
 

 

 University of Groningen

Plausible Deniability As a Notion of Privacy
Monshizadeh, Nima; Tabuada, Paulo

Published in:
Proceedings of the Conference on Decision and Control 2019

DOI:
10.1109/CDC40024.2019.9030201

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Monshizadeh, N., & Tabuada, P. (2019). Plausible Deniability As a Notion of Privacy. In Proceedings of the
Conference on Decision and Control 2019 (pp. 1710-1715). [9030201] (Proceedings of the IEEE
Conference on Decision and Control; Vol. 2019-December). IEEE.
https://doi.org/10.1109/CDC40024.2019.9030201

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 09-08-2022

https://doi.org/10.1109/CDC40024.2019.9030201
https://research.rug.nl/en/publications/df456073-536a-41b3-bfdc-8108a34965e3
https://doi.org/10.1109/CDC40024.2019.9030201


Plausible deniability as a notion of privacy

Nima Monshizadeh and Paulo Tabuada

Abstract— This work is motivated by privacy concerns as
a result of the growing rate of information exchange among
components of complex cyber-physical systems, agents in a
network, or actuators/sensors of a process. We propose a
deterministic notion of privacy for a dynamical system, and
completely characterize it for linear time-invariant dynamics.
The proposed notion relies on a “plausible deniability” princi-
ple, which implies that a curious party will always be in doubt
about the actual value of private variables of the system. In
case privacy is guaranteed, we propose analytical metrics to
assess the degree of privacy or privacy margin of the system.
The size of the latter depends on the amount and structure
of the information on the system which can be accessed by a
curious party. We study the proposed notions and metrics for
a class of distributed averaging algorithms.

I. INTRODUCTION

Recent advances in technology, internet of things, and big

data, have led to increasing concerns about privacy. Modern

complex systems include several components interacting

with each other to achieve a certain goal. This is often

accomplished by exchanging data through communication

networks in order to perform certain tasks. A case in point

are networked control systems where sensors, controller,

and actuators are not co-located and need to exchange

messages to close the loop. Our digital society is tantamount

to extensive data transfer among users. The cornerstone of

all these cases is exchange of information, which in turn

raises issues on the privacy of the individuals or participating

agents.

One approach to privacy relies on data encryption tech-

niques [1], including homomorphic encryption [2], [3], data

obfuscation [4], and multi-party computation schemes [5].

Typical challenges in those schemes are the large compu-

tational overhead and vulnerability during the public key

distribution. Another related approach is based on algebraic

transformations, where the original problem is mapped into

an equivalent problem in which the private data is hidden,

see [6], [7], in the context of linear programming, and [8] in

dynamical systems.

A different class of methods to enhance privacy stems

from data perturbations. The most popular tool in this

category is differential privacy [9], [10], which serves as

the basis of many of the results reported in the literature,

see e.g. [11]–[16]. In most cases, this amounts to adding

noise with appropriate statistical properties to the process

under investigation. Consequently, the ability of a curious
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party to estimate the private variables will be limited to a

predetermined precision, leading to a compromise between

privacy and performance.

Inserting stochastic time-varying parameters in the control

system has been pursued in [17]. Among other relevant

methods, mostly tailored for averaging algorithms, are [18],

[19], where the communication weights are appropriately

synthesized to ensure privacy, and [20] where time-varying

output masks are carefully devised to protect the initial

opinion of the agents in a consensus protocol.

While the notion of differential privacy serves as a foun-

dation for statistical analysis and design of data perturbation

based techniques, the works developed in a deterministic

setting are mostly diverse, and are based on suitable adapta-

tions or ad-hoc ideas adjusted for the application of interest.

Motivated by this, we consider a general dynamical system,

and put forwards a deterministic notion of privacy, which

relies on a plausible deniability principle. This means that a

curious adversary cannot distinguish the actual private vari-

ables of the system from their “replicas” due to insufficient

accessible knowledge. To ensure privacy, there should exists

copies of private variables that are different from the original

ones, yet exhibit the same external behavior. A conceptually

similar notion has been studied under the name of opacity for

discrete event systems modeled by automata, see e.g. [21] for

a recent overview on the topic. From the technical perspec-

tive, the proposed notion relates to the indistinguishability

property and the unobservable subspace of switched systems,

see e.g. [22]–[24]. The proposed definition of privacy is

then characterized for linear time-invariant systems. In case

privacy is guaranteed, we investigate the degree of privacy

or privacy margin of the system by leveraging suitably

constructed metrics. As will be observed, the privacy margin

is directly related to the amount and the structure of the

information that can be assessed by a curious adversary.

We illustrate the results on a class of distributed averaging

algorithm. The focus of the current paper will be primarily

on analysis, and we postpone a systematic design of privacy-

preserving controllers to a future work.

The structure of the paper is as follows. In Section II, we

propose and characterize a notion of privacy for dynamical

systems. Privacy margin of the system is examined in Section

III. Privacy aspects of a class of averaging algorithms are

studied in Section IV, and concluding remarks are provided

in Section V.

II. KEEPING PRIVATE VARIABLES PRIVATE

We consider a linear time-invariant system given by

ẋ(t) = Ax(t), (1)
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where x ∈ R
n and A ∈ R

n×n. While we consider

continuous-time systems here, we note that most of the

subsequent developments apply to both continuous and dis-

crete time systems. The variables that can be measured are

collected in a vector y ∈ R
ℓ and are given by

y(t) = Cx(t). (2)

We denote the variables whose values should be kept private

by

p(t) = Px(t), (3)

where P ∈ R
r×n, r ≤ n. The value of p should be protected

for almost all time t ≥ t0.1 We use the term public to refer

to knowledge, variables, or quantities that are not considered

private.

If the pair (C,A) is observable and all the matrices

involved are known, then the vector p can be reconstructed

by exploiting the measurements y and devising a suitable

observer. Therefore, we allow the system to have a degree

of secrecy in its dynamics. In particular, we assume that

while the matrices C and P are known (public), the system

dynamics is only partially known. In particular, we consider

that the dynamics belong to a system class, i.e.,

A ∈ A. (4)

We treat A as public knowledge, while it may also reflect

any (side) knowledge of a curious adversary on the system.

The class of matrices A can be finite or infinite. To rule

out the trivial (uninteresting) cases, we assume that (C,A)
is observable.

Next, we define a deterministic notion of privacy which is

based on plausible deniability, i.e, the ability to cast enough

doubt over your culpability that it cannot be ascertained. This

principle is also the basis for the notion of opacity in discrete

time event systems modeled by finite automata, see e.g. [21]

and the references therein. We use the notation xX(t, x0) to

denote the state response and yX(t, x0) to denote the output

response resulting from the initial condition x0 and the state

matrix X ∈ A.

Definition 1: We say that privacy is preserved for the

system (1)–(4) if for any x0 ∈ R
n there exists x̂0 ∈ R

n

and Â ∈ A, with Â 6= A, such that

yA(t, x0) = yÂ(t, x̂0) (5)

for all time t ≥ t0, and

PxA(t, x0) 6= PxÂ(t, x̂0). (6)

for t = t0 and almost all time t > t0.

Remark 1: We remark that Definition 1 does not rely

on linearity, and can be analogously stated for nonlinear

systems. However, linearity is assumed for the subsequent

characterisation and development of the results.

1By “almost all time”, we mean with the exception of a set of measure
zero.

Remark 2: The conditions in Definition 1 can be equiv-

alently stated for a nonempty finite interval of time since

p and y are both real analytic functions of time (see e.g.

[25]). Due to the same reason, the condition (6) needs to be

checked only at time t = t0 (see Proposition 1), however we

keep the definition as it is for the sake of generality and to

highlight the intuition behind it.

The rationale behind Definition 1 is that, from the mea-

surements y and class A, one cannot distinguish a system

with the state matrix A and private variables p from the one

with the state matrix Â and the private variables p̂, with p̂

denoting the right hand side of (6). The condition (5) is

closely related to the notion of observability of switched

systems (see e.g. [22]), whereas (6) is additionally needed

to ensure privacy. The latter is due to the fact that x0 6= x̂0

does not in general imply Px0 6= Px̂0.

The following characterization follows from the the notion

of privacy posed in Definition 1:

Proposition 1: Privacy is preserved for the system (1)–(4)

if and only if for any x0 ∈ R
n there exists x̂0 ∈ R

n and

Â ∈ A, with Â 6= A such that

CAk−1x0 = CÂk−1x̂0, ∀k ≥ 1, (7)

and

Px0 6= Px̂0. (8)

Proof: The equivalence of (5) and (7) is well-known.

Namely, computing (high order) time derivatives of (5) and

taking the limit as t → t0 yields (7), and the converse

result follows by using the Taylor series of the state-transition

matrices corresponding to A and Â. Moreover, the condition

in (6) imposes Px0 6= Px̂0. To complete the proof, it suffices

to show that if (6) does not hold, then Px0 = Px̂0. Suppose

that (6) does not hold, then either Px0 = Px̂0 or there

exists a nonzero interval of time for which PxA(t, x0) =
PxÂ(t, x̂0). As solutions of the system can be expressed as

a real analytic function of time, the latter equality must hold

for all time t ∈ (t0,+∞) (see e.g. [25]), which results in

Px0 = Px̂0.

As is well-known, one needs to check the condition in (7)

only in a finite set k ∈ {1, 2, . . . ,K}. In this case, we have

K ≤ 2n as (7) can be seen as the (un)observability property

of the pair

(
[
C −C

]
,

[
A 0

0 Â

]

).

In fact, K can be taken as small as the “joint-observability

index” of the pairs (C,A) and (C, Â) (see e.g. [22]).

III. PRIVACY MARGIN

In the previous section, we have provided a notion of

privacy together with its characterization. Assuming that pri-

vacy is preserved, the next important question is to quantify

the degree of privacy or privacy margin. Here, we assume

that the matrix A is Hurwitz, and this is regarded as public

knowledge. Consequently, all matrices in A are Hurwitz.
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Motivated by Definition 1, given x0 ∈ R
n, we quantify

the gap between p and p̂, with p̂ denoting the right hand

side of (6). To this end, let

ξ(t) := p(t)− p̂(t) = PxA(t, x0)− Px̂Â(t, x̂0). (9)

Intuitively, the energy of the signal ξ(t) is a measure of pri-

vacy, and reflects the mismatch between the private variable

p and its replica p̂. For simplicity, we set t0 = 0. We denote

the squared L2-norm of ξ by Ξ, namely

Ξ(p, p̂) :=

∫ +∞

0

ξ(t)⊤ξ(t)dt. (10)

Note that while Definition 1 allows for existence of

multiple (and possibly infinite) pairs of x̂0 and Â, we focus

first on one such pair. We get back to this point towards the

end of this section.

We have now the following proposition:

Proposition 2: Assume that the matrices A and Â are both

Hurwitz, and the pairs (C,A) and (C, Â) are observable,

with their observability matrices denoted by O(C,A) and

O(C, Â), respectively. Let

Π := O(C,A)+O(C, Â), (11)

with O(·)+ denoting the left-inverse of O(·). Suppose that

privacy is preserved in the sense of Definition 1. Then, we

have

Ξ(p, p̂) = x⊤
0 Qx0 (12)

where Ξ is given by (10), and Q = Q⊤ is the unique solution

to the Lyapunov equation

A⊤Q+QA+ (I −Π)P⊤P (I −Π) = 0. (13)

Proof: By (5), and its corresponding high-order time

derivatives, we have that

O(C,A)xA(t, x0) = O(C, Â)xÂ(t, x̂0).

Since (C, Â) is observable, we find that

xÂ(t, x̂0) = O(C, Â)+O(C,A)xA(t, x0) = ΠxA(t, x0).

Therefore, we find that

ξ(t) = P (I −Π)xA(t, x0).

Noting that xA(t, x0) = eAtx0 and A is Hurwitz, it is well-

known that the squared L2-norm can be written as in (12),

which completes the proof.

Remark 3: The assumption of A being Hurwitz is made

in order to write Ξ(p, p̂) in terms of the unique solution of

the Lyapunov equation in (13). Note that this is sufficient,

but not necessary, for the integral in (10) to be well-defined.

More generally, Ξ(p, p̂) can be defined in a finite interval as

Ξ(p, p̂) :=

∫ tf

0

ξ(t)⊤ξ(t)dt, (14)

for some tf > 0. In this case, Ξ(p, p̂) still admits the

quadratic from in (12), but with Q given by the finite gramian
∫ tf

0

eA
⊤t(I −Π)P⊤P (I −Π)eAtdt. (15)

The projection matrix I −Π can be seen as a measure of

similarity/dissimilarity between the observability matrices of

O(C,A) and O(C, Â). Then, as can be seen from the result

of Proposition 2, the value of Ξ becomes larger when the

observability matrices become more dissimilar.

Note that having more choices of x̂ and Â satisfying the

conditions of Definition 1 enhances the privacy, and in fact

adds to the confusion of a curious party. To take this into

account, given x0 ∈ R
n, we define

Ξ∗(x0) := supp̂∈P Ξ(p, p̂), (16)

where P is the collection of all vectors PxÂ(t, x̂0) for which

Â and x̂0 satisfy the conditions of Definition 1.

While the values of Ξ and Ξ∗ quantify a degree of privacy,

there is still one major drawback to adopt these measures,

and that is their dependency on the vector x0. To overcome

this issue, one can appeal to average or worst-case measures.

In particular, in view of (12), trace(Q), det(Q), or the min-

imum eigenvalue of Q are prime candidates for quantifying

the privacy margin available in the system. Motivated by this,

we define the privacy margin of the system as

Ξµ := sup
Q∈Q

µ(Q) (17)

where the metric µ : R
n×n → R≥0 can be taken as

trace(·), det(·), or the smallest eigenvalue. The class Q is

the collection of all solutions Q of the Lyapunov equation

(13) with Â ∈ A being any matrix satisfying the conditions

in Definition 1.2 Finally, we note that one can bypass the

Lyapunov equation and work directly with the integral in

(15). The latter is particularly useful in case the state matrix

is not Hurwitz.

IV. CASE STUDY: DISTRIBUTED AVERAGING

Here, we study the proposed notions of privacy and

privacy margins on a disturbed averaging algorithm. The

idea of averaging algorithms is to compute the average or

a weighted average of initial states (opinion) of agents via

exchanging information in a distributed fashion. Here, we

consider

T ẋ(t) = −Lx(t), (18)

where L ∈ R
N×N is the Laplacian matrix of a connected

graph, and T > 0 is diagonal. The dynamics in (18) can

represent mass-damper systems as well. It is well-known that

solutions of (18) converge to a weighted average of initial

state x(0), namely to 1x∗, with

x∗ :=
1

trace(T )

N∑

i=1

Tixi(0), (19)

2Note that the dependency of Q on Â stems from the matrix Π in (11).
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where 1 denotes a vector of all ones with an appropriate

dimension. We treat the opinion/value of the agents as the

variables which we would like to keep private, namely let

p(t) = x(t). However, exchanging the state variables of the

agents can immediately reveal such private information. To

avoid this, one could introduce additional state variables,

namely ζ, run the consensus algorithm on ζ, and make ζ

track x asymptotically. Such augmented dynamics can be

written as

T ẋ(t) = −Lζ(t) (20a)

ζ̇(t) = Kxx(t)−Kζζ(t) (20b)

y(t) = ζ(t) (20c)

p(t) = x(t). (20d)

where Kx and Ky are diagonal and positive definite. Note

that the values of the communicated variables are assumed

to be known (public), and thus are collected in y. For

illustration purposes, we first examine the privacy aspects of

the dynamics above, and postpone the discussion on stability

and convergence to a later moment. The time constant matrix

T is considered to be unknown for a curious party, and, to

avoid too much secrecy in the dynamics, we assume that one

of the matrices Kx and Kξ is set to the identity matrix. This

gives rise to the following two distinct cases:

(i) Kx = I ,

(ii) Kζ = I .

Note that the matrices Kζ and Kx account for the secrecy in

the dynamics in case i) and case ii), respectively. The public

information is the measurement y and the system dynamics

modulo the value of T and Kζ in case (i), and T and Kx in

case (ii).

First, we consider case (i). It is public that the state matrix

belongs to a set A whose elements are parametrized by

Â =

[
0 −T̂−1L

I −K̂ζ

]

,

for some diagonal matrices K̂ζ , T̂ > 0. Now, given (x0, ζ0),
verifying the condition (7) with k = 1 yields ζ0 = ζ̂0. For

k = 2, we obtain that

x0 − x̂0 = (Kζ − K̂ζ)ζ0,

where we used the fact that ζ0 = ζ̂0. If ζ0 = 0, then

x0 = x̂0, which violates the condition (8), and thus privacy is

lost, noting that Definition 1 is stated for an arbitrary initial

condition of the original system.

Next, we consider case (ii), namely Kζ = I . The public

information in this case is that the state matrix belongs to a

set A whose elements are parametrized by

Â =

[
0 −T̂−1L

K̂x −I

]

, K̂x > 0. (21)

Given (x0, ζ0), verifying the condition (7) with k = 1 results

in

ζ0 = ζ̂0. (22)

For k = 2, we find that

Kxx0 = K̂xx̂0. (23)

For k = 3, we have

KxT
−1 = K̂xT̂

−1. (24)

By computation, one can verify that (23) and (24) are suf-

ficient to satisfy the conditions of Proposition 1. Moreover,

these equalities highlight the fact that keeping both Kx and

T “secret” is necessary. In fact, if either Kx = K̂x or T = T̂ ,

then x0 = x̂0 which implies the lack of privacy by (8).

Next, we discuss convergence properties of the dynamics

in (20) for case (ii).

Proposition 3: The algorithm (20) with Kx > 0 and

Kζ = I , preserves privacy and the vector x globally

converges to K−1
x 1x with

x :=
1

trace(TK−1
x )

N∑

i=1

Tixi(0). (25)

Proof: The proof for privacy was established preceding

the proposition. To prove the convergence result let L be

decomposed as BΓB⊤ where B is the incidence matrix of

the graph and Γ is a diagonal matrix with positive diagonal

elements indicating the weights of the coupling. Let z := Tx

and η := B⊤ζ. Then, we have
[
ż

η̇

]

=

[
0 −B

B⊤ −Γ−1

] [
KxT

−1z

Γη

]

which is a port-Hamiltonian system with the quadratic

Hamiltonian [26]

H(x, η) :=
1

2
x⊤KxT

−1x+
1

2
η⊤Γη.

Taking the Hamiltonian as the Lyapunov function, we have

that

Ḣ = −η⊤Γη ≤ 0,

and thus the solutions are bounded. Then, by invoking

LaSalle’s invariance principle, we conclude that η = 0 and

thus B⊤KxT
−1z = 0 on the invariant set. Therefore, on

this set z = αTK−1
x 1, for some α ∈ R. Noting that 1

⊤z

is a conserved quantity of the system, we conclude that z

converges to αTK−1
x 1 with

α =
1

trace(TK−1
x )

N∑

i=1

zi(0).

Consequently, x converges to K−1
x 1x with x given by (25)

as claimed. Finally note that the convergence of z, and thus

x is global since the Hamiltonian is radially unbounded. This

completes the proof.

While (20) preserves privacy and its set of equilibria

is attractive, the vector x converges to the same weighted

average value in (19) if and only if Kx be chosen as a

multiple of the identity matrix. While this is admissible, a

smart curious party might do the same reasoning and figure

out that Kx is a multiple of the identity matrix. Then, by
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(23), this means that the value of the private vector x will

be revealed up to a scaling factor.

To avoid this, an alternative idea is to abandon the re-

quirement that x in (20) must converge to the exact same

vector as the one in (18). Along this line, next we quantify

the privacy margin of (20).

Recall that the state matrix in this case is given by

A =

[
0 −T−1L

Kx −I

]

,

and the matrix Â is given by (21), where K̂x and T̂ satisfy

(23) and (24). Let

∆ := K̂−1
x Kx = T̂−1T. (26)

Then, it is easy to verify that

Â =

[
∆ 0
0 I

] [
0 −T−1L

Kx −I

]

︸ ︷︷ ︸

A

[
∆ 0
0 I

]−1

. (27)

Noting (9), we have

ξ(t) = x(t)− x̂(t) =
[
I 0

]
eAt

[
x0

ζ0

]

−
[
I 0

]
eÂt

[
x̂0

ζ̂0

]

By (27), we find that

ξ(t) =
[
I 0

]
eAt

[
x0

ζ0

]

−
[
I 0

]
[
∆ 0
0 I

]

eAt

[
∆ 0
0 I

]−1 [
x̂0

ζ̂0

]

,

which, noting (22), (23), and (26), simplifies to

ξ(t) =
[
I 0

]
eAt

[
x0

ζ0

]

−
[
I 0

]
[
∆ 0
0 I

]

eAt

[
x0

ζ0

]

=
[
I −∆ 0

]
eAt

[
x0

ζ0

]

.

Noting that the state matrix is not Hurwitz, we follow the

definition in (14), which yields

Ξ(x, x̂) =

[
x0

ξ0

]⊤ (∫ tf

0

eA
⊤t

[
(I −∆)2 0

0 0

]

eAtdt

)[
x0

ξ0

]

.

(28)

The privacy margin Ξµ can be obtained in view of (17) by

looking at the trace, determinant, or the minimum eigenvalue

of the integral in equality (28). Clearly, noting (26) and

(28), to enhance privacy the matrices Kx and T must be

selected from a larger pool to cause more confusion for a

curious party. On the other hand, a larger set of admissible

matrices, particularly for Kx, results in convergence to a

point which might be far from the desired one, suggesting

a compromise between privacy margin and accuracy. For

illustration purposes, we have computed the trace of the

matrix ∫ tf

0

eA
⊤t

[
(I −∆)2 0

0 0

]

eAtdt, (29)

with tf = 10, for different values of ∆ in a network of

four nodes, with a line graph topology. The result of this

computation is shown in Figure 1. As expected, the privacy

margin improves as the amount of secrecy in the dynamics,

which in this case has been quantified in terms of ‖I −∆‖,

increases.
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Fig. 1. The privacy margin computed from (29).

V. CONCLUSIONS

Relying on a a “plausible deniability” principle and in-

spired by observability of switched systems as well as

opacity in discrete event systems, a deterministic notion of

privacy has been provided for dynamical systems. Privacy

is preserved if there exists at least one permissible choice

of private variables (different to the actual one) that exactly

mimics the behavior of the actual private variables. A com-

plete algebraic characterization of such property has been

provided. In case privacy is guaranteed for the system, we

have proposed quantifiable metrics that assess the degree of

privacy or privacy margin. In principle, the privacy margin

of the system reveals how close a curious adversary can

get to the true value of the private variables. As observed,

such margin depends on the amount and structure of the

information on the system which is accessible to an adver-

sary. The proposed notions and metrics have been studied

for a class of distributed averaging algorithm. We have

shown how variations of the averaging algorithms can lead to

different results in view of privacy and the proposed metrics.

While the focus of the current work has been primarily on

analysis, developing designing methodologies to guarantee

privacy is part of the ongoing research. Extending the results

to nonlinear systems is another challenging task for future

research.
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