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Rice is the staple food for more than 50% of the world’s population1-3. Reliable 28 

prediction of changes in rice yield is thus central for maintaining global food security. 29 

Here, we compare the sensitivity of rice yield to temperature increase derived from 30 

field warming experiments and three modelling approaches: statistical models, local 31 

crop models and global gridded crop models. Field warming experiments produced 32 

a substantial rice yield loss under warming, with an average temperature sensitivity 33 

of -5.2±1.4% K-1. Local crop models gave a similar sensitivity (-6.3±0.4% K-1), but 34 

statistical and global gridded crop models both suggest less negative impacts of 35 

warming on yields (0.8±0.3% K-1 and -2.4±3.7% K-1, respectively). Using data from 36 

field warming experiments, we further propose a conditional probability approach 37 

to constrain the large range of global gridded crop model results for the changes in 38 

future yield in response to warming by the end of the century (from -1.3% K-1 to -39 

9.3% K-1). The constraint implies a more negative response to warming (–8.3±1.4% 40 

K-1) and reduces the spread of the model ensemble by 35%. This yield reduction 41 

exceeds that estimated by the International Food Policy Research Institute 42 

assessment (-4.2 to -6.4% K-1)4. Our study suggests that without CO2 fertilization, 43 
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effective adaptation and genetic improvement, severe rice yield losses are plausible 44 

under intensive climate warming scenarios.  45 

  46 

Hunger and malnutrition are two alarming problems calling for increased yields5,6.  47 
Rice is currently one of the most widely grown crops in the world and the main source 48 

of calories in developing countries1-3. Any reduction in rice productivity could, 49 

therefore, have dramatic implications for global food security5. Climate warming 50 

exceeding the optimum physiological temperature of rice plants has been shown to  51 

cause such a reduction7,8. The assessment of food security from the International Food 52 

Policy Research Institute (IFPRI) also stated that climate change, without the separate 53 

effects of CO2 fertilization, would cause a 10-12% reduction of irrigated rice yield 54 

globally by 20504. Unfortunately, we have poor understanding of the physiological 55 

mechanisms through which rice plants may respond to climate change. Many studies  56 

are using process-based crop models to project climate change impacts on crop yields9– 57 

10. These models integrate plant-scale physiological mechanisms, and can be run at site, 58 

regional or global scale with forcing variables derived from global climate models under 59 

different greenhouse gas emission scenarios. Yet, the parameters of crop models are 60 

usually not measured across the full scale of model applications, and model equations 61 
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may also be wrong, leading to large uncertainties in projections of future climate change 62 

impacts 10-12.   63 

  64 

The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP-1)13 and the 65 

Agricultural Model Intercomparison and Improvement Project (AgMIP)14 coordinated 66 

multi-model simulations of the yields of major crops, including rice. One of the findings 67 

of AgMIP is that multi-model mean or median values give better simulations of the 68 

observed yield of rice15 than any individual model, but it remains unclear whether the 69 

‘average model’ is meaningful at all. Errors in parameter values, as well as in model 70 

structure, result in large model-to-model variation in simulated yield10. However, if the 71 

bias of a model for the present persists into the future, an emerging constraint can be 72 

established through which present-day observations can be used for eliminating less 73 

realistic models in the simulation of temperature response; this reduces the uncertainty 74 

in the ensemble projection. This heuristic approach called ‘emerging constraint’ has 75 

been applied to constrain simulations, e.g., of the sensitivity of the tropical carbon cycle  76 

and of snow albedo, to temperature16,17. Here, to reduce the large range of the ISI-MIP1 77 

global gridded crop models (GGCMs)18 for the sensitivity of rice yield to temperature, 78 

we use a new compilation of data from 83 field warming experiments at 13 sites over 79 

the globe (Supplementary Table 1) (see Methods).  80 

  81 
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Five GGCMs driven by daily weather outputs from five climate models (CM) (see  82 

Methods) were run under the high warming Representative Concentration Pathway 83 

RCP8.5 (2070-2099) scenario, with CO2 fixed at the present-day value (excluding the 84 

relevant benefits from CO2 fertilization in the future). This procedure allows us to 85 

estimate the effect of climate change alone on yield. The five climate models used to 86 

drive the GGCMs, gave an increase in growing-season mean air temperature over 87 

ricegrowing areas ranging from 3.3 K (GFDL-ESM2M) to 5.0 K (IPSL-CM5A-LR)  88 

relative to today (Fig. 1a). The median value of the climate-induced rice yield change 89 

was -27% (Fig. 1b) — a large yield reduction which would pose a threat to future food 90 

security. However, the range of model responses was large, reflecting uncertainties in 91 

climate projections and in GGCMs, with yield reductions ranging from 6.6% in 92 

LPJGUESS+HadGEM2-ES to 42.4% in EPIC+HadGEM2-ES (see also ref.18). 93 

Dividing the changes in yield by the magnitude of temperature warming above present-94 

day values defines the long-term sensitivity of rice yield to warming by the end of the 95 

twenty-first century ( ,). This sensitivity was negative for all combinations of GGCM 96 

and climate model, and ranged from -1.3% K-1 with LPJ-GUESS+HadGEM2-ES to - 97 

9.3% K-1 with EPIC+HadGEM2-ES; the median value was -6.5% K-1.   98 
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  99 

Then, for each GGCM-CM pair, we also calculated the present-day interannual 100 

temperature sensitivity of rice yield ( ,) for the model grid cells where the field 101 

experiments were located, using multiple linear regression models to separate the 102 

sensitivity of modelled yields (1971-2000) to growing-season temperature, precipitation 103 

and radiation. Figure 2a shows that there is an emerging strong linear relationship 104 

(R2=0.75, P<0.001) between long-term ( ,) and present-day interannual ( ,) sensitivities 105 

of yield to temperature across all GGCM-CM combinations. This means that a model 106 

showing a high negative yield response to warm years during the last 30 years also 107 

projects a high warming-induced yield decrease in the future. This implies that the 108 

GGCM responses to temperature are generally conserved between historical and future 109 

conditions.  110 

  111 

To assess the realism of these modelled yield sensitivities to warming, we compiled 112 

data from field experiments where rice plots were warmed (Supplementary Table 1). 113 

More than 80% (67 out of 83) of the field experiments reported a rice yield loss under 114 

warming, with an average observed sensitivity of yield to warming ( , ) of -5.2±1.4% K-115 

1 (Fig. 3). According to the ‘emerging constraint’ method (see Methods), these field 116 

experiments provided an observation-based probability density function (PDF) for 117 
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modelled ,, and the linear relationship between , and , (Fig. 2a) provided another PDF of 118 

, for a given , . The conditional probability of modelled  119 

, that is consistent with the PDF of observed sensitivities (red dashed line in Fig. 120 

2b) gives a PDF of constrained modelled ,. The maximum likelihood value of this 121 

constrained , sensitivity was more negative (–8.3±1.4% K-1) than the one of the original 122 

model ensemble (Fig. 2b), and the 1-sigma uncertainty of the PDF of , was reduced 123 

by 35%. This means that the information from field warming experiments shifts the 124 

modelled long-term temperature sensitivities of rice yield towards more negative 125 

values, and reduces the variation among models. When applying the same emerging 126 

constraint of the conditional probability to the model grid cells of the experimental sites, 127 

or to the grid cells with similar climate or similar rice yield, the constrained , values in 128 

all cases were more negative than the original ensemble of models, and had a lower 129 

uncertainty (Supplementary Fig. 1).  130 

  131 

The temperature sensitivities obtained from field experiments can also be 132 

considered as realistic analogues of GGCM long-term sensitivities, because both 133 

approaches consider a warming over ambient conditions of similar magnitude. 134 

Replacing the present-day temperature sensitivities ( ,) over the GGCM grid cells of 135 
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experimental sites (horizontal-axis variable) with that of the long-term ones ( ,) in Fig. 136 

2, we found that the experimentally constrained , was -7.2±1.5% K-1, still less uncertain 137 

and more negative than the unconstrained value reflecting the spread of all the GGCMs 138 

forced by different climate models (Supplementary Fig. 2).  139 

  140 

With the emerging constraint approach of this study, it is important to assess all the 141 

uncertainties that might bias the final result. For instance, some experiments included 142 

multiple warming treatments and nutrient levels. We thus verified that , depends neither 143 

on the magnitude of warming applied (Supplementary Fig. 3, P>0.1), nor on the 144 

background growing-season temperature (Supplementary Fig. 4, P>0.1) or nutrient 145 

levels (Supplementary Fig. 5, P>0.1) across the set of experiments we have compiled.  146 

In addition, field experiments had different designs and used different techniques to 147 
warm the plots. Passive warming techniques using greenhouses or open-top-chambers  148 

were criticized because they also alter light, wind, and soil moisture19,20—active  149 

warming techniques using artificial heaters are considered more reliable20,21. When only 150 

the results from active warming experiments were used (Supplementary Fig. 6), the 151 

constrained , was -7.0±1.7% K-1, remaining more negative than the unconstrained value, 152 

but the uncertainty reduction achieved for model results was smaller (only 19% against 153 

35% with all experiments), which is attributed mainly to the small number of active 154 

warming experiments published so far (only five sites; Supplementary Table 1).   155 
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  156 

A second source of uncertainty in our approach is that the values of , derived from 157 

model simulations represent the average yield change divided by the average 158 

temperature increase averaged over many years with non-uniform warming across the 159 

growing season, whereas field experiments last only a few years. Using individual 160 

years, instead of the average of the last 30 years of the twenty-first century, to calculate 161 

,, the constrained , remained less uncertain and more negative than the unconstrained 162 

value for 29 individual years (Supplementary Fig. 7). Our result is thus robust and not 163 

sensitive to the method used to define the long-term yield sensitivity to warming in 164 

model outputs. In addition, warming experiments located in the US (24 out of 83 165 

experiments, Supplementary Table 1) might be not representative of the varieties, 166 

edaphic and climate conditions over today’s dominant rice growing regions in Asia.  167 

However, even when using only the experiments performed on Asian rice varieties, with 168 

only the GGCM grid cells of these regions, the emerging linear relationship between , 169 

and , was still present (Supplementary Fig. 8, R2=0.74, P<0.001), and the constrained , 170 

was -6.9±1.4% K-1, less uncertain than the unconstrained value (-5.8±2.0% K-1).  171 

  172 
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Why does the ISI-MIP-1 ensemble median of pairs of GGCMs and climate models 173 

underestimate rice yield losses in response to warming (Fig. 2b)? One reason might be 174 

the inclusion of adaptation in some GGCMs. For instance, LPJ-GUESS assumes very 175 

flexible adaptation in growing-season lengths, i.e., plasticity of cultivars, and GEPIC 176 

allows for adaptation in sowing dates. Removing these two models from the constraint, 177 

does not remove this underestimation (Supplementary Fig. 9), suggesting that the fact 178 

that some models include a degree of adaptation does not eliminate the underestimated  179 

, in GGCMs. Also, the use of CM-based climate scenarios with non-uniform warming 180 

across the growing season and where also changes in radiation and precipitation are 181 

included, can lead to a veiled temperature response. As most of the rice production is 182 

fully irrigated, we assume that the temperature signal is the dominant climate impact 183 

also in the CM-driven GGCM simulations. Another reason could be that the ensemble 184 

did not contain a sufficiently large enough number of crop models (five in our study). 185 

All the possibilities of current rice models may not have been included and this would 186 

hamper the strength of the model ensemble10,15. Fortunately, a larger number of crop 187 

models will be used in the Phase II of ISI-MIP/AgMIP; this will allow a further test of 188 

the robustness of the emerging constraint approach.  189 

  190 

Independently from field warming experiments and GGCMs, there are also a large 191 

number of publications from local crop models used to interpret field trials (arguably 192 
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those models are well calibrated to specific rice varieties and cultivation practice) and 193 

from statistical models where the sensitivity of rice yield to temperature change is 194 

derived from observed interannual variability. These different temperature sensitivities 195 

are shown in Fig. 3 for the present-day period and the future (end of the century). For 196 

the present-day sensitivities, 95% of local crop model simulations (329 studies out of 197 

346) give a negative response to warming, with a mean sensitivity of –6.3±0.4% K-1, 198 

more negative but consistent with the values inferred from field warming experiments 199 

(-5.2±1.4% K-1). Statistical models have a surprisingly lower percentage of studies (46 200 

studies out of 77) presenting negative , than warming experiments (more than 80% of 201 

studies), and also give a weaker mean sensitivity ( ,= –0.8±0.3% K-1; Fig. 3) than both 202 

warming experiments and local crop models. This weak sensitivity might be due to the 203 

aggregated nature and disputable quality of historical yield and weather data in different 204 

regions22, to difficulties in separating the temperature effect from co-varying 205 

management practice23, increasing CO2, and to non-linearity in the temperature 206 

response24. Lower sensitivities are also found in the GGCM results during the 207 

presentday period compared to the long term (Fig. 3). This suggests that GGCMs have 208 

thresholds above which the temperature response of rice yield becomes significantly 209 

more negative (see also ref. 18).  210 
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  211 

 We also compared our  , value with that implied from IFPRI (as a  212 

representative of the policy community) who project the future of the world's food 213 

supply. They predicted 10 and 12% losses of global rice yield by 2050, based on 214 

temperature increase scenarios of 1.5 oC and 2.9 oC, respectively4. Thus a rough 215 

estimate of the sensitivity of rice yield to warming is -4.2 to -6.4% K-1, a smaller 216 

magnitude than that from the global crop models constrained by experimental data in 217 

our study (-8.3±1.4% K-1). However, we noted that the constrained , derived here was 218 

for the end of this century (2070-2099), inconsistent with the time frame used by IFPRI 219 

(2050s). When applying the emerging constraint to the time frame of midcentury (2036-220 

2065), the constrained , was -8.5±2.3% K-1 (Supplementary Fig. 10) — still a larger 221 

magnitude than the number from IFPRI. This result suggests that warming appears to 222 

present an even greater challenge to rice than expected and more effective adaptation 223 

strategies are thus required.  224 

  225 

The prediction of yield loss under future warming notably does not consider 226 
otherthan-climate factors that could sustain or increase yield, in particular increased 227 

CO2
25,26,  228 

adaptation11,27 and improved management/cultivars that are independent of adaptation 229 

to warmer temperatures28. For instance, the current rates of genetic gains in yield for  230 
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hybrid rice are 0.6-0.7% yr-1 28. In our study, the results from the global gridded crop 231 

model constrained by observations suggest a yield loss of 37% for the end of the century 232 

due to increased temperature under the RCP8.5 scenario (multiply the constrained 233 

sensitivity in Fig. 2 by climate warming in Fig. 1), but the loss will unfold over 70 years, 234 

i.e., at an average rate of 0.5% yr-1. The genetic improvement sustained during one 235 

century at current rates could thus offset the negative impact from increased 236 

temperature. To fulfil the projected increase in cereal demand for the world population 237 

(~1.2% yr-1)29, however, the increase in rice yield from technological change, together 238 

with the CO2 effect and adaptation, would need to be much higher (1.7% yr-1) to offset 239 

the development of negative effects of climate change at a rate of 0.5% yr-1.  240 

  241 

Our study, combining field warming experiments with three modelling approaches, 242 

comprehensively assessed the global response of rice yield to warming. The main result 243 

is that all approaches indicated a decrease in rice yield in response to warming, and the 244 

field warming experiments suggested an even higher risk of future yield reductions than 245 

that inferred from unconstrained GGCM results. Future experiments with standard 246 

measurement protocols, long time periods and a large range of rice genotypes and 247 

management types30 should provide more insight on constraining modelling results. Our 248 
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results, however, show that warming under climate change poses a significant threat to 249 

rice production and thus to a major staple food with substantial impact on the food 250 

security of developing and emerging economies. The long-term perspective of climate 251 

change allows us to prepare agricultural production systems for this challenge, but 252 

suitable policies must be put in place in the near future, given that targeted research on 253 

adaptation options and their large-scale implementation will require considerable time.   254 

  255 

Methods  256 

ISI-MIP data set. Starting in 2012, the Inter-Sectoral Impact Model Intercomparison 257 

Project (ISI-MIP-Phase 1 project; isi-mip.org) used multi-model ensembles to assess 258 

the climate change impacts across multiple sectors. In the agriculture sector, multiple 259 

global gridded crop models (GGCMs)18 were used to simulate crop yield. We used yield 260 

simulated by five GGCMs (EPIC, GEPIC, LPJ-GUESS, LPJmL and pDSSAT). These 261 

model outputs are available as annual time series at a spatial resolution of 0.5×0.5 262 

degrees. GGCM simulations were driven by historical (1971–2005) and future (2006– 263 

2099) climate forcing including temperature, precipitation and solar radiation. These 264 

forcing data were taken from a bias-corrected climate data set based on five climate 265 

models (CMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5)31. Of 266 

the ISI-MIP crop model ensemble, PEGASUS did not provide yield data for rice and 267 

GAEZ-IMAGE was excluded because its modelling approach does not provide  268 



  

  

15  

sufficient information on interannual variability to calculate the temperature sensitivity 269 

of rice yield. More detailed information about the five GGCMs which were used can be 270 

found in ref.18. The high-emission scenario, representative concentration pathway 271 

(RCP) 8.5 was chosen as it not only represents the upper end of projected climate 272 

change, but also provides the largest ensemble of GGCM-CM combinations to consider 273 

the broadest possible range of climate impacts. GEPIC and LPJ-GUESS only 274 

contributed data for one CM (i.e., HadGEM2-ES) and thus a total of seventeen 275 

GGCMCM combinations were used in our analysis. All GGCM-CM simulations used 276 

here were conducted with constant CO2 concentration and current management (see ref. 277 

18 for exceptions). We used the model output for the full irrigation scenario, since 278 

irrigated rice currently makes up about 75% of world production3.   279 

  280 

Literature review. We searched peer-reviewed and primary research from Web of 281 

Science, Google Scholar and China National Knowledge Infrastructure (CNKI, 282 

http://www.cnki.net) that was published before January 2015. All publications related 283 

to the responses of rice yield to temperature change were considered. Three main 284 

approaches were distinguished, namely, local process-based crop models, statistical 285 

models and field warming experiments. To obtain the sensitivity of rice yield to 286 
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temperature ( ,; yield change per K), local process-based models usually conduct an 287 

arbitrary sensitivity test (e.g., +2 oC scenario), with other conditions kept constant; 288 

whereas statistical models use regression equations to relate historical records of rice 289 

yield to weather including temperature. On the other hand, field warming experiments 290 

apply direct warming treatments to rice in field plots. , is calculated as :  291 

 , = ΔY/ΔT                  (1)  292 

where ΔY and ΔT are the rice yield change and temperature change, respectively. The 293 

average , and its uncertainty for experiments are obtained from bootstrap resmpling. 294 

Here we assume the experimental data (Supplementary Table 1) as: X={X1, X2, …, Xn}, 295 

where Xn represent all the experiments at site n. The steps of bootstrapping are as 296 

follows: (1), resample one experiment at each site to obtain a bootstrap resample: X1*= 297 

(x1, x2, …, xn), where xn represent the sampled experiment at site n. (2), compute the 298 

mean of this resample and obtain the first bootstrap mean:  . (3), repeat the 299 

process of (1) and (2) to obtain the second resample X2* and compute the second 300 

bootstrap mean μ2*. Repeating this 5000 times, we have μ1*, μ2*, …, μ5000*, which 301 

constitute an empirical bootstrap distribution of sample mean. Here each μ* represents 302 

one case of average sensitivity for all the sites (Supplementary Fig. 11). The difference 303 

between μ* values is from the use of different experiment within sites. Therefore, the 304 

PDF now reflects the variations caused by different experiments within sites.  305 
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  306 
  307 

Constraint. Our constraint methodology comes from Cox et al.16, who built an 308 

emergent linear relationship between the sensitivity of tropical land-carbon storage to 309 

warming and the sensitivity of the annual growth rate of atmospheric CO2 to tropical 310 

temperature anomalies across models. They then used the historical observed CO2 311 

growth rate sensitivity to temperature to constrain the uncertainties of future climate 312 

impact on tropical carbon through the conditional probability approach. Here we used 313 

a similar approach, first building the relationship between the historical temperature 314 

sensitivity of crop yield and the future yield feedbacks across the GGCM 315 

modelensembles, and then using the observed field warming experiments to constrain 316 

future modelled yield-climate feedbacks. The details of the constraint methods are 317 

described in Supplementary Methods. It should be noted that the PDF of GGCM-CM 318 

could be biased, because some crop models (GEPIC and LPJ-GUESS) were only paired 319 

with one CM (HadGEM2-ES). This unbalance in the selection of the GGCM-CM 320 

combination was checked with five GGCMs but with random selection of different  321 

CMs, i.e., one pair of GGCM-CMs with random CM selection (Supplementary Fig. 12).  322 

  323 



18  

References   324 

1. FAOSTAT, http://faostat.fao.org/default.aspx (2014).   325 

2. Seck, P. A., Diagne, A., Mohanty, S. & Wopereis M. C. Crops that feed the world  326 

7: rice. Food Secur. 4, 7–24 (2012).  327 

3. Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Eds., Rice Almanac (CABI 328 

Publishing, Wallingford, UK, 2002), pp.18.  329 

4. Nelson, G. C. et al. Food security, farming, and climate change to 2050: Scenarios, 330 

results, policy options. Int. Food Policy Res. Inst. 172 (2010).  331 

5. Godfray, H. C. et al. Food security: The challenge of feeding 9 billion people.  332 

Science 327, 812–818 (2010).  333 

6. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).  334 

7. Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high 335 

temperatures in the reproductive period: historical trends and future  336 

projections. Environ. Res. Lett. 8, 024041 (2013).  337 

8. Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and 338 

development of maize and rice: a review. Global Change Biol. 20, 408–417 (2014).  339 

9. Rosenzweig, C. & Parry, M. L. Potential impact of climate change on world food 340 

supply. Nature 367, 133–138 (1994).  341 

10. Asseng, S. et al. Uncertainty in simulating wheat yield under climate change. Nature 342 

Clim. Change 3, 827–832 (2013).  343 



  

  

19  

11. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and 344 

adaptation. Nature Clim. Change 4, 287–291 (2014).  345 

12. Rötter, R. P., Carter, T. R., & Olesen, J. E. Crop–climate models need an overhaul. 346 

Nature Clim. Change 1, 175–177 (2011).  347 

13. Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project  348 

(ISI–MIP): Project framework. Proc. Natl. Acad. Sci. U.S.A. 111, 3228–3232 349 

(2014).  350 

14. Rosenzweig, C. et al. The agricultural model intercomparison and improvement 351 

project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 352 

(2013).  353 

15. Li, T. et al. Uncertainties in predicting rice yield by current crop models under a 354 

wide range of climatic conditions. Global Change Biol. 21, 1328–1341 (2015).  355 

16. Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by 356 

carbon dioxide variability. Nature 494, 341–344 (2013).  357 

17. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo 358 

feedback in future climate change. Geophys. Res. Lett. 33, L03502, 359 

doi:10.1029/2005GL025127 (2006).  360 



20  

18. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st 361 

century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. 362 

U.S.A. 111, 3268–3273 (2014).  363 

19. Kimball, B. A. Theory and performance of an infrared heater for ecosystem 364 

warming. Global Change Biol. 11, 2041–2056 (2005).  365 

20. Aronson, E. L. & McNulty, S. G. Appropriate experimental ecosystem warming 366 

methods by ecosystem, objective, and practicality. Agric. For. Meteorol. 149, 1791–367 

1799 (2009).  368 

21. De Boeck, H. J. & Nijs, I. An alternative approach for infrared heater control in 369 

warming and extreme event experiments in terrestrial ecosystems. J. Ecol. 99, 724– 370 

728 (2011).  371 

22. Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 372 

2030. Science 319, 607–610 (2008).  373 

23. Maltais-Landry, G. & Lobell, D. B. Evaluating the contribution of weather to maize 374 

and wheat yield trends in 12 U.S. counties. Agron. J. 104, 301–311 (2012).  375 

24. Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe 376 

damages to US crop yield under climate change. Proc. Natl. Acad. Sci. USA 106, 377 

15594–15598 (2009).  378 



  

  

21  

25. Ziska, L. H. & Bunce, J. A. Predicting the impact of changing CO2 on crop yields: 379 

some thoughts on food. New Phytol. 175, 607-618 (2007).  380 

26. Ainsworth, E. A. Rice production in a changing climate: a meta‐analysis of 381 

responses to elevated carbon dioxide and elevated ozone concentration. Global 382 

Change Biol. 14, 1642-1650 (2008).  383 

27. Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci.  384 

USA 104, 19691-19696 (2007).  385 

28. Hall, A. J. & Richards, R. A. Prognosis for genetic improvement of yield potential 386 

and water-limited yield of major grain crops. Field Crop. Res. 143, 18-33 (2013).  387 

29. Fisher, G. How do climate change and bioenergy alter the long-term outlook for 388 

food, agricultre and resource availability? Food and Agriculture Organization of the 389 

United Nations Economic and Social Development Department. (2009).  390 

30. Porter, J. R. et al. In Climate Change 2014: Impacts, Adaptation and Vulnerability: 391 

Contribution of Working Group II to the Fifth Assessment Report of the  392 

Intergovernmental Panel on Climate Change, Field, C. B. et al., Eds. (Cambridge 393 

Univ. Press, Cambridge, 2014), pp. 485–533.  394 



22  

31. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-395 

preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 396 

(2013).  397 

  398 

Acknowledgements  399 

We thank the Intersectoral Impact Model Intercomparison Project (ISI-MIP) and 400 

the Agricultural Model Intercomparison and Improvement Project (AgMIP) for 401 

providing crop model simulation results. We also thank Dr. Senthold Asseng for helpful 402 

comments. This study was supported by the National Natural Science Foundation of  403 

China (41561134016 and 41530528), 111 project, and National Youth Top-notch Talent 404 

Support Program in China. P.C., I.J. and J.P. research was supported by the European  405 

Research Council Synergy grant ERC-2013-SYG-610028, IMBALANCE-P. C.M. 406 

acknowledges financial support from the MACMIT project (01LN1317A) funded 407 

through the German Federal Ministry of Education and Research (BMBF).  408 

Author contributions  409 

S.L.P. designed research; C.Z. performed analysis; and all authors contributed to 410 

the interpretation of the results and the writing of the paper.  411 



  

  

23  

Author information  412 

Reprints and permissions information is available at www.nature.com/reprints. 413 

The authors have no competing financial interests. Correspondence and requests for 414 

materials should be addressed to S.L.P. (slpiao@pku.edu.cn)  415 

    416 

Figure legends  417 

Figure 1. Future climate change (2070–2099, RCP 8.5) and its impact on global 418 

rice yield (in comparison to 1971–2000 baseline) from an ensemble of seventeen 419 

GGCM-CMs without CO2 fertilization effects. a, Growing-season temperature  420 

change. b, Relative yield change (reproduced by ref.18). c, The sensitivity of rice yield 421 

to climate change ( ,). The dashed lines represent the median value of the ensemble. 422 

GFDL, HadGEM2, IPSL, MIROC, and NorESM1 represent the climate models 423 

GFDLESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and 424 

NorESM1-M,  425 

respectively.  426 

  427 

Figure 2. Constraint on the long-term sensitivity of rice yield to temperature 428 

change. a, The relationship between global long-term temperature sensitivity of rice 429 
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yield ( ,) and site-scale present-day rice yield sensitivity to temperature across an 430 

ensemble of seventeen GGCM-CMs. The red line shows the temperature sensitivity 431 

estimates ( , , mean ± standard deviation) from field warming experiments. b, Probability 432 

distribution of ,. The black line in b is the probability distribution of unconstrained ,, 433 

assuming all the components of the ensemble can be represented by a Gaussian 434 

distribution; the red dashed line is the experimental data-constrained probability 435 

distribution of ,.   436 

  437 

Figure 3. The estimates of , from four distinct approaches: global gridded crop 438 

models (GGCMs), local crop models, statistical models and field warming 439 

experiments. a, Map of the study sites from local crop models, statistical models and 440 

field warming experiments. The regional-scale studies are represented by the 441 

corresponding label in the centre of the region (one global-scale study is not shown). b, 442 

The estimates of all the present-day and long-term ,. The , from GGCMs are averages 443 

of all the global grid cells but not the grid cells where field warming  444 

experiments are located. Error bars show the standard deviation.   445 
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