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ABSTRACT 

The sequential allocation of treatments by an experimenter is 

considered for determining which of two binomial populations has a 

larger probability of success. Of particular intere~t in this study is 

a "Play-the-Winner" {PW) sampling rule which prescribes that one 

continues with the same population after each success and one switches 

to the opposite population after each failure. The performance of the 

PW rule is examined for the selection problem, i.e., for selecting the 

better population with probability * P when the two single-trial 

probabilities, p and p', * * differ by at least A, where P and 

* A are prescribed. A comparison is made between PW-sampling and 

Vector-at-a-time {VT) sampling. In comparing results a criterion used 

is the expected number of failures that could have been avoided by 

using the better population throughout. It is shown for a particular 

common termination rule that with * 6 close to zero the PW sampling 

is superior to VT sampling if and only if ½(P + p') > 3/4. Other 

comparisons are also discussed. 
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1. Introduction. On the problem of selecting the better of two 

treatments for the same disease, the past work appears to fall into two 

different approaches, which we might call the allocation problem and the 

limiting behavior of the 2-arm bandit problem. After a brief critical 

discussion of these two,we discuss a third approach which assumes 

that (i) we wish to have a probability of at least * P of selecting 

the better treatment when it is sufficiently better and (ii) that we 

are interested in minimizing the number of people put on the poorer 

treatment, or equivalently minimizing the expected number of failures 

that could have been avoided by using the better treatment throughout. 

In the allocation problem there is a known total number N of 

patients (called the horizon), each patient to be treated with one or the 

other (but not both) treatments. The first n of the patients are us~d 

for selecting the better drug and the remaining N - n patients are 

treated with the drug selected as better. Aspects of this formulation 

have been studied by Armitage (1), Anscombe (2), Colton [3] and Zelen 

[4]. It is assumed in all these studies that the results of each 

treatment are dichotomous (success or failure) and can be observed with

out delay, although Zelen [4] does discuss procedures that can be used 

when the observations may be delayed. 

In the 2-arm bandit problem the goal in the literature has been to 

maximize the limiting output of the process, where the output is defined 

to be 1 for a success and zero for a failure. This problem has been 

treated by Robbins [5], Isbell [6], Bradt, Johnson and Karlin [7], 

Feldman [8], Smith and Pyke [9] and Samuels [10). In this problem 

testing goes on forever and a useful procedure is one for which the 

probability of observing the better population after m trials tends 

to 1 as m .... 00. 
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While these two formulations described above lead to interesting 

theoretical problems, it can be argued in the first case that any forecast 

of the patient horizon N is very hypothetical, even when the prediction 

is phased in terms of an!. priori distribution. In the second case it 

is unlikely that any experiment would be allowed to-continue indefinitely 

without deciding between the two treatments. If these objections are 

valid, then it follows that the problem of real interest involves .a finite 

termination of the trials, together with an infinite (or at least an 

unknown) patient horizon. Phrased in another way, the problem is that of 

choosing the better of two binomial populations. This formulation has been 

considered by several authors (see e.g. Bechhofer, Kiefer and Sobel [11]) 

and a good set of references can be found at the end of [11]. 

Much of the previous work on the selection problem involves "Vector

at-a-time" (vr) sampling, which implies an equal number of observations 

on each treatment. In this paper we wish to compare this sampling rule 

with the "play-the-winner" (PW) sampling rule first suggested by Robbins 

[5] in which the treatment used for any trial depends only on the previous 

trial and its result; a success generates another trial on the same 

treatment and a failure generates a switch to the other treatment. In 

particular it is assumed that the results of each treatment are observed 

without delay. 

Itmight appear that the PW-rule offers the possibility of reaching 

* a decision (with probability of a correct selection~ P) with fewer 

trials on the poorer treatment and indeed this is the motivation for 

studying this type of procedure in the drug-testing context. We analyze 

this question for the particular procedures R
8 

and R~ both of which 

terminate when the absolute difference in the number of successes for 
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the two treatments first reaches a predetermined integer; RS uses 

PW sampling and R' s uses VT sampling. In this case it is not 

true uniformly in the parameter space that the PW-rule leads to a 

smaller number of trials on the poorer treatment. * In fact for /1 

close to zero the PW rule is superior to the VT-rule if and only if 

½(P + p') > 3/4, where p and p' are the single-trial probabilities 

of A and B, respectively. The question of whether PW-sampling 

is uniformly better than VT-sampling for other termination rules 

remains to be investigated. 

2. Calculation of the OC and ASN for Procedures RS and R~. 

Let SA (resp., SB) denote the current number of successes 

* * 

with 

treatment A (resp. , B). Let p with ½ < p* < 1 and /1 with 

* 0 < 6 < 1 denote specified constants. Without loss of generality 

'-

we regard A as the better player and use 6 > 0 to denote the true 

difference p - p'. We wish to determine to the smallest integer r such that 

(2.1) P{cs} 2: p* * whenever /1 ~ /1 

here CS denotes a correct selection which is clearly the selection 

of A when 6 > O. 

(2.2) 

Let NT= A denote that the next treatment is A. Let 

Pn = P(A is selected as betterlsA - SB= n, NT= A}, 

Qn = P(A is selected as betterlsA - SB= n, NT= B}. 

The first treatment at the outset is chosen at random and hence the 

P(CS} at termination is given by 

(2.3) 
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Using the PW-sampling rule and (2.2) and letting q = 1 - p, 

q' = 1 - p', we obtain 

p = pP 1 + qQ 
n n+ n 

(2.4) 

Q = p'Q + q'P 
n n-1 n 

and the boundary conditions are 

(2.5) P = 1, Q = o. 
r -r 

A single equation for Qn is easily obtained by solving for 

the first equation of (2.4) and substituting it into the second 

equation of (2.4); this gives 

(2.6) pQn+l - (p + p') Qn + p'Qn-1 = O 

with boundary conditions replaced by 

(2.7) 

P in 
n 

The solution to (2.6), and hence to (2.4), which satisfies these 

boundary conditions is easily shown to be 

(2.8) 
- g'(l - Ar+n) 

Qn - 2r 
q' - qA 

p 
n 

= 9 , _ QAr+n 

q, _ qA 2r 

where A= p'/p < 1. Using these results to obtain the P{CS} in 

* (2.3), we then set the result equal to P to obtain 

(2.9) 

as the equation determining r. Solving this quadratic in Ar gives 

(2.10) = 

Equations (2.9) and (2.10) do not give a numerical solution if p and 

p' are unknown. In this case we have to set the minimum of the P(CS} 

* * for 6 ~ A equal to P; this is carried out in section 3 below. 
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We next turn to calculations relevant to a specific (expected) 

loss function L related to the number of failures on the poorer 

treatment. Since there would have been failures even if the better 

treatment were used exclusively, L is chosen to be the difference 

in the expected number of successes (before reaching a decision) 

between a conceptual set of trials in which the better treatment is 

always used and the actual set of trials. Thus if NB is the number 

of trials in which treatment B is used, then L is given by 

(2.11) L = (p - p') E(NB}. 

We calculate E(NB} by finding recurrence relations between two sets 

of variables R and s defined by 
n n 

R = E{NB I SA - SB= n, NT = A}, 
n 

(2. 12) 

s == E(NB I SA - SB= n, NT = B}. 
n 

The desired value of L is given by 

(2.13) 

As in (2.4). and (2.5), the PW sampling rule gives 

(2.14) 

with the boundary conditions 

(2.15) R = S = O. 
r -r 
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The solution to (2.14) that satisfies (2.15) is 

(2.16) 

R 
n 

s 
n 

= g(r - n) 
p - p' 

q(p + 29r)11.r(Ar - An) 

(p - p')(q 11.
2
r + PA - 1) 

= p + g(r - n) _ 
p - p' 

(p + 29r)11.r[g Ar - (1 - PA)An 

(p - p')(qA
2
r + pA - 1) 

Hence by (2.13) the {expected) loss L is given by 

(2.17) L = 
(p + 2gr)(l - Ar)(l - PA - 911.r) 

2 ( 1 - pA - q A 
2

r ) 

An expression can also be found for the expected total number of 

trials needed to reach a decision; for this we also add one to the first 

equation of (2.14), just as was done in the second equation. The 

result denoted by E(Npwl is given by 

(2.18} (1 - 11.r)(l - PA - 911.r) 

(1 - A)(l - pA - q11.
2
r) 

(1 + .!.[2 - p(l + 11.)]). 
p 

For the rest of this section we consider the procedure RS which 

uses the VT sampling rule. We now regard the situation after each 

vector of observations as a stage and our analysis takes us from one 

stage to another. If Pn is the P(cslsA - SB= n} and we stop 

then P satisfies the equation 
n 

(2.19) pn = pq'Pn+l + qp'Pn-1 +(pp'+ qq')Pn, 

with boundary conditions 

(2.20) P = 1, P = o. 
s -s 

The solution to (2.19) that satisfies (2.20) is 
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(2.21) 

where 

(2.22) 

In the 

p = 
n 

1 6s+n 

1 - 62s 

LI 6 = I< 1. pq 

next section we 

• 

I :' 

show that Min Po for is attained by 

* =½(1+~*), setting ~ = ~ and p so that the required s is the solution of·~ 

(1 -6:) 
2s 

1 - * 
(2.23) 

p 
= 

* 1 + ~ p 

For procedure R' s the expected number of trials on the poorer treat-

ment E(NB} is just the total expected number of vectors until a 

decision is reached. Let Un denote E(NBjsA SB= n}; then 

(2.24) Un= pq'Un+l + qp'Un-1 +(pp'+ qq') pn + l, 

and the boundary conditions are 

(2.25) u = u = o. 
s -s 

The solution to (2.24) that satisfies (2.25) is 

(2.26) u = 
n 

s(l + 62s - 26s+n) 

( 1 - 6 
2

s )6 

n - -

The (expected) loss L' for procedure R' 
s 

(2.27) L' = 

is therefore 

and the total number of trials NVT needed to reach a decision has 

expectation 

(2.28) 
2s(l - 6s) 

~(1 + os) 

which is twice the expected number of vectors needed to reach a decision. 

- 8 -

I I 

~ 

I I 

~ 

J 

I I 

..I 



-
... 

~ 

-
-
-
.... 

--

-
-
-
-
-
-
'at 

--

-
-
--

3. Comparison of Results. 

Thus far we have presented exact results for procedures RS and 

Rs', assuming that p and p' are both known, A proper comparison 

required us to put ourselves in the position of an experimenter who 

has no a priori knowledge of these parameters. The most conservative 

choice of p and p' that satisfies (2.1) will be called the least 

favorable (LF) configuration. 

Consider first the procedure RS which used the PW sampling 

rule and let p O = ½( p + p ' ) , so that P =Po+ fl/2 and p' = Po - fl/2. 

It is easy to show for any fixed values of Po, r and * p that the 

right side of (2.10) is increasing in fl and that A = P' /p on the 

left side of (2.10) is decreasing in 6. Hence as a first step in 

obtaining the LF configuration we set * /). = fl and write 

(3.1) * P =Po+ ll /2, I * P = Po - ~ /2, 

* * where the range of p
O 

is (fl /2, 1 - 6 /2). We concentrate our 

* attention on the limit P ~ 1 in which case (2.10) becomes 

2p - /). r 

(3.2) 
( 

* 

2p: +A*) 
= (1 + A* ) * (1 - p ) 

with an error in Ar that is l"((l - p*) 2
}. To find the 'worst' 

value of Po (for the second step) we maximize 

Po in (3.2) and denote the resulting maximum by 

r with respect to 

r . 
m 

A straightforward 

differentiation yields a transcendental equation, but by taking log

* arithms in (3.2) we note that the term with ln(l - P) dominates the 

right side of (3.2). It follows that the maximum occurs close to the 

* maximum possible value of p
O

, i.e., p
O 

= 1 - 6 /2. Hence, using both 
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factors on the right side of (3.2), we can approximate r by setting 
m 

* Po= 1 - A /2, i.e., 

(3.3) r = 
m 

where (x} denotes the smallest integer ~ x. To confirm this 

numerically, we calculated r from (3.3) for A= .1, .2 and 
m 

.4, 

* P = .99 and .999 and found that the result agreed with the more 

accurate value {max r(p
0

)), obtained by differentiation from (3.2), 

Using (3.3) we can give a simple expression for the (expected) 

loss L in (2.17). If we neglect terms of order 0(1 - p*) in (2.17) 

( · th t ' r and ' 
2

r ) , 1 • e • , e erms I\. I\. then L reduces to 

(3 .4) 

where 

( P*) 
1 _ .£ + qr _ q ln 2 1 - _ 

2 m ln(l - 6*) 

.£ is also dropped since 
2 

r ... oo as 
m 

* p - 1. 

Similar but easier calculations show for any fixed values of 

* that on the left in (2.22) is decreasing Po, s and p 6 side 

* A and hence we again set 6 = b. as the first step in obtaining 

the LF configuration. 

(3.5) [ *) 2p - b. 

2P: + !J.* 

From (2.23) and (3.1) 

(:;: : ::~ : : : f . 
we obtain 

1 - p* 

* p 

in 

and for the second step we wish to find the value of p
0 

that maximizes 

the solution in s of (3.5). It is easily verified that for any 

fixed s the left side of (3.5) attains its maximum value when p
0 

= ½ 

(see also p.270 of (11]). * Hence for P - 1 we can write 

(3.6) 

10 -
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- accurate to within terms that are 0(1- p*). From (2.27) and (3.5) we 

find that under procedure R~ the (expected) loss L' is given by 

(3.7) L' - s -
m 

We now investigate the conditions under which L/L' < 1, i.e., under 

which the PW sampling reaches a decision (with the same * P and) with 

a smaller number of trials on the poorer treatment. 

are held fixed then the ratio approaches 

(3.8) 

For small 

(3.9) 

L 

L' 

* ll 

qr 
m 

s 
m 

lnB 
-2q * 

ln(l - ll ) 

the right side of (3.8) is less than 

* ln 1 - /:J. 

* p > (1 + A )
2 

ln(.l - ll :) 2 

\1 + /:J. 

* * 

If p * and ll 

1 when 

and hence for P close to 1 and 6 small the PW sampling is 

* 
preferred when p >t -i and the VT sampling is preferred when 

the reverse inequality holds. 

Another comparison of interest is that represented by the ratio 

of the expected total number of treatments needed to reach a decision 

* by the two procedures. For P - 1 we use (2.18) to obtain 

(3.10) ~ ~ 
( p*) q ~ q' ln 2\1 - _ 

ln(l - 6*) 

Furthermore from (2.27) as * p - 1 
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2s * 
(3.11) E(NVT} 

m ln(l - Pl 
- 7-

* ,Une - A¾<:) 
1 + /). 

so that the limiting ratio is 

* 1
1 - A ) 

ln * 
(3.12) 

E(NPW} 
( + ') \1 + A 

E{Nvr} - q q * 
In (l - f). ) 

* For small /). the right side of (3.12) is close to 2(q + q') and this 

-.I 

.., 

.. 
I -..., 

-' 

~ 

is less than 1 when ~ 

(3.13) 
p+p' >j 

2 4 

i.e., roughly speaking, when both treatments are quite good. If (3.13) 

does not hold then from the point of view of speed in reaching a 

decision it is preferable to sample the treatments equally. 

As a point of secondary interest to this paper, we consider the 

corresponding identification problem in which the parameter values 

~ 

..; 

i ' 
..J 

... 
p > p' are both known ab initio and the problem is to correctly identify , 1 

-..; 

which treatment is associated with p. We show in this case that the 

PW sampling is always better than VT sampling. In this situation 

we have as * p ..... 1 

(3.14) 
r' 
m 

q -;r 
m 

where r' and s' are analagous to r and s but not calculated 
m m m m 

from the LF configuration. From (2.10) and (2.23), respect~vely, we 

obtain for * p - 1 

- 12 -

i..J 

... 

ta.' 

.J 

...J 

t f 

.J 

I 

~ 



(3.15) r' ln(l - p*) 
s' ln(l - p*l 

m ln A m ln 6 

and hence from (3.14) 

(3. 16) 
E{NPW} ln 6 r ln 
E{NVT} q ln :\. = q l: + ln < 1. 

To show the last inequality it has to be shown that 

(3.17) ppqq ~ (q')q(p'l 

Since the right side of (3.17) for fixed p has a minimum at p' = p, 

the inequality (3.17) holds; this proves the last inequality in (3.16). 

In conclusion, we see that the PW sampling rule will be advantageous 

when a certain type of prior information is available and the proce-

dure depends on the absolute difference lsA - sBI. Roughly speaking 

if the larger p is greater than .75 * .125A, then the PW-rule is 

preferable. If nothing is known about p then our results suggest 

that a preliminary estimate of both p's should be made to estimate 

the larger p, but no procedure of this kind has been investigated. 

Extensions of the PW-rule to the Markovian generalizations suggested 

by Robbins [5], Isbell [6], Pyke and Smith [9] and Samuels [10] may 

offer improvements in peformance over the PW-rule, but this remains 

to be investigated. Further investigation of the PW-rule in connection 

with other sequential rules would seem to be of interest. This has 

been done for inverse sampling in [12] where PW sampling (procedure R
1

) 

is shown to be preferable to VT sampling (procedure R') for 
I 

* A 

close to zero. Although RS and R~ are preferable, i.e., have 

smaller E{N) • and L - values than RI and Ri, respectively, the 

* * reverse is true for ~ close to zero, A fixed, and P sufficiently 

close to one. Hence there is no result based on E(N} or L that is 

uniform in both * A and * p • 
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