Play-the-Winner Rule and Inverse Sampling in Selecting the Better of Two Binomial Populations - Source link

Milton Sobel, George H. Weiss
Institutions: University of Minnesota, National Institutes of Health
Published on: 01 Sep 1971 - Journal of the American Statistical Association (Taylor \& Francis Group)
Topics: Sampling (statistics), Poisson sampling, Sampling design, Bernoulli sampling and Systematic sampling

Related papers:

- Play-the-winner sampling for selecting the better of two binomial populations
- Play the Winner Rule and the Controlled Clinical Trial
- An Inverse Stopping Rule for Play-the-Winner Sampling
- A two-stage procedure for choosing the better of two binomial populations
- A sequential decision problem with a finite memory.

PLAY-THE-WINNER RULE AND INVERSE SAMPLING IN SELECTING THE BETTER OF TWO BINOMIAL POPULATIONS
 by
 Milton Sobel* and George H. Weiss ${ }^{+}$
 University of Minnesota Technical Report No. 124

Imperial College, London
July, 1969

* This author was supported in part by National Science Foundation Grant GP-9018 and in part by National Science Foundation Grant 11021. Permanent Address: Department of Statistics, University of Minnesota, Minneapolis, Minnesota 55455.
+ Permanent Address: National Institutes of Health, Bethesda. Maryland 20014.

1. Introduction.

The problem of selecting the better of two independent binomial populations (i.e., the one with the highest probability of success p on a single trial) has been formulated in different ways (see [1] and [2] and their references). In this paper, as in [2], we consider it in the framework of ranking and selection problems. For preassigned constants P^{*} and Δ^{*}, with $\frac{1}{2}<P^{*}<1$ and $0<\Delta^{*}<1$, it is required that the probability of a correct selection (CS) should be at least P^{*} when the true difference in the p-values (denoted by Δ) is at least Δ^{*}, i.e., we want a procedure R such that

$$
\begin{equation*}
P\{C S \mid R\} \geq P^{*} \tag{1.1}
\end{equation*}
$$

whenever $\Delta \geq \Delta^{*}$. It is assumed that tests can be made one at a time on either population and that the results are immediately available.

As in [2] we are again interested in comparing two different sampling rules, but in this paper we use inverse sampling (i.e., terminate when any one population has r successes) as a termination rule, while in [2] the termination rule was based on the difference in the number of successes. One of these sampling rules is the Play-the-Winner (PW) rule suggested by Robbins (see the references in [2]) in which a success generates a new trial on the same population and a failure implies that a switch is to be made to the other population. The other sampling rule is the Vector-at-a-time (VT) rule in which we take two observations at each stage, one from each
population, and do not consider stopping between these two observations. Let R_{I} and R_{I}^{\prime} denote the two inverse sampling procedures, based on the PW and VT sampling rules, respectively. We will show that R_{I} is preferable to R_{I}^{\prime} in the limit $\left(\Delta^{*} \rightarrow 0\right)$. The procedures based on the absolute difference in the number of successes defined in [2] are preferable to R_{I} and R_{I}^{\prime} for Δ^{*} sufficiently small but the reverse is true for $\Delta=0$ (or small) with Δ^{*} fixed and P^{*} sufficiently close to one. Hence there is no result based on expected total number of trials (or on the loss defined in [2]) that is uniform in both Δ^{*} and P^{*}. Another reason for studying the inverse sampling procedures is that they can be generalized to select the best of $k>2$ binomial population (cf. [3]), while the analogous generalizations of procedures based on the difference generally leads to difficult mathematical problems.

2. The Procedure R_{I} : Exact Results.

Under inverse sampling we stop when any population attains r successes and declare that the treatment associated with that population is the better treatment; the integer $r \geq 1$ is predetermined so that (1.1) is satisfied. We wish to find the probability of a correct selection $P\left\{C S \mid R_{I}\right\}$ under procedure R_{I}.

Let A denote the better population and B the worse one; let S_{A} and S_{B} denote the current number of successes for each, so that $r-S_{A}=T_{A}$ is the number A needs to be selected andd $r-S_{B}=T_{B}$ is the number B needs. Let $T=\left(T_{A}, T_{B}\right)$ and let $p>p^{\prime}$ denote the single-trial success probabilities of A and B, respectively. We define probabilities $U_{m, n}$ and $V_{m, n}$ by

$$
\begin{aligned}
& U_{m, n}=P\{C S \mid \underset{T}{T}=(m, n) \text { and the next observation is on } A\} \\
& V_{m, n}=P\{C S \mid \underset{\sim}{T}=(m, n) \text { and the next observation is on } B\} .
\end{aligned}
$$

From the $P W$ sampling rule, we have the recursions

$$
\begin{align*}
& U_{m, n}=p U_{m-1, n}+q v_{m, n} \\
& v_{m, n}=p^{\prime} v_{m, n-1}+q^{\prime} U_{m, n} \tag{2.2}
\end{align*}
$$

with boundary conditions given by

$$
\begin{equation*}
\mathrm{U}_{0, \mathrm{n}}=1, \mathrm{v}_{\mathrm{m}, \mathrm{O}}=0 \text { for } \mathrm{m}, \mathrm{n}>0 \tag{2.3}
\end{equation*}
$$

To solve (2.2) we use generating functions $U=U(x, y)$ and $V=V(x, y)$ defined by
(2.4) $\quad U=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} U_{m, n} x^{m} y^{n} ; \quad V=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} v_{m, n} x^{m} y^{n}$.

It is readily verified that (2.2) leads to
$(1-\mathrm{px}) \mathrm{U}-\mathrm{qV}=\mathrm{pxy} /(1-\mathrm{y})$
$\left(1-p^{\prime} x\right) V=q^{\prime} U$
and hence, letting $D=(1-p x)\left(1-p^{\prime} y\right)-q q^{\prime}$,

$$
\begin{aligned}
& U=\frac{p x y}{1-y} \frac{\left(1-p^{\prime} y\right)}{D} \\
& V=\frac{p x y}{1-y} \frac{q^{\prime}}{D} .
\end{aligned}
$$

Since we commence the PW sampling rule with randomization, i.e., observing each with probability $\frac{3}{2}$ at the outset, it follows that

$$
\begin{equation*}
P\left\{C S \mid R_{I}\right\}=\frac{1}{2}\left(U_{r, r}+V_{r, r}\right) \tag{2.7}
\end{equation*}
$$

or the coefficient of $x^{r} y^{r}$ in $\frac{1}{2}(U+V)$, where r is chosen to
satisfy (1.1). To get an explicit expression for (2.7) we expand 1/D by

$$
\begin{equation*}
\frac{1}{D}=\sum_{i=0}^{\infty} \frac{\left(q q^{\prime}\right)^{i}}{\left\{(1-p x)\left(1-p^{\prime} y\right)\right\}^{i+1}}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(p x)^{j}\left(p^{\prime} y\right)^{k} \sum_{i=0}^{\infty}\binom{i+j}{i}\binom{i+k}{i}\left(q q^{\prime}\right)^{i} . \tag{2.8}
\end{equation*}
$$

and similarly for ($1-p$ 'y)/D. Using the well-known identity (see e.g. [2]) for the incomplete beta function

$$
\begin{equation*}
q^{s} \sum_{k=0}^{r-1} \frac{\Gamma(s+k)}{\Gamma(s) k!} p^{k}=I_{q}(s, r), \tag{2.9}
\end{equation*}
$$

we readily find from (2.6) that
(2.10) $P\left\{C S \mid R_{I^{\prime}}\right\}=p_{j=0}^{r} \sum_{j}^{\infty}\left(\begin{array}{rl}j-1\end{array}\right) q^{j} \frac{1}{2}\left\{I_{q^{\prime}}(j, r)+I_{q^{\prime}}(j+1, r)\right\}$, where (by definition) $I_{q}(0, r)=1=1-I_{p}(r, 0)$ for $r>0$ and any q. In a later section we derive an approximation for the exact result (2.10), which is useful for making comparisons. It will be convenient to write (2.10) in the form $\frac{1}{2} E_{r}\left\{I_{q^{\prime}}(X, r)+I_{q^{\prime}}(X+1, r)\right\}$.

Analogous calculations give us the expected number of trials on the poorer treatment $E\left\{N_{B} \mid R_{I}\right\}$ as well as the expected total number of trials $E\left\{N \mid R_{I}\right\}$ needed for termination. Let

$$
\begin{equation*}
R_{m, n}=E\left\{N_{B} \mid \underline{T}=(m, n) \text { and the next observation is on } A\right\} \tag{2.11}
\end{equation*}
$$

$$
S_{m, n}=E\left\{N_{B} \mid T=(m, n) \text { and the next observation is on } B\right\}
$$

As in (2.2) we obtain the recursions

$$
\begin{equation*}
R_{m, n}=p R_{m-1, n}+q S_{m, n} \tag{2.12}
\end{equation*}
$$

$$
S_{m, n}=p^{\prime} S_{m, n-1}+q^{\prime} R_{m, n}+1
$$

with the boundary conditions

$$
\begin{equation*}
R_{0, n}=S_{m, 0}=0 \text { for } m, n>0 \tag{2.13}
\end{equation*}
$$

The desired result is

$$
\begin{equation*}
E\left\{N_{B} \mid R_{I}\right\}=\frac{1}{2}\left(R_{r, r}+S_{r, r}\right) \tag{2.14}
\end{equation*}
$$

Using (2.9) and the generating functions as in (2.5) we obtain

$$
\begin{align*}
& E\left\{N_{B} \mid R_{I}\right\}=\frac{1}{2 q} \sum_{j=0}^{\infty} I_{q^{\prime}}(j+1, r)\left\{I_{q}(j, r)+I_{q}(j+1, r)\right\} \tag{2.15}\\
& \quad=\frac{1}{q^{\prime}} \sum_{j=0}^{\infty} I_{q}(j+1, r) I_{q^{\prime}}(j+1, r)+\frac{p^{r}}{2 q^{\prime}} \sum_{j=0}^{\infty}\left(\sum_{j+r-1}^{j}\right) q^{j} I_{q^{\prime}}(j+1, r)
\end{align*}
$$

For the expected total number of trials required for termination we can either add 1 to the first equation (2.12) or interchange p with p^{\prime} (and q with q^{\prime}) in (2.15) to obtain $E\left\{N_{A} \mid R_{I}\right\}$ and then add the result to (2.15).

To simplify (2.15) we assume $p>0$ and first prove Lemma 1: For any positive integers r, s and any $p \geq 0$

$$
\begin{equation*}
\sum_{j=1}^{s} I_{p}(r, j)=(r+s) I_{p}(r, s)-\frac{r}{p} I_{p}(r+1, s) \tag{2.16}
\end{equation*}
$$

The same result holds for any real $r \geq 0$ and in the limit as $p \rightarrow 0$. Proof: Using (2.9) and the integral form for $I_{p}(r, j)$ with $r>0$,

$$
\begin{align*}
\sum_{j=1}^{s} I_{p}(r, j) & =\sum_{j=1}^{s} \frac{\Gamma(r+j)}{\Gamma(r)(j-1)!} \int_{0}^{p} t^{r-1}(1-t)^{j-1} d t \tag{2.17}\\
& =r \int_{0}^{p} t^{r+1} \sum_{i=0}^{s-1} \frac{\Gamma(r+i+1)}{\Gamma(r+1) i!}(1-t)^{i} \frac{d t}{t^{2}} \\
& =r \int_{0}^{p} I_{t}(r+1, s) \frac{d t}{t^{2}} .
\end{align*}
$$

Integrating by parts and noting that $I_{t}(r+1, s) / t \rightarrow 0$ as $t \rightarrow 0$
we obtain from (2.17) the desired result (2.16). For $r=0$ the result follows from our definition after (2.10) and for $p \rightarrow 0$ the result is easily shown.

Applying (2.16) to simplify the first part of (2.15), we obtain

$$
\begin{align*}
& \sum_{j=0}^{\infty} I_{q}(j+1, r) I_{q^{\prime}}(j+1, r)=p^{r} \sum_{j=0}^{\infty} I_{q^{\prime}}(j+1, r) \sum_{i=j+1}^{\infty}\binom{i+r-1}{i} q^{i} \tag{2.18}\\
= & p^{r} \sum_{i=0}^{\infty}\binom{i+r-1}{i} q^{i} \sum_{j=0}^{i-1}\left\{1-I_{p^{\prime}}(r, j+1)\right\} \\
= & \frac{r q}{p}-p^{r} \sum_{i=0}^{\infty}\binom{i+r-1}{i} q^{i}\left\{(r+i) I_{p^{\prime}}(r, i)-\frac{r}{p^{\prime}} I_{p^{\prime}}(r+1, i)\right\} \\
= & \frac{r q}{p}-\frac{r}{p} E_{r+1}\left\{I_{p^{\prime}}^{\prime}(r, x)\right\}+\frac{r}{p^{r^{\prime}}} E_{r}\left\{I_{p^{\prime}}(r+1, x)\right\},
\end{align*}
$$

where X has a negative binomial distribution with parameter $\mathrm{p}>0$ and index shown by the subscript on E and $p^{\prime}>0$. It follows that

$$
\begin{align*}
E\left\{N_{B} \mid R_{I}\right\}= & \frac{1}{q^{r}}\left[\frac{r q}{p}+\frac{r}{P}, E_{r}\left\{I_{p^{\prime}}(r+1, X)\right\}-\frac{r}{p} E_{r+1}\left\{I_{p^{\prime}}(r, X)\right\}\right. \tag{2.19}\\
& \left.+\frac{1}{2} E_{r}\left\{I_{q^{\prime}}(X+1, r)\right\}\right]
\end{align*}
$$

If we added ones to both equations in (2.12) (or interchange p with p^{\prime} in (2.19) and use lemma 2 below) and combine the result with (2.19), we find that the total number of trials. N has expectation

$$
\begin{align*}
E\left\{N \mid R_{I}\right\}= & \left(\frac{1}{q}+\frac{1}{q^{\prime}}\right)\left[\frac{r q}{p}+\frac{r}{p}, E_{r}\left\{I_{p^{\prime}}(r+1, X)\right\}-\frac{r}{p} E_{r+1}\left\{I_{p^{\prime}}(r, X)\right\}\right] \tag{2.20}\\
& +\frac{1}{2 q^{r}}-\frac{1}{2 q^{\prime}} E_{r^{\prime}}\left\{I_{p^{\prime}}(r, X+1)\right\}+\frac{1}{2 q} E_{r}\left\{I_{p^{\prime}}(r, X)\right\}
\end{align*}
$$

It is easily shown that all four of the expectations in (2.20) approach zero as $r \rightarrow \infty$.

3. The Procedure R_{I}^{\prime} : Exact Results.

We now seek the probability of a correct selection for the inverse sampling plan when VT sampling is used. If we consider the event
that A has its r th success at the moth stage $(m \geq r)$, and B has at most $r-1$ successes at that stage then we obtain after summing on m

$$
\begin{align*}
& P\left\{\operatorname{CS} \mid R_{I}^{\prime}\right\}-\frac{1}{2} Q=\sum_{m=r}^{\infty}\left(\begin{array}{c}
m-1
\end{array}\right) p^{r} q^{m-r} \sum_{i=0}^{r-1}\left(\begin{array}{l}
m
\end{array}\right)\left(p^{\prime}\right)^{i}\left(q^{\prime}\right)^{m-i} \tag{3.1}\\
& =p^{r} \sum_{j=0}^{\infty}\binom{j+r-1}{j} q^{j} I_{q^{\prime}}(j+1, r)=E_{r}\left\{I_{q^{\prime}}(X+1, r)\right\}
\end{align*}
$$

where Q is the probability that both A and B get their $r^{\text {th }}$ success at the same stage. To get the $P\left\{C S \mid R_{I}^{\prime}\right\}$ exactly we write for Q

$$
\begin{align*}
Q & =\sum_{m=r}^{\infty}\binom{m-1}{r-1}^{2}\left(p p^{\prime}\right)^{r}\left(q q^{\prime}\right)^{m-r}=\left(p p^{\prime}\right)^{r} \sum_{j=0}^{\infty}\left({ }^{j+r-1}\right)^{2}\left(q q^{\prime}\right)^{j} \tag{3.2}\\
& =p^{r} \sum_{j=0}^{\infty}\binom{j+r-1}{j} q^{j}\left(p^{\prime}\right)^{r}\left\{\sum_{i=j}^{\infty}\binom{i+r-1}{i}\left(q^{\prime}\right)^{i}-\sum_{i=j+1}^{\infty}\binom{i+r-1}{i}\left(q^{\prime}\right)^{i}\right\} \\
& =E_{r}\left\{I_{q}(x, r)-I_{q^{\prime}}(x+1, r)\right\}
\end{align*}
$$

and hence we obtain from (3.1) and (3.2)

$$
P\left\{\operatorname{CS} \mid R_{I}^{\prime}\right\}=\frac{1}{2} E_{r}\left\{I_{q^{\prime}}(X, r)+I_{q^{\prime}}(X+1, r)\right\},
$$

which is exactly the same as $P\left\{C S \mid R_{I}\right\}$ in (2.10). It follows that both R_{I} and R_{I}^{\prime} require exactly the same integer r to satisfy (1.1).

Since the probability of selecting B (or the complement of that in (3.3)) is obtained by interchanging p with p^{\prime} and q with q^{\prime}, it follows from the above derivation of (3.3) that the expected member of stages (or trials on the poorer treatment) is

$$
\begin{align*}
E\left\{N_{B} \mid R_{I}^{\prime}\right\}= & p^{r} \sum_{j=0}^{\infty}(j+r)(\underset{j}{j+r-1}) q^{j} \frac{1_{2}}{2}\left\{I_{q^{\prime}}(j, r)+I_{q^{\prime}}(j+1, r)\right\} \tag{3.4}\\
& +\left(p^{\prime}\right)^{r} \sum_{j=0}^{\infty}(j+r)\left({ }_{j}^{j+r-1}\right)\left(q^{\prime}\right)^{j} \frac{1}{2}\left\{I_{q}(j, r)+I_{q}(j+1, r)\right\}
\end{align*}
$$

To write (3.4) in a more convenient form we first prove a useful identity

Lemma 2: For any positive integers r, s and any p, p^{\prime}

Proof: Using (2.9) the right side of (3.5) becomes

$$
p^{r} \sum_{j=0}^{\infty}\binom{j+r-1}{j} q^{j}\left(p^{\prime}\right)^{s}\left[\sum_{i=0}^{j-1}\binom{i+s-1}{i}\left(q^{\prime}\right)^{i}\right]=\left(p^{\prime}\right)^{s} \sum_{i=0}^{\infty}\left(\begin{array}{c}
i+s-1 \tag{3.6}\\
i
\end{array}\left(q^{\prime}\right)^{i} p^{r} \sum_{j=i+1}^{\infty}\left({ }_{j}^{j+r-1}\right) q^{j}\right.
$$

and, using (2.9) again, this is the left side of (3.5).
With the help of this lemma we can rewrite the second line of (3.4) and obtain

$$
\begin{align*}
E\left\{N_{B} \mid R_{I}^{\prime}\right\}= & \frac{r}{2 p} E_{r+1}\left\{I_{q^{\prime}}(X, r)+I_{q^{\prime}}(X+1, r)\right\} \tag{3.7}\\
& +\frac{r}{2 p^{\prime}} E_{r}\left\{I_{p^{\prime}}(r+1, X)+I_{p^{\prime}}(r+1, X+1)\right\}
\end{align*}
$$

The expected total number of trials $E\left\{N \mid R_{I}^{\prime}\right\}$ is simply twice that given in (3.7).

4. Approximations.

Having obtained these exact results we now proceed to obtain approximations to them that will make the comparisons easier. We first state a useful identity. Let $j(s)$ denote $j(j-1) \ldots(j-s+1)$; then for any integer $s \geq 0$

$$
\begin{equation*}
p^{r} \sum_{j=0}^{\infty} j^{(s)}(\underset{j}{j+r-1}) q^{j}=r^{(s)}\left(\frac{q}{p}\right)^{8} \tag{4.1}
\end{equation*}
$$

The proof is trivial and is omitted. In particular it follows from $s=1$ and 2 that the mean and variance of this negative binomial distribution are

$$
\begin{equation*}
E(x)=\frac{r q}{p}, \quad \sigma^{2}(x)=\frac{r q}{p^{2}} ; \tag{4.2}
\end{equation*}
$$

we assume throughout that p and p^{\prime} are both positive.
Consider the first sum in (2.10), without the coefficient $\frac{1}{2}$,

$$
\begin{equation*}
S_{1}=p^{r} \sum_{j=0}^{\infty}(j+r-1) q^{j} I_{q^{\prime}}(j, r)=E_{r}\left\{I_{q^{\prime}}(X, r)\right\} . \tag{4.3}
\end{equation*}
$$

Let Y_{p} and Y_{p}, be two independent negative-binomial chance variables with index r and single-trial success probabilities p and p^{\prime}, respectively. In the limit $(r \rightarrow \infty)$ both Y_{p} and Y_{p}^{\prime} (and hence also $Y_{p}-Y_{p^{\prime}}$) tend to normally distributed random variables since they can be regarded as the sum of r independent geometricallydistributed random variables. Hence, using (4.2) and letting $\Delta=p-p \prime$, we can write (exactly in the first 2 steps)

$$
\begin{align*}
S_{1} & =P\left\{Y_{p}-Y_{p^{\prime}} \leq 0\right\} \tag{4.4}\\
& =P\left\{\frac{Y_{p}-Y_{p^{\prime}}-r\left(\frac{q}{p}-\frac{q^{\prime}}{p^{\prime}}\right)}{\sqrt{r\left(\frac{q}{p^{2}}+\frac{q^{\prime}}{\left(p^{\prime}\right)^{2}}\right)}} \leq \frac{\sqrt{r} \Delta}{\sqrt{q\left(p^{\prime}\right)^{2}+q^{\prime} p^{2}}}\right\} \\
& \sim \Phi\left(\Delta \sqrt{\frac{r}{D}}\right)+\varnothing\left(\frac{1}{r}\right)
\end{align*}
$$

where $\Phi(x)$ is the standard normal distribution and $D=q\left(p^{\prime}\right)^{2}+q^{\prime} p^{2}$. The second sum in (2.10) is the same as in (4.4) except that the equality sign is dropped; hence we can disregard the second sum if we also drop the coefficient $\frac{1}{2}$ and the desired approximation is given by (4.4). Both Δ and D contain values of p and p^{\prime} that are generally unknown to the experimenter. The most conservative choice of r arises from what is called the least favorable (Lf) configuration, i.e., we wish to minimize (4.4) subject to the condition
that $\Delta \geq \Delta^{*}$. First we set $\Delta=\Delta^{*}$ in (4.4) and then maximize

$$
\begin{equation*}
D^{*}=(1-p)\left(p-\Delta^{*}\right)^{2}+\left(1-p+\Delta^{*}\right) p^{2} \tag{4.5}
\end{equation*}
$$

for p in the interval $\left(\Delta^{*}, 1\right)$, An elementary calculation shows that the value of p that maximizes (4.5) is

$$
\begin{equation*}
\mathbf{p}_{0}=\frac{1}{6}\left(2+3 \Delta^{*}+\sqrt{4+3\left(\Delta^{*}\right)^{2}}\right)=\frac{2}{3}+\frac{\Delta^{*}}{2}+\theta\left\{\left(\Delta^{*}\right)^{2}\right\} . \tag{4.6}
\end{equation*}
$$

Hence disregarding an error of order $\left(\Delta^{*}\right)^{2}$. the LF configuration is to take p and p^{\prime} centered at $2 / 3$ with difference Δ^{*}. The maximum value of D^{*} is then $8 / 27+\theta\left\{\left(\Delta^{*}\right)^{2}\right\}$ and, disregarding an error of order $\left(\Delta^{*}\right)^{2}$, we find that for small Δ^{*} a lower bound to $P\left\{C S \mid R_{I}\right\}$ is given by
(4.7) $\quad \operatorname{Min} P\left\{C s \mid R_{I}\right\} \sim \Phi\left(\Delta \sqrt{\frac{27}{8} r}\right)$.

We solve for r by putting $\Delta=\Delta^{*}$. in the right side of (4.6) and setting the result equal to P^{*}. If we let $\lambda=\lambda\left(P^{*}\right)$ denote the normal P^{*} percentage point, i.e., the solution of $\Phi(\lambda)=P^{*}$, then we obtain (4.8) $\quad \mathbf{r}=\frac{8}{27}\left(\frac{\lambda}{\Delta^{*}}\right)^{2}$.

Table 1 gives some typical values of r calculated from (4.8).
In the same spirit as above we can find normal approximations to (2.18) and (2.19) and hence to (2.20). For (2.18), which we denote by T_{i}, we obtain a symmetric result in p and p^{\prime}

$$
\begin{align*}
T_{1} & \sim \frac{r q}{p}-\frac{r}{p}\{1-\Phi(y)\}+\frac{r}{p^{\prime}}\{1-\Phi(y)\} \tag{4.9}\\
& =\frac{r q}{p} \Phi(y)+\frac{r q^{\prime}}{p^{\prime}}\{1-\Phi(y)\},
\end{align*}
$$

where $y=\Delta \sqrt{r / D}$ is the same argument as in (4.4) and the error is again ($1 / r$). Hence using (4.8)

$$
\begin{align*}
E\left\{N_{B} \mid R_{I}\right\} & \sim \frac{r}{q}, \quad\left\{\frac{q}{p} \Phi(y)+\frac{q^{\prime}}{p^{r}}[1-\Phi(y)]\right\} \tag{4.10}\\
& \sim \frac{8}{27 q} r\left(\frac{\lambda}{\Delta^{*}}\right)^{2}\left\{\frac{q}{p} \Phi\left(\frac{\lambda \Delta}{\Delta^{*}} \sqrt{\frac{27}{8 D}}\right)+\frac{q^{\prime}}{p^{\prime}}\left[1-\Phi\left(\frac{\lambda \Delta}{\Delta^{*}} \sqrt{\frac{27}{8 D}}\right)\right]\right\} .
\end{align*}
$$

For the expected total number of trials $E\left\{N \mid R_{I}\right\}$ we multiply the result in (4.10) by $\left(1+q^{\prime} / q\right)$ as indicated by (2.20); for $\Delta^{*} \rightarrow 0$ the result is simply $r\left(q+q^{\prime}\right) / p q^{\prime}$, where r is given by (4.8).

For the procedure R_{I}^{\prime} we obtain from (3.7)

$$
\begin{equation*}
E\left\{N_{B} \mid R_{I}^{\prime}\right\} \sim \frac{r}{p} \Phi(y)+\frac{r}{P},\{1-\Phi(y)\}, \tag{4.11}
\end{equation*}
$$

where y is again as above. Since $q<q^{\prime}$, we find on comparing (4.10) and (4.11) that for large r
(4.12) $E\left\{N_{B} \mid R_{I}\right\}<E\left\{N_{B} \mid R_{I}^{\prime}\right\}$
i.e., for large values of r the procedure R_{I} with the $P W$ sampling rule is always preferable to procedure. R_{I}^{\prime} which uses the VT sampling rule.

By (2.19) the left member of (4.12) is close to (rq/pq') + $1 / 2 q^{\prime}$ for large r and by (3.7) the right member of (4.12) is close to r / p for large r. Hence we can approximate the value of r above which (4.12) holds by the solution of

$$
\begin{equation*}
\frac{1}{q},\left(\frac{1}{2}+\frac{r q}{p}\right)=\frac{r}{p}, \tag{4.13}
\end{equation*}
$$

i.e., by $p / 2 \Delta$.

In comparing the results for procedures R_{I} and R_{I}^{\prime} with the procedures R_{S} and R_{S}^{\prime} (see [2]) based on the absolute difference in the number of successes, we note that the latter procedures, for which $E\{N\}$ is proportional to $\left(\Delta \Delta^{*}\right)^{-1}$, are preferable to the former, where $E\{N\}$ is proportional to $\left(\Delta^{*}\right)^{-2}$, when Δ^{*} is sufficiently small

However the reverse holds for fixed Δ^{*} if Δ is small (or zero) and P^{*} is sufficiently close to one. Hence there is no result based on expected total number of trials (or on the loss defined in [2]) that is uniform in both Δ^{*} and P^{*}.

TABLE 1

Values of r Needed Under Procedures R_{I} and R_{I}^{\prime} for Given Values of P^{*} and Δ^{*}

Δ^{*}	$\mathbf{P}^{*}=.90$	$\mathbf{P}^{*}=.95$	$\mathbf{P}^{*}=.99$
.1	38	49	69
.2	10	13	18
.3	5	6	8
.4	3	4	6

REFERENCES

[1] Bechhofer, R. E., Kiefer, J.; and Sobel M. (1968). Sequential Identification and Ranking Problems. University of Chicago Press, Chicago.
[2] Sobel, M. and Weiss, G. H. (1969). "Play-the-winner sampling for selecting the better of two binomial populations," University of Minnesota, Department of Statistics, Technical Report No. 123. [3] Sobel, M., and Weiss, G. H. (1969). "Play-the-winner rule and inverse sampling for selecting the best of $k \geq 3$ binomial populations," Univ. of Minnesota Department of Statistics, Technical Report No. 126.

APPENDIX

As an alternative procedure R_{I}^{*} we could consider waiting for a fixed number r of failures(instead of r successes). Under the PW sampling rule the number of failures for different populations differ by at most one. Hence it will be convenient to wait for r failures from each of the populations. Since the results for procedure R_{I}^{*} are so similar to and comparable with those for R_{I} we chose to include them here as an appendix.

The first thing to be noted about R_{I}^{*} is that by considering as a new chance variable Y_{p} the total number of observations until r failures(for one population), we can treat the populations separately and we do not need the recursion formula approach. For any such Y_{p}, using (2.9),

$$
\begin{align*}
P\left\{Y_{p} \leq y\right\} & =q^{r} \sum_{m=r}^{y}\binom{m-1}{r-1} p^{m-r} \tag{array}\\
& =q^{r} \sum_{j=0}^{y-r}\binom{j+r-1}{j} p^{j}=I_{q}(r, y-r+1)
\end{align*}
$$

the mean $E\left\{Y_{p}\right\}=r / q$, and the variance $\sigma^{2}\left(Y_{p}\right)=r p / q^{2}$. Hence the exact probability of a correct selection (CS) is
(A 2)

$$
\begin{aligned}
P\left\{C S \mid R_{I}^{*}\right\} & =P\left\{Y_{p}>Y_{p^{\prime}}\right\}+\frac{1}{2} P\left\{Y_{p}=Y_{p^{\prime}}\right\} \\
& =q^{r} \sum_{j=0}^{\infty}\left(\begin{array}{c}
j+r-1
\end{array}\right) p^{j}\left\{I_{q^{\prime}}(r, j)+\frac{1}{2}\left[I_{q^{\prime}}(r, j+1)-I_{q^{\prime}}(r, j)\right]\right\} \\
& =\frac{1}{2} E_{r}^{\prime}\left\{I_{q^{\prime}}(r, X)+I_{q^{\prime}}(r, X+1)\right\}
\end{aligned}
$$

where $p>p^{\prime}$ are the two single-trial success probabilities as before and E_{r}^{\prime} differs from E_{r}, following (2.10), only in that p and q are interchanged.

The exact value for the total number of observations required by R_{I}^{*} is simply
(A 3) $\quad E\left\{N \mid R_{I}^{*}\right\}=E\left\{Y_{p}+Y_{p^{\prime}}\right\}=r\left(\frac{1}{q}+\frac{1}{q^{\prime}}\right)$.
To determine r we minimize the right side of (A 2) subject to the condition that $\Delta=p-p^{\prime}=q^{\prime}-q \geq \Delta^{*}$, set the result equal to P^{*}, and solve for r. It is clear from (A 2) that for a minimum we set q^{\prime} equal to its lowest value $q+\Delta^{*}$. The minimization in q is treated asymptotically ($\mathrm{r} \rightarrow \infty$) in direct analogy with the method used in (4.4), obtaining
(A 4) $\quad P\left\{C S \mid R_{I}^{*}\right\} \sim E_{r}^{\prime}\left\{I_{q^{\prime}}(\mathbf{r}, \mathbf{X})\right\} \sim \Phi\left(\Delta \sqrt{\frac{r}{D}}\right)$
where D and are as above after (4.4). As in (4.5) we maximize D obtaining the same solution as in (4.6) for the minimizing value of p. Setting the right side of (A 4) equal to P^{*}, we obtain the same solution for r as in (4.8). Hence in comparing the asymptotic result in (4.10) (setting $y=\infty$ for Δ^{*} small) with (A 3) above, we find that for small Δ^{*} (which implies a large r) procedure R_{I} is preferable when
(A 5) $\quad \frac{\mathrm{q}}{\mathrm{p}}<1 \quad$ or $\quad \mathrm{p}>\frac{1}{2}$
and R_{I}^{*} is preferable when $p<\frac{1}{2}$.

