choices are discov-
ered. Currently, we are investigating heuristics to speedup such
exploration even further.

We have demonstrated that Platune can achieve overall accu-
racy of 8% when compared to gate-level power estimates. We
have experimentally shown that Platune can compute power and
performance metrics over 2000 times faster than gate-level sim-
ulation. For three large examples, the exploration techniques

used by Platune discovered the Pareto-optimal set by exten-
sively pruning the design space of 10configurations.

VII. CONCLUSION

We have given an overview of the Platune parameterized SOC
simulation and exploration framework. Platune is a tool to aid
the system designer in selecting appropriate architectural pa-
rameter values, for a given application that is to be mapped
on the parameterized SOC platform, in order to meet perfor-
mance and power goals. We have shown that Platune is accu-
rate in estimating power and performance metrics. Moreover,
the exploration techniques used by Platune, based on param-
eter interdependency models, can discover the Pareto-optimal
configurations (with respect to power and performance) by ex-
tensively pruning the design space of 10configurations. The
search process for three large applications took of the order of
1–3 days. Our future work focuses on reducing this time down
to hours using a combination of heuristics and parameter in-
terdependency models. The techniques and algorithms used by
Platune can be applied to tuning platforms targeted toward any
parameterized SOC platform.

REFERENCES

[1] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, “Memory hierarchy reconfiguration for energy and per-
formance in general-purpose processor architectures,” inProc. Annu.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for ar-
chitectural-level power analysis and optimizations,” inProc. Annu. Int.
Symp. Computer Architecture, June 2000.

[3] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dy-
namic voltage scaled microprocessor system,” inIEEE Int. Solid-State
Circuits Conf., Nov. 2000.

[4] D. Burger and T. M. Austin, “The SimpleScalar tool set, Version 2.0,”
Univ. Wisconsin-Madison, Computer Sciences Dept., Tech. Rep. 1342,
June 1997.

[5] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano, “Power estimation
of embedded systems: A hardware/software codesign approach,”IEEE
Trans. VLSI Syst., vol. 6, June 1998.

[6] Y. Li and J. Henkel, “A framework for estimating and minimizing energy
dissipation of embedded HW/SW systems,” inProc. Design Automation
Conf., June 1998.

[7] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A. Wood, “Wis-
consin architectural research tool set,”Computer Architecture News, vol.
21, no. 4, Sept. 1993.

[8] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line scheduling of
hard real-time tasks on variable voltage processor,” inProc. Int. Conf.
Computer-Aided Design, Nov. 1998.

[9] J. Lahti, “A parameterized Reed–Solomon CODEC for ASIC implemen-
tation of forward error correction functions,” inProc. NORCHIP Conf.,
Nov. 1999.

[10] P. Magnusson and B. Werner, “Efficient memory simulation in SimICS,”
in Proc. Simulation Symp., Apr. 1995.

[11] A. Malik, B. Moyer, and D. Cermak, “A lower power unified cache ar-
chitecture providing power and performance flexibility,” inProc. Int.
Symp. Low Power Electronics and Design, June 2000.

[12] S. Ortiz, “New chips move networking onto silicon,”IEEE Comput.,
Feb. 1999.

[13] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete
computer system simulation: The SimOS approach,”IEEE Parallel Dis-
tributed Technol.: Systems Applicat., vol. 3, Winter 1995.

[14] M. R. Stan and W. P. Burleson, “Bus-invert coding for low power I/O,”
IEEE Trans. VLSI Syst., Mar. 1995.

[15] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded soft-
ware: A first step toward software power minimization,”IEEE Trans.
VLSI Syst., vol. 2, pp. 437–445, Dec. 1994.

GIVARGIS AND VAHID: PLATUNE: A TUNING FRAMEWORK FOR SYSTEM-ON-A-CHIP PLATFORMS 1327

[16] J. van Meerbergen, A. Timmer, F. Leijten, and M. S. Harmsze, “Experi-
ences with system-level design for consumer IC’s.,”IEEE Trans. VLSI
Syst., Feb. 1998.

[17] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,
“Energy-driven integrated hardware–software optimizations using Sim-
plePower,” inProc. Int. Symp. Computer Architecture, June 2000.

[18] “Velocity product information,” VLSI Technology, Inc.

Tony Givargis received the B.S. and Ph.D. degrees in
computer science from the University of California,
Riverside, in 1987 and in 2001, respectively.

He is currently an Assistant Professor in the
Department of Information and Computer Science
at the University of California, Irvine. He is also a
member of the Center for Embedded Computer Sys-
tems at UC Irvine. He is a coauthor of the textbook
Embedded System Design(New York: Wiley, 2002).
His research interests include platform-based system
design, real time resource management of embedded

computing systems, and design space exploration.
Dr. Givargis was a GAANN (Graduate Assistance in the Area of National

Need) Fellow in 2001 and received the department’s best Thesis Award.

Frank Vahid received the B.S. degree in computer
engineering from the University of Illinois, in 1988,
and the M.S. and Ph.D. degrees from the University
of California (UC), Irvine, in 1990 and 1994,
respectively.

He is currently an Associate Professor in the De-
partment of Computer Science and Engineering at the
University of California, Riverside. He is also a fac-
ulty member at the Center for Embedded Computer
Systems at UC Irvine. He is coauthor of the textbooks
Embedded System Design(New York: Wiley, 2002)

and Specification and Design of Embedded Systems(Englewood Cliffs, NJ:
Prentice Hall 1994). His current research interests include architectures and de-
sign methods for low-power embedded systems, with an emphasis on tuning
system-on-a-chip platforms to their executing programs.

Dr. Vahid was an SRC Fellow, in 1994, and he received the Outstanding
Teacher of the College of Engineering award, in 1997. He was program and
general chair for the IEEE/ACM International Symposium on System Synthesis
in 1996 and 1997, respectively, and for the IEEE/ACM International Workshop
on Hardware/Software Codesign in 1999 and 2000. He received the best paper
award from IEEE TRANSACTIONS ONVLSI SYSTEMS in 2000.

