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1. Introduction. 

"P1e problem of selecting the qetter of two independent binomial 

populations (i.e., the one with the highest probability of success 

p on a single trial) has been formulated in different ways (see [1) 

and [2] and their references). In this paper, as in [2], we consider 

it in the framework of ranking and:selection problems. For preassigned 

constants p* and ~*, with ½< p* < 1 and * 0 < 6 < 1, it is 

required that the probability of a correct selection {.cs) should 

be at least 

is at least 

(1.1) 

* P when the true difference in the p-values (denoted by~) 

* A, i.e., we want a procedure R such that 

* whenever 6~ ~. It is assumed that tests can be made one at a 

time on either population and that the results are immediately avail­

able. 

As in [2] we are again interested in comparing two different 

sampling rules, but in this paper we use inverse sampling (i.e., 

terminate when any one population has r successes) as a termination 

rule, while in [2] the termination rule was based on the difference 

in the ·number of successes. One of these ·sampling rules is the Play­

the-Winner (PW) rule suggested by Robbins (see the references in 

[2]) in which a success generates a new trial on the same population 

and a failure implies that a switch is to be made to the other pop­

ulation. The other sampling rule is the Vector-at-a-time {vr) 

rule in which we take two observations at each stage, one from each 
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population, and do not consider stopping between these two observa­

tions. Let R
1 

and ~ denote the two inverse sampling procedures, 

based on the PW and VT sampling ~ules, respectively. We will 

show that ~ is preferable to Ri * in the limit (~ ~ 0). The 

procedures based on the absolute difference in the number of successes 

defined in [2] are preferable· to ~ for * ~ sufficiently small 

but the reverse is tr~e for ~ = 0 (or small) * with ~ ·fixed and 

* P sufficiently close to one. Hence there ·is no result based on ex-

pected total number of trials (or on the loss defined in [2]) that is 

* * uniform in both ~ and P. Another reason for studying the inverse 

sampling procedures is that they can be generalized to select the best of 

k > 2 binomial population (cf. [3]), while the analogous generalizations 

of procedures based on the difference generally leads to difficult 

mathematical problems. 

2. The Procedure !r= Exact Results. 

Under inverse_ sampling we stop when any population attains r 

successes and declare that the treatment associated with that popula­

tion is the better treatmeµt; the integer r ~ 1 is predetermined 

so that (1.1) is satisfied. We wish to find the probability of a 

correct selection P{CS I¾) under procedure ~-
Let A denote the better population and B the worse one; let 

and denote the current number of successes for each, so that 

r - SA= TA is the number A needs to be selected andd r - SB= TB 

is the number B needs. Let T = {TA, _TB) and let p > p' denote the 

single-trial success probabilities of A and B, respectively. We define 

probabilities U and V by 
m,n m,n 
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U = Pfcs\T = (m, n) and the next observation is on A} 
m,n · -

V = P(cs\T = (m, n) and the next observation is on B}. 
m,n -

From the PW sampling rule, we have the recursions 

U =pU +qV 
m,n m-1,n m,n 

(2.2) 
V = p'V + q'U 

m,n m,n-1 m,n 

with boundary conditions given by 

(2.3) u
0 

= 1, V 
O 

= 0 for m,n > O. 
,n m, 

To solve (2.2) we use generating functions U = U(x, y) and V = V(x,y) 

defined by 

(2.4) 
CX) 00 

mn 
U= I: I:U xy; 

m=l n=l m,n 

co co 
m n 

V= I: I:V xy. 
1 1 

m,n 
m::: n= 

It is readily verified that (2.2) leads to 

(2.5) 
(1 - px)U - qV = pxy/(1 - y) 

(1 - p'x)V = q'U 

and hence, letting D = (1 - px){l - p'y) - qq', 

(1 - p'y) U = pxy 
1 - y 

V = q' 
D 

D 

Since we commence the PW sampling rule with randomization, i.e., 

observing each with probability% at the outset, it follows that 

(2.7) P {cs IR_ } = ~(u + v ) , 
---i r, r r, r 

or the coefficient of 
r r 

X y in ,\(u + v), 
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satisfy (1.1). To get an explicit expression for (2.7) we expand 

1/D by 

(2.8) 

and similarly for (1 - p 'y )/D. Using the well-known ident_ity (see 

e.g. [2]) for the incomplete beta function 

(2.9) 
s r-l rs+ k) k 

q ~O r s kt p ::: Iq {s, r), 

we readily find from (2.6) that 

(2.10) P(CSjR1} m Pr_; (j+1-l) qj ½(Iq 1 (j, r) + Iq 1 (j + 1, r)}, 
J=O 

where (by definition) I (o, r) = 1 = 1 - I (r, o) for r > O and 
q p 

any q. In a later section we derive ati approximation for the exact 

result (2.10), which is useful for making comparisons. It will be 

convenient to write (2.10) in the form ½E {I ,(X, r) + I ,(X + 1, r)} • 
. r q q 

Analogous calculations give us the expected number of trials 

on the poorer treatment E{NBIR
1

} as well as the expected total 

number of trials E{NfR
1

} needed for termination. Let 

R = E(NBI !. a: (m, n) and the next observation is on A} 
m,n 

(2.11) 

s = E{NBI!. = (m,n) and the next.observation is on B }. 
m,n 

As in (2.2) we obtain the recursions 

R 
m,n = pR l + qS m- ,n m,n 

(2.12) 

s 
m,n 

= p'S l + q'R + 1, 
m,n- m,n 
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with the boundary conditions 

(2.13) R = S = 0 for m,n > o. 
O,n. m,O 

The desired result is 

(2.14) ·E(NBIRI} = \(R + s ). r,r r,r 

Using (2.9) and the generating functions as in (~.5) we obtain 

(2.15) 
. 00 

·_E(N
8
1~} = 

2
!, _E I

4
,(j+_l,r){I

4
(j,r) + r

4
(j+l,r)} 

J=O 

1 = < > L CX) cj+r-1) j c. ) = --r E I (j+l,r) I, j+l,r + 
2

, E j q 1
4

, J+l,r. 
q j=O q q q j=O 

For the expected total number of trials required for termination we 

can either add 1 to the first equation (2.12) or interchange p with 

p' (and q with q') in (2.15) to obtain EfNAIR
1

} and then add 

the result to (2.15). 

To simplify (2.15) we assume p > 0 and first prove 

Lemma 1: For any positive integers r, s and any p ~ 0 

s 

(2.16) E I (r, j) = {r + s) I {r, s) - EI {r + 1, s). 
j=l p. . p p p . . 

The same result holds for any real r ~ 0 and in the limit as p - O. 

Proof: Using (2.9) and the integral form for Ip(r-,j) with r > O, 

(2.17) s ( ·) 
8 

r(r+j) JP r-1( j-1 
E I r, J = _E r(r)(j-l)! t 1 - t) dt 

j=l p J=l O . 

= r JP tr+l 

0 

p dt 
= r £ It(r + 1, s) t 2 • 

(1 - t)
1 ~ 

t 

Integrating by parts and noting that -It(r+l, s}/t - 0 as t - 0 
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we obtain from (2.17) the desired result (2.16). For r = 0 the result 

follows from our de_f inition after (2 .10) and for p .... 0 the result is 

easily shown. 

AP,plying (2.16) to simplify the first part of (2.15), we obtain 

(2.18) 
= = = 
E I (j+l, r) I ,(j+l, r) =. pr E I ,(j+l, r) E (

1
+:-

1
) qi 

j=O q q j=O q i=j+l 1 

rq r·: (i+r-1) qi{(r+i) ( ) r ( )l - - - P ~ 1 I , r, i -·-, I, r+l, i r 
- p i=O p . p p 

where X has a negative binomial distribution with parameter p > O and 

index shown by the subscript on E and p' > o. It follows that 

(2.19) E{N ,R 1 = A [rq + !., E fI ,(r+l, x)} - !. E {I ,(r, x)} 
B I q p .P r · p p r+l p 

If we added ones to both equations in (2.12)' (or interchange p with p' 

in (2.19) and use lemma 2 below) and combine the result with (2.19), we 

find that the total number of trials_ N has exyectation 

(2.20) I } ( 1 1 ) rq . r { ( ) } r { ( ) , EfN R = - + -, [- + -, E I , r+l, X - - E 
1 

I , r, X d 
· I · q q p p r p . p r+ p 

+ 2ql' - 2
1

, E {I ,(r, X+l)} + 2
1 

E {I ,(r, x)} 
q r p q r p 

It is easily shown that all four of the expectations in (2.20) approach zero 

as r .... =· 

3. _Th_e_P_r_o_c_e_du_r_e __ Ri Exact Results. 

We now seek the probability of a correct ·selection for the inverse 

sampling plan when VT sampling is used. If we cons·ider the event 
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that A has its rth success at the mth stage (m ~ r) 

and B has at most r - 1 successe·s at that stage then we obtain 

after sunnning on m 

(3 .1) 

00 

(j+:-1) - pr E qjiq, (j + 1, r) = E (I ,(x + 1, r)} 
j=O J r q 

where Q is the probability that both ·A and B get their 
th 

r 

success at the same. stage. To get the P(cslR±} exactly we write for Q 

(3.2) 

= E (I ,(x, r) - I ,(x + 1, r)) 
r q q 

and hence we obtain from (3.1) and (3.2) 

(3.3) ·p{cslR~J = ½ E (I ,(x, r) + I ,(x + 1, r)}, 
--i r q q 

which is exactly the same as P(csjR
1

} in (2.10). It follows that 

both ¾ and Ri require exactly the same integer r to satisfy (1.1)~ 

Since the probability of selecting B (or the complement of that 

in (3.3)) is obtained by interchanging p with p' and q with q', 

it follows from the above derivation of (3.3) that.the expected member 

of stages (or trials on the poorer treatment') is 

(3.4) 
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To write (3.4) in a more convenient form we first prove a useful 

identity 

Lemma 2: For any positive integers r, s and any p, p' 

(3.5) 

I I • 

(p') 8 ~ (j+~-l)(q')j I (j + 1, r) m pr; (j+:- 1 )q~I ,(s, j) 
j=O J q j=O J p 

Proof: Using (2.9) the right side of (3.5) becomes 

(3.6) pr t (j+r-1 )qj (p, tPi:1 
(i+:-1 )(q, )~ = (p, )s ~ (i+rl )(q, >V ~ (j+~-1 )qj 

j=O j ~-o J imO . j=i+l J 

and, using (2.9) again, this is the left side of (3.5). 

With the help of this lemma we ca.n rewrite the second line of (3 .4) 

and obtain 

(3. 7) = 
2
r E +l(I ,(x, r) + I ,(x + 1, r)) 
p r q q . 

+ 
2
r, E (I ,(r + 1, X) + I ,(r + 1, X + 1)). 
P r P P , 

The expected total number of trials E(NfR1) is simply twice that 

given in (3. 7). 

4. Approximations. 

Having obtained these exact results we now proceed to obta~n 

apprOximations to them that will make the comparisons easier. We 

first state~ useful identity. Let j(s) de~ote j(j - l)° ••• (j - s + 1); 

then for any integer s ~ 0 

(4.1) . r: . (s)cj+r-1) j 
p ~ J j q =. 

j=O 

The proof is trivial and is omitted. In particular it follows from 

s = 1 and 2 that the mean and variance of this negative binomial 

distribution are 
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(4.2) E(X) = .!.9. p, - ~-- p , 

we assume throughout that p and p' · are both positive. 

Consider the first sum in (2.10), without the coefficient 

(4.3) 
00 

s
1 

= pr ~ (j+~-1) qjr
4
,(j, r) = E {1 ,(x, r)}. 

. 0 J r q . 
J= 

.1:. 
·2, 

Let Y and Y, be two independent negative-binomial chance variables 
p p 

with index r and single-trial success probabilities p and p', 

respectively. (r -+ cc) In the limit both Y and y' 
p p 

(and 

hence also Y - Y ,) tend to normally distributed random variables 
p p 

since they can be regarded as the sum of r independent geometrically-

distributed random variables. Hence, using (4.2) and letting 

a= p - p', we can write (exactly in the first 2 steps) 

(4.4) = P(Y - Y , < o} 
p p -

= t 
-y , - r(S - ~) 

p p p p p < 

jr(?+~) 
.£a ) 

Jq(p' )2 + q•p2 J 

- t(a Jf ) + 6( J ) , 

where t(x) is the standard normal distribution and D = q(p')2 + q'p2
• 

The second sum in (2.10) is the same as in (4.4) except that the 

equality sign is dropped; hence we can disregard the second sum if 

we also drop the coefficient ½ and the desired approximation is 

given by (4.4). Both 6 and D contain values of p and p' that 

are generally unknown to the experimenter. The most conservative 

choice of r arises from what is called the least favorable (LF) 

configuration, i.e., we wish to minimize (4.4) subject to the condition 
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that 6 ~ 6*. First we set 6 = 6* in (4.4) and then maximize 

(4.5) 

* for p in the interval (a, 1), An elementary calculation shows 

that the value of p that maximizes (4.5) is 

(4.6) · 1 * * u d * j 2 A* 
_ Po = b (2 + 36 + 4 + 3(6 )2 

) ~} + 2 + V {(6 )
2

). 

Hence disregarding an error of order (6*)2
, the LF configuration 

is to take p and p' 

* maxiDlllm value of D 

an error of order 

* centered at 2/3 with difference l\. The 

is then 
·*' 8/27 + ff{(a )2

} and, disregarding 

*" we find that for small 6 a lower bound 

to P(cslR
1

} is given by 

(4.7) · Min P{CS ,~} - i(l\ J?J r). 

We solve:for r by putting l\ =·a*. in· the right side of (4.6) and setting 

* the result equal to P. If we let 
. * . . * 

A = A(P . ) denote the normal P -

percentage point, i.e., the solution of 

(4.8) 

* = p ' then we obtain 

Table 1 gives some typical values of r calculated from (4.8). 

In the same spirit as above we can firid normal approximations 

to {2.;8) and (2.19) and hence to (2.20). For {2.18), which we denote by 

Ti, we.obtain a symmetric result in p ·and .p' 

(4.9) T _rq _! {l - i{y)} +!, (1 - t(y)}. 
1 p p p 

rq rq' 
= - t{y) + -::r {l - i(y)}, 
. p p 

where y ~ l\ J"r1n is the same argument as in {4_.~) and the error is 

again ( 1/r) o Hence using (4 .• 8) 
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(4.10) 
r --, 
q 

' {-~! t(y) + ~[1 - t(y)]} 
p p 

I 
For the expected total number of trials we multiply the result 

in (4.10) by (1 + q'/q) * as indicated by (2.20); for ~ - 0 the result 

is simply r{q + q')/pq', where r is given by (4~8). 

For the procedure Ri we obtain from (3.7) 

(4.11) 

where y is again as above. Since q < q', we find on comparing (4.10) 

and (4.11) that for large r 

i.e., for large values of r the procedure ¾ with the PW 

sampling rule is always preferable to procedure_ .a;_ which uses the 

VT sampling rule. 

By (2.19) the left member of (4.12) is close to (rq/pq') + l/2q' for 

large r and by (3.7) the right member of (4.12) is close to r/p for 

large r. Hence we can approximate the value of r ab~ve which (4.12) 

holds by the solution of 

(4.13) .!., (\ + rq) 
q p 

r 
= -, 

p 

i.e., by p/2~. 

In comp~ring the results for procedures R
1 

_ and Ri with the 

procedures RS and R~ (see [2]) based on the absolute difference in 

the number of successes, we note that the latter procedures, for which 

E{N} is proportional to 

E{N} is proportional to 

are preferable to ·the former, where 

* when 6 · is sufficiently small 
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* However the reverse holds for fixed 6 · if 6 · is small (or zero) 

* and p. is.sufficiently close to one. Hence there is no result based 

on expected total number of trials (or on the loss defined in (2)) that 

* * is uniform in both ,6 and P. 
; I 

. TABLE 1 

Values of r Needed Under Proced~res RI and ~ 

* * for Given Values of P · and 6 

* * * * 6 p = .90 p = .95 p = .99 

.1 38 49 69 

.2 10 13 18 

.3. 5 6 8 

.4 3 4 6 
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APPENDIX 

As an alternative procedure * RI we could consider waiting for a 

fixed number r of failures (instead of r successes). Unde.r the 

PW sampling rule the number of failuresfor different populations differ 

by at most one. Hence it will be convenient to wait for r failures 

from each of the populations. Since the results for procedure 

so similar to and comparable with those for RI we chose to include 

them here as an appendix. 

The first thing to be noted about * RI is that by considering 

as a new chance variable Y the total number of observations until 
p 

r failures(for one population), we can treat the populations separately 

and we do not need the recursion formula approach. For any such 

using (2.9), 

(A 1) P(Y < y} 
r y 

cm-1) m-r 
= q I: p·. 

p- r-1 
m=r 

r 
y-r 

(j+:-1) pj = q I: = I (r, y-r+l), 
j=O J q 

y ' p 

the mean E(Y} = r/q, and the variance a 2 (Y) = rp/q2 . Hence the 
p p 

exact probability of a correct selection (cs) is 

(A 2) P(Y > y I} + ½P{Y = y I ) 
p p p p 

co 

= qr I: 

j=O 

= ½E'(I ,(r, x) + I ,(r, X + l)}, 
r q q 

where p > p' are the two single-trial success probabilities as before 

and E' differs from E, following (2.10), only in that p and q 
r r 

are interchanged. 
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The exact value for the total number of observations required by 

* R
1 

is simply 

(A 3) E{Y + Y ,} = r'(! +L). 
I p p q q' 

To determine r we minimize the right side of (A 2) subject to 

the condition that * 6 = p - p' = q' - q 2:: A, set ~he result equal to 

p*, and solve for r. It is clear from (A 2) that for a minimum we 

set q' equal to its lowest value * q + 6 • The minimization in q 

is treated asymptotically (r ~ m) in direct analogy with the method used 

in (4.4), obtaining 

(A 4) 

where D and I are as above after (4.4). As in (4.5) we maximize 

D obtaining the same solution as in (4.6) for the minimizing value of 

P• Setting the right side of (A 4) equal to 
* . I 

P ., we obtain the same 

solution for r as in (4.8). Hence in comparing the asymptotic result 

in (4.10) (setting y = m * for 6 small) with (A 3) above,we find 

* that for small A (which implies a large r) procedure ~ is 

preferable when 

(A 5) .9. < 1 
p 

or p>½ 

* and R
1 

is preferable w~en p < ½-
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