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Abstract 

Hedge has been proposed as an adaptive scheme, which guides the player’s hand in a multi-armed 

bandit full information game. Applications of this game exist in network path selection, load dis-

tribution, and network interdiction. We perform a worst case analysis of the Hedge algorithm by 

using an adversary, who will consistently select penalties so as to maximize the player’s loss, as-

suming that the adversary’s penalty budget is limited. We further explore the performance of bi-

nary penalties, and we prove that the optimum binary strategy for the adversary is to make greedy 

decisions. 
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1. Introduction 

The problems of adaptive network path selection and load distribution have often been considered as games that 

are played simultaneously and independently by agents controlling flows in a network. A possible abstraction of 

these and other related problems is the bandit game. In the multi-armed bandit game [1] a player chooses one 

out of N  strategies (or “machines” or “options” or “arms”). A loss or penalty (or a reward, which can be 

modeled as a negative loss) i  is assigned to each strategy i  ( )1,2, ,i N=   after each round of the game. 

An agent facing repeated selections will possibly try to exploit the so far accumulated experience. A popular 

algorithm that can guide the agent in each selection round is the multiplicative updates algorithm or Hedge. In 

this paper we calculate the worst possible performance of Hedge by using the adversarial technique, i.e. we 

investigate the behavior of an intelligent adversary, who tries to maximize the player’s cumulative loss. In 

Section 1 we describe Hedge; in Section 2 we give a rigorous formulation of the adversary’s problem; in Section 

3 we give a recursive solution; and in Section 4 we present sample numerical results. Finally, in Section 5 we 
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explore binary adversarial strategies. Our main result is that the greedy adversarial strategy is optimal among 

binary strategies. 

1.1. The Bandit Game 

In a generalized bandit game the player is allowed to play mixed strategies, i.e. to assign a fraction ip  (such  

that 
1

1
N

ii
p

=
=∑ ) of the total bet to option i , thereby getting a loss equal to 

1

N

i ii
L p

=
= ×∑  . Alternatively, ip   

can be interpreted as a probability that the player assigns the bet on option i . In the “bandit” version only the 

total loss L  is announced to the player, while in the “full information” version the penalty vector  

( )1 2, , , N     is announced. 

A game consists of T  rounds; a superscript t  marks the t th ( )0, , 1t T= −  round. Apparently the  

player will try to minimize the total cumulative loss  

1 1

0 0 1

T T N
t t t

i i
t t i

L p
− −

= = =

= ×∑ ∑∑                                    (1) 

by controlling the bet distribution, i.e. by properly selecting the variables 
t

ip . We use the additional assumption  

that the loss budget is limited in each round by setting the constraint 
1

1
N t

ii=
=∑  . Clearly a player’s goal is to  

minimize his or her total cumulative loss. An extremely lucky player, or a player with “inside information”, 

would select the minimum penalty option in each round and would put all his or her bet on this option, thereby  

achieving a total loss equal to 
1

0
min

T t

i it

−

=∑  . 

1.2. The Hedge Algorithm 

Quite a few algorithmic solutions, which will guide the player’s hand in the full information game, have 

appeared in the literature. Freund and Schapire have proposed the Hedge algorithm [2] for the full information 

game. Auer, Cesa-Bianchi, Freund and Schapire have proposed the Exp3 algorithm in [3]. Allenberg-Neeman 

and Neeman proposed a Hedge variant, the GL (Gain-Loss) algorithm, for the full information game with gains 

and losses [4]. Dani, Hayes, and Kakade have proposed the GeometricHedge algorithm in [5], and a modifi- 

cation was proposed by Bartlett, Dani et al. in [6]. Recently Cesa-Bianchi and Lugosi have proposed the  

ComBand algorithm for the bandit version [7]. A comparison can be found in [8]. 

Hedge maintains a vector ( )1 2, , ,t t t t

nw w w w=   of weights, such that 0t

iw ≥  ( 0,1, , 1t T= − , and 

1, 2, ,i N=  ). In each round t  Hedge chooses the bet allocation according to the normalized weight  

1

Nt t t

i i ii
p w w

=
= ∑ . When the opponent reveals the loss vector of this round, the next round weight 1t

w
+  is  

determined so as to reflect the loss results, i.e. 1
t
it t

i iw w β+ =   for some fixed β , such that 0 1β≤ ≤ . 

In [9] Auer, Cesa-Bianchi, Freund and Schapire have proved that the expected Hedge performance and the  

expected performance of the best arm differ at most by ( )lnO TN N . Freund and Schapire [2] have given a  

loss upper bound, which relates the total cumulative loss with the total loss of the best arm. 

1.3. Competitive Analysis 

The competitive analysis of an algorithm  , which in this paper is Hedge, involves a comparison of  ’s 

performance with the performance of the optimal offline algorithm. In the bandit game the optimal offline 

algorithm, i.e. the optimal player’s decisions given the sequence of all penalties in advance, is trivial. In a given 

round the player can just bet everything on the option with the lowest penalty. 

According to S. Irani and A. Karlin (in Section 13.3.1 of [10]) a technique in finding bounds is to use an 

“adversary” who plays against   and concocts an input, which forces   to incur a high cost. Using an 

adversary is just an illustrative way of saying that we try to find the worst possible performance of an online 

algorithm. In our analysis the adversary tries to maximize Hedge’s total loss by controling the penalty vector 

(under a limited budget). 
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1.4. Interpretations and Applications 

In this section we offer some interpretations from the areas of 1) communication networks and 2) transportation. 

The general setting of course involves a number of options or arms, which must be selected by a player without 

any knowledge of the future. 

Bandit models have been used in quite diverse decision making situations. In [11] He, Chen, Wand and Liu 

have used a bandit model for the maximization of the revenue of a search engine provider, who charges for 

advertisements on a per-click basis. They have subsequently defined the “armed bandit problem with shared 

information”; arms are partitioned in groups and loss information is shared only among players using arms of 

the same group. In [12] Park and Lee have used a multi-armed bandit model for lane selection in automated 

highways and autonomous vehicles traffic control. 

1.4.1. Traffic Load Distribution 

This first application example can take multiple interpretations, which always involve a selection in a compe- 

titive environment, in which competition is limited. It can be seen as 1) a path selection problem in networking, 

2) a transport means (mode) choice or path selection problem, 3) a computational load distribution problem, 

which we mention in the end of this section. Firstly, we describe the problem in the context of networking. 

Consider N  similar independent paths (in the simplest case just N  parallel links), which join a pair of 

nodes  ,  . A traffic volume equal to Q  is sent from   to   in consecutive time periods or rounds by  

a population of agents. Q  is the same in each round, but the allocation of Q  to paths, i.e. ( )1 2, , ,t t t

NQ Q Q   

such that 
1

N

ii
Q Q

=
=∑ , is different in each round t . An agent A  produces a constant amount of traffic equal  

to A , such that q Q , in T  consecutive rounds, and allocates a part equal to iq  ( )1

t

ii
q q

=
=∑  to the i th  

path in round t . The average delay (or cost) experienced by A ’s traffic in the t th round is proportional to  

1

N t t

i ii
Q q

=∑ , if we assume a linear delay (or cost) model. Linear models are used for simplicity in network analysis  

[13] and can be realistic if a network resource still operates in the linear region of the delay vs. load curve, e.g. 

when delay is calculated in a link, which operates not very close to capacity. Agent A  aims at minimizing the 

total delay for its own traffic and may use Hedge to determine the quantities 
t

iq  in round t , assuming that A  

knows the performance of its own traffic in each path in the past time period. Note that the maximum delay in a 

round occurs if A  puts the whole q  in a single path together with the whole traffic of the competition, i.e. 

with Q ; then A ’s average delay in this round equals Q . On the contrary, if Q  is evenly distributed in all 

paths, A ’s allocation decision does not really matter, as the average will be equal to  

( ) ( )ii
q q Q N Q N× =∑ . Of course the minimum delay in a round will occur if A  puts the whole q  in an  

empty path, thereby achieving a zero delay. 

The above problem can also be formulated as a more general problem of distributing workload over a 

collection of parallel resources (e.g. distributing jobs to parallel processors). A. Blum and C. Burch have used 

the following motivating scenario in [14]: A process runs on some machine in an environment with N  

machines in total. The process may move to a different machine at the end of a time interval. The load 
t

i , 

which will be found on a machine i  at time round t  is the penalty felt by the process. 

1.4.2. Interdiction 

Although an adversary is usually a “technical” (fictional) concept, which serves the worst case analysis of online 

algorithms, in some environments a real adversary, who intentionally tries to oppose a player, does exist. An 

example is the interdiction problem. 

We present a version of the interdiction problem in a network security context. An attacker attacks N  

resources (e.g. launches a distributed denial of service attack on nodes, servers, etc., see [15]) by sending  

streams of harmful packets to resource i  at a rate iw  (where 1, ,i N=   and ii
w∑  is constant). A defen- 

der assigns a defense mechanism of intensity i  (e.g. a filter that is able to detect and avoid harmful packets 

with a probability proportional to i ) to resource i . At the end of a time interval T , e.g. one day, both the 

attacker and the defender revise the flows and the distribution of defense mechanisms to resources respectively, 
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based on past performance. 

Similar interpretations exist in transportation network environments, as in border and custom control, 

including illegal immigration control. An interdiction problem formulation can be used in a maritime transport 

security context: pirates attack the vessels traversing a maritime route. In [16] Vanek et al. assign the role of the 

player to the pirate. The pirate operates in rounds, starting and finishing in his home port. In each round he 

selects a sea area (arm) to sail to and search for possible victim vessels. A patrol force distributes the available 

escort resources to sea areas (arms), and pirate gains are inversely proportional to the strength of the defender’s 

forces on this area. Naval forces reallocate their own resources to sea areas. 

2. Problem Formulation 

In this paper we aim at finding the worst case performance of Hedge. Effectively, we try to solve the following 

problem: 

Problem 1. Given a number of options N , an initial normalized weight vector ( )1 2, , , Nw w w= w , and a  

Hedge parameter β , find the sequence 
0 , 

1 ,  , 
1T −  that maximizes the player’s total cumulative loss  

( )

1

0 1

T N
t t

i iH
t i

L pβ

−

= =

=∑∑                                        (2) 

where ( )1, ,t t t

N=     is the penalty vector in round t  ( )0,1, , 1t T= − , such that 
1

1
N t

ii=
=∑  , and the t th  

round penalty weights 
t

ip  are updated according to  

( )
11
01

1

,       1
tt

ii

t

t t t i
i i i i N t

ii

w
w w w p t

w

τ
τβ β
−−
=−

=

∑= = = ≥
∑

                        (3) 

for 1, , 1t T= −  and 
0

i ip w= .    

Clearly the objective function (2) is a function of a) the N  initial weights iw , and b) the N T×  variables  
t

i , and c) β . Due to the normalization of both weights and penalties there are ( ) ( )1 1 1N T− × + +  indepen- 

dent variables in total. In the following we use ( )1 0 0 1 1

1 1 1, , ; , , , , , ,T T T

N N NL w w
− − −         or  

( )1 0 1; , ,T T
L

− −w    instead of ( )H
L β  whenever it is necessary to refer to these variables. 

3. Recursion 

Assuming that a given round starts with weights ( )1, , Nw w= w  and the adversary generates penalties  

( )1, , N=    , the next round will will start with weights ( ) ( ) ( )( )1, , , , ,NW W= W w w w    where  

( ) ( )
1

,    1, 2, , .
i

j

i

i N

jj

w
W i N

w

β
β

=

= =
∑



 w                             (4) 

Then, the total loss of a T  round game, which starts with weights w , can be written as the sum of the 

losses of a single round game, which starts with weights w , and a 1T −  round game, which starts with  

weights ( ) ( ) ( )( )1, , , , ,NW W= W w w w   , as follows:  

( ) ( ) ( )( )1 0 1 1 0 0 2 0 1 1; , , , ; , ; , , .T T T T
L L L

− − − −= + w w W w                         (5) 

Note that the term 
2T

L
−

, which expresses the contribution of the last T  rounds, depends only on the 

updated weights provided by the initial round. Such a Markovian property can be generalized in the following 

sense: A 1 2T T+  round game can be seen as consisting of a 1T  round game 1g  followed by a 2T  round 

game 2g , whose initial weights are the final weights of 1g , and no more details about 1g  are passed to 2g .  

Assuming that the solution to Problem 1 is ( ) ( )0 1

1 1 0 1

max , ,
max ; , ,T

T T T
L L−

− − −=


w w
 

   the following recursive  

formula for ( )1

max

T
L

−
w  can be derived from (5):  
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( ) ( ) ( )( )1 0 2

max maxmax ; ;T T
L L L

− − = + w w W w


                          (6) 

where 
0 =   is the penalty vector chosen by the adversary in the initial round. 

The optimal penalties can be computed also recursively. Let ( ) ( ) ( )( )1; 1; 1;

1 , ,T t T t T t

Nλ λ− − −= λ w w w , where  

( )1;T t

iλ
−

w  denotes the i th optimal penalty of the i th option in the t th round of a T  round game (starting  

with weights w ). The optimal penalty of the initial round ( )0t =  is apparently equal to the value of  , which 

optimizes (6). Therefore  

( ) ( ) ( )( )1;0 0 2

maxarg max ; ; .T T
L L

− − = + λ w w W w


                        (7) 

In all other rounds 1, 2, , 1t T= −  the optimal penalties are such that the total loss of the rest of the game is  

maximized, i.e. such that ( )( )( )2 1;0

max ,T T
L

− −
W w λ w  is achieved. Since the total loss ( )2

max

T
L

−
w  is achieved by  

using penalties ( )2;T t−λ w , the total loss ( )( )( )2 1;0

max ,T T
L

− −
W w λ w  is realized by using  

( )( )( )2; 1;0,T t T− −λ W w λ w  instead. Therefore  

( ) ( )( )( ) ( )1; 1 2; 1;0,    0,1, , 2 .T t T t T
t T

− + − −= = −λ w λ W w λ w                   (8) 

4. Two Option Games and Numerical Results  

This section we exploit the recursive methodology, which has been presented in the previous section, in order to 

provide some numerical results for two option games. We compare these results with available bounds in the 

literature. We consider 2N = , i.e. two option games. We keep only the independent penalties 1

t  in the  

extended notation and use the more compact version ( )1 0 1 1

1 1 1 1; , , ,T T
L w

− −    . As an example, the loss of a  

single round game is given by  

( ) ( )( )0 ; 1 1 .L w w w= + − −                                 (9) 

Also, since the initial weights are ( ),1w w= −w , we simplify the maximum cumulative loss ( )1

max

T
L

−
w  to  

( )1

max

T
L w

− . Assuming losses 
0

1 =   and 
0

2 1= −  , the next round will will start with weights ( ),W w   and  

( )1 ,W w−  , where  

( )
( ) 1

, .
1

w
W w

w w

β
β β −=

+ −



                              (10) 

Then (6) is simplified to  

( ) ( ) ( )( )1 0 2

max maxmax ; ,T T
L w L w L W w

− − = + 
                          (11) 

where 
0 =   is the penalty chosen by the adversary for the first option in the initial round. 

The iteration starts from ( )0

maxL w , i.e. the loss of a single round game. In such game the adversary controls a  

single penalty variable, as the loss is given by (9). Apparently the adversary will choose binary values, i.e.  
0

1 1= =   ( )0

1 0=  if 1 1 2w w= >  ( )1 1 2w < , and the maximum total loss is ( ) { }0

max max ,1L w w w= − , i.e.  

( )0

max

1
1 , if   0 ,

2

1
, if   1.

2

w w

L w

w w

 − ≤ ≤= 
 ≤ ≤


                             (12) 

The graph of ( )0

maxL w  appears as the lowest V-shaped “curve” in Figure 1. The fact that the ( )0

maxL w  is a  

piecewise linear function of w  with a breakpoint (i.e. a sudden change in its slope), creates even more break- 

points in ( )1

maxL w , ( )2

maxL w  and so on. Therefore, while it is possible to use the aforementioned recursion in  
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Figure 1. Plot of ( )1

max

T
L w

−  (maximum loss in a T  round game) vs. w  for 

0.1,0.3, ,0.9β =   and 1,2, ,10T =  .                                                           

 

order to find analytical expressions for the maximum total loss and the associated penalties, the analysis 

becomes quite complicated even for small values of the number of rounds T  (i.e. in a 1T +  round game). We 

omit this tedious analysis and present numerical results based on the recursive methodology given above. 

Instead we have implemented a numerical computation based on (11). ( )1

max

T
L w

−  is approximated by 1K +   

samples in the interval [ ]0,1 , i.e. by ( )1

max

T
L i w

− ∆ , where 0,1, ,i K=   and 1w K∆ = . In the same way the  

functions ( )0 ;L w   and ( ),W w   are represented by ( )2
1K +  samples ( )0 ;L m w n∆ ∆  and ( ),W m w n∆ ∆ ,  

where w∆ = ∆ . We have used 1000K = . Initially we create ( )0

maxL i w∆  ( )0,1, ,i K=   by using (9). We  

use the result as input to (11) and create ( )( )1

maxL i w∆ . Then we use the already calculated 
0

L  and 
1

L  in (11)  

to calculate 
2

L , then 
0

L  and 
2

L  to calculate 
3

L , and so on. In Figure 1 we show ( )1

max

T
L w

−  as a function of  

the initial weight 1w w=  in games with up to ten rounds ( )1, ,10T =   for different values of β . Observe  

that the shape of ( )1

max

T
L w

−  is more “interesting” for “unreasonably” small values of β . 

The optimal penalties can be determined by using formulas (7) and (8) for 2N = . In Figure 2 we draw one 

of the curves of Figure 1 together with the respective optimal penalties. The final round optimal penalty (i.e.  

( )3;3
wλ  in this example) is certain to be binary, since the adversary will assign 

3 1i =  to the option i  with  

the greatest weight factor. However, the penalties ( )3;0
wλ  and ( )3;1

wλ  of the first two games are clearly  

non-binary. 

5. Binary and Greedy Schemes 

The penalty values in the first two rounds in the example of Figure 2 prove that the adversary’s optimal 

penalties are not necessarily binary. However, in this example β  is “unnaturally” close to 0, as in practical 

Hedge implementations β  is chosen close to 1; this choice achieves a more gradual adaptation to losses. Both 

experimental and analytical evidence show that the optimal penalties tend rapidly to binary values as β  

approaches 1. Effectively, it seems that results very close to optimum can be achieved by a “binary adversary”, 

i.e. an adversary that will resort to binary values only. 

On the other hand the optimal adversarial policy with binary penalties can be found exhaustively as  

( )
( )

( )
0 1

1 1 0 1

maxbin
, ,

max ; , ,
T T

T T T

S

L L
−

− − −

∈
=


w w

 
   

where S  is a set of N  binary vectors ( )1 2, , , Nb b b  such that 
1

1
N

ii
b

=
=∑ , i.e. only one component equals 1.  

Apparently, the complexity of this calculation grows with T
N . However, in the following we show that the 

optimal binary adversary is in fact the “greedy adversary”, The latter achieves binary optimality in linear time. 

A “greedy adversary” is eager to punish the maximum weight option as much as possible in each round. Thus  
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Figure 2. Plot of ( )3

max
L w  (maximum total loss of a 4 round 

game) vs. w  for 0.1β = , together with the optimal penalties 
3;tλ  ( )0,1,2,3t = .                                               

 

the adversary will assign exactly one unit of penalty to the maximum current weight option, and zero penalties 

to all other options. Given a sufficient number of rounds (say 0t ), it easy to see that the weights of an N   

option game are “equalized” so that any two weights 
t

ip , t

jp  are such that t t

i jp p β<  for 0t t≥ . When  

equalization is achieved, a periodic phenomenon starts and the greedy penalties form a rotation scheme. 

5.1. Greedy Behavior 

We explore the greedy pattern in a two option game that can easily be generalized to N  options. Assuming  

initial weights 1w , 2w  ( )2 11w w= −  such that 1 21 2w w> > , a greedy adversary will choose  

0 10 1

1 1 1 1
t −= = = =    , 0

1 0
t =  iff 0 01

1 2 1

t t
w w wβ β− > > , where 0 1t ≥  (having assumed 1 2w w> ). At 0t   

the weight of the second option becomes for the first time greater than the weight of the first option, and a loss 

equal to 1 is assigned to the second option. Therefore, in the next step 0 1t +  the weights (before normalization) 

are 0
1

t
w β  and 2w β , or equivalently 0 1

1

t
w β −

 and 2w  for the second time. In the next round they become 
0

1

t
w β  and 2w  again, and in general they oscillate between these two pairs periodically. Therefore the total loss 

for 0t t≥  in a pair of subsequent rounds is equal to  

0

0 0

1 2

1 2 1 2

.
t

p t t

w w
L

w w w w

β
β β β

= +
+ +

                             (13) 

The value of 0t  is determined by the initially assumed inequality, and since 0t  ought to be integer  

( )0 2 1ln ln lnt w w β= −   . The loss in the first 0t  steps ( )00,1, , 1t t= −  is equal to  

0 1
1

1
=1 1 2

.
t w

w
w w

τ

τ
τ

β
β

−

+
+

∑  
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Therefore, for an even positive integer 0T t−  the total loss in T  steps is  

( )

00

0 0

1
01 1 2

1
1 1 2 1 2 1 2

.
2

tt

H t t

T tw w w
L w

w w w w w w

τ

β τ
τ

β β
β β β β

−

=

 −
= + + + + + + 

∑  

In a game with more than two options it is straightforward to show that in the “steady” (periodic) state 

weights tend to become equal, i.e. almost equal to 1 N , where N  is the number of options. Consequently, the  

loss is given by ( )H
L T Nβ ≈  in a T  round game. 

5.2. Optimality of the Greedy Behavior 

The following proposition provides a simple polynomial solution to the problem of finding the optimal binary 

adversary. 

Proposition 1. The greedy strategy is optimal for the adversary among all strategies with binary penalties. □ 

Proof: Due to normalization of weights and penalties, in the proof we mention only option 1 weights and 

penalties. Assuming an initial weight ω  and penalties 
0 1 1

1 1 1, , , n−     in the first n  rounds, the weight, which  

emerges before the (n + 1)th round is ( )1L Lωβ ωβ ω+ − , where 
1

10

n i

i
L

−

=
=∑  . Effectively, two options are  

available to the adversary in each step, either i) to assign a penalty equal to 1 , which will produce an incre- 

mental loss equal to ( )1L Lωβ ωβ ω+ − , and will update the weight to ( )1 1 1L Lωβ ωβ ω+ + + −  or ii) to  

assign a zero penalty, which will produce a loss equal to ( )1 1L Lωβ ωβ ω− + −  and an updated weight equal  

to ( )1 1 1L Lωβ ωβ ω− − + − . Define ( ) ( )1x x
f x ωβ ωβ ω≡ + − . 

This looks like a new game, in which the adversary is the player. The player’s status is determined by a real  

number x , and possible rewards are ( )f x  and ( )1 f x− . If the player opts for ( )f x , this will bring him to  

a new status x δ+ . If he opts for ( )1 f x− , this will bring him to x δ− . In our case 1δ = . Note also that  

( ) 1f −∞ = , ( ) 0f +∞ = , and ( )0f ω= . Moreover, if 0ξ  is the root of ( ) 1 2f x =  (or ( ) ( )1f x f x= − ),  

then ( ) 1 2f x ≥  for 0x ξ≤ , and ( ) 1 2f x ≤  for 0x ξ≥ . It is easy to prove that there is an odd symmetry  

around ( )0 ,1 2ξ , i.e. ( ) ( ) ( )0 0 02 1f x f x fξ ξ ξ+ + − = = , and ( )f x  is concave in ( )0,ξ∞ , while it is  

convex in ( )0 ,ξ ∞ . 

Assume that 1 2ω ≥ , then ( )0 1 2f ω= ≥ , and 0 0ξ ≥ . If the current status of the player is 1x , and  

1 0x ξ< , the greedy behavior is to move ( )1 0x ξ δ −   times to the right, which (unless T  is too short) will  

bring the player to a point 2x  such that 2 0x ξ≥ . If 2 0x ξ> , then ( ) ( )2 2

1
1

2
f x f x− > >  and the greedy  

player must choose ( )21 f x−  and move back to 2 0x δ ξ− < . Effectively, this starts an oscillation between  

2x δ−  and 2x , which will last until the end of the game. In the following we prove that this behavior is 

optimal, in spite of the fact that profits around 0ξ  are low. 

The main idea behind this sketch of proof is that a retreat (with consequent low profits ( )1 f x−  is never a  

good investment for the future. Assume 1x  as the player’s status, and T  steps (rounds) remain until the end of  

the game, while 1 0x Tδ ξ+ < . The player executes M  forward steps, i.e. 1ix x iδ= + , 0,1, , 1i M= − , with  

rewards ( )if x . Then, 1M −  backward steps with gains ( )1 if x−  are executed; consequently 1x  is  

reached again. In the rest of the game, i.e. until the T th step, greedy selections are made. This course of events 

is shown on curve (a) in Figure 3, where the dots mark the rewards achieved (and some dots have been 

vertically displaced by a small amount so as to be distinguishable from other dots at the same position). If 

greedy selections had been made all the way, the course of events would be as shown by curve (b). 

If iy  describes the status of the adversary on the greedy curve (b) at the i th step and ix  the status on curve 

(a), then ( ) ( )i if x f y=  for 0, , 1i M= − . Furthermore, ( ) ( )3M i M if x f y+ += . Therefore the difference 

between the cumulative reward on curve (b) and curve (a) is  
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Figure 3. Sample paths of player behavior, which are used in 

the proof of Proposition 1.                                     

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1 1
1 2 1 0 1

1 1 1
2 1

1

     .

T T M M

i i
i i T M i i

T

i T M

R f y f x f x i f x i f x i

f x i M f x f x M

δ δ δ

δ δ

−

= = − + = =

= − +

  ∆ = − = + − + + − +      

= + − + − +  

∑ ∑ ∑ ∑

∑
 

Effectively we need to show that 0R∆ ≥ . First, let us make some observations and explore other variations 

of 0R∆ ≥ . Note that R∆ , as given by (14), is positive if the cumulative reward from the back and forth 

movement (in the first 2M  steps) is less than the reward in the last 2M  steps. However, as T  increases, the 

position of the last step approaches 0ξ  and it can be shown that the cumulative reward of the last 2M  steps 

decreases. This property will be proved later, and it is due to the convexity and monotonicity properties of f . 

When T  further increases, some of the very last 2M  steps of the greedy behavior enter the phase of 

oscillation around 0ξ , and for T  sufficiently large, all 2M  belong to the oscillation phase. Note, however, 

that the oscillation phase rewards are those closer to 1/2, which is the lower limit of all greedy steps. If the 

greedy algorithm is to be optimal, even the 2M  oscillatory steps should bring a cumulative reward greater 

than the original back and forth movement. On the other hand, if we prove this last inequality, this will also 

prove (14), whose last 2M  steps bring more reward than the 2M  oscillatory steps. 

Let ( )1 2,ψ ψ  be the pair of oscillation points around 0ξ , i.e. ( )1 1 0 1x xψ ξ δ δ = + −   and 2 1ψ δ ψ= + . In  

the worst case, which has just been mentioned,  

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 1

1 1

1
1 1

     .
1 1

R M M f x f x M

M f x f x M

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ωβ ωβ δ
ωβ ω ωβ ω

ωβ ωβ δ
ωβ ω ωβ ω

 
∆ = + − − + − +    + − + − 

 
= − − − +    + − + − 

 

However, ( ) ( )1 1f x f x Mδ− +  can be seen as the sum of M  terms ( ) ( )( )1 1 1f x i f x iδ δ+ − + + , for  

0i = , 1M − . We shall further prove that each of these terms is smaller than the difference inside the big 

parentheses, i.e.  

( ) ( )( )
1 2

1 2
1 1 1 .

1 1
f x i f x i

ψ ψ

ψ ψ

ωβ ωβδ δ
ωβ ω ωβ ω

+ − + + ≤ −
+ − + −

                 (14) 

This is a consequence of the following lemma:  

Lemma 1. For any concave function ( )f x  the following inequality is true:  

( ) ( ) ( ) ( )2 .f x f x x f x x f x x− + ∆ ≤ + ∆ − + ∆                        (15) 

Inequality (15) holds because  
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( ) ( ) ( ) ( ) ( )2f x f x x f x x f x x
f x x

x x

− + ∆ + ∆ − + ∆
′≥ + ∆ ≥

∆ ∆
                     (16) 

which is a consequence of the mean value theorem stating that there is a point 1φ  in ( ),x x x+ ∆  such that  

( ) ( ) ( )1f f x x f x xφ′ = + ∆ − ∆   . Also, there is a point 2φ  in ( ), 2x x x x+ ∆ + ∆  such that  

( ) ( ) ( )2 2f f x x f x x xφ′ = + ∆ − + ∆ ∆   . However, f  is a concave function, and its derivative is non-increa- 

sing, therefore 1 2x xφ φ≤ + ∆ ≤  implies ( ) ( ) ( )1 2f f x x fφ φ′ ′ ′≥ + ∆ ≥ , which proves (16). In fact (15) can be  

easily generalized to any same length intervals, even overlapping ones, i.e. if 1 2x x≤ , then  

( ) ( ) ( ) ( )1 1 2 2 .f x f x x f x f x x− + ∆ ≤ − + ∆                       (17) 

Due to (15) each successive equal length (i.e. x∆ ) interval produces an incremental reward  

( ) ( )f x f x x− + ∆ , which is smaller than the incremental reward of the next interval, and of all succeeding  

intervals, as long as f  remains concave. Effectively, Lemma 1 proves that the incremental reward of the  

rightmost interval, which does not contain 0ξ , i.e. the interval ( )1 1,ψ δ ψ− , is the highest among the rewards  

of all intervals of the same length, which begin to the left of 1ψ δ− . Unfortunately, our aim was to prove (14), 

which would be secured if f  remained concave in 1 2,  ψ ψ , e.g. if 1 0ψ ξ δ= −  and 2 0ψ ξ= . However this is  

not true, since at 0ξ  f  turns from concave to convex. Fortunately, the term ( ) ( )1 2f fψ ψ− , which covers  

the interval ( )1 2,ψ ψ  can be seen as the sum of rewards related with the concave f  in ( )1 0,ψ ξ  and the con- 

cave 1 f−  in ( )0 2,ξ ψ . Due to the odd symmetry around 0ξ ,  

( )( ) ( )( ) ( )0 2 0 0 2 0 02f f fξ ψ ξ ξ ψ ξ ξ+ − + − − = , therefore ( ) ( ) ( )2 0 0 22 2f f fψ ξ ξ ψ= − − , and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 0 0 2 1 0 0 2 02 2 2f f f f f f f f fψ ψ ψ ξ ξ ψ ψ ξ ξ ψ ξ     − = − − − = − + − −      . 

However, due to the concavity of f , ( ) ( ) ( ) ( )1 0 1 0f f f fψ ξ ψ δ ξ δ− ≥ − − − , and  

( ) ( ) ( )( ) ( )( ) ( ) ( )0 2 0 0 2 0 1 0 0 1 0 12 2f f f f f fξ ψ ξ ξ ψ ξ ψ ξ ξ ψ ξ δ ψ− − ≥ − − − − − − = − − . Therefore  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 0 0 1 1 1f f f f f f f fψ ψ ψ δ ξ δ ξ δ ψ ψ δ ψ   − ≥ − − − + − − = − −    . 

This result states that the interval ( )1 1,ψ ψ δ+ , which contains 0ξ , provides higher f∆  than the previous  

interval ( )1 1,ψ δ ψ− , which in turn is higher than the f∆  of any previous interval of the same length. 

Therefore we have seen so far that a sequence of penalties, which begins at some 0x ξ<  and involves one 

fold, can be reduced to a sequence without any folds, and with improved total reward, as shown in Figure 4. In 

Figure 4 a sequence of steps with a single fold, which starts at 1x  and ends at 2x , is shown together with the  

respective greedy sequence, which starts at 1x  and ends at 3 22x M xδ= + . If the sequence must extend after  

0ξ , the additional steps are oscillation steps around 0ξ . The rest of this proof is just an application of this result, 

so that a sequence with an arbitrary number of folds can be reduced to an improved reward foldless sequence. 

 

 

Figure 4. Reduction of a sequence of penalties, which contains 

a fold, to a sequence without folds and with improved total 

reward.                                                          
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Suppose that the initial position of the game is at 1x , and that 1 0x ξ≤  (otherwise reverse the initial 

probabilities ,  1ω ω− ). Suppose also that the initial sequence does not extend beyond 2ψ , i.e. it does not reach 

0ξ  or it involves a number of oscillations around 0ξ . Then take the last fold and reduce it as mentioned, i.e. by 

replacing it with an equal number of greedy steps at the end of the current sequence. If these steps reach 0ξ , 

they are oscillation steps. Repeat the same step, until all folds have disappeared (oscillations do not count as 

folds). If the original sequence does extend beyond 0ξ , the approach is the same, but the reader should note that 

the application of this algorithm will finally reduce the part, which extends beyond 2ψ , to oscillations between 

1ψ  and 2ψ . 

6. Conclusion 

We summarize the main results of this paper: An worst performance (adversarial) analysis of the Hedge 

algorithm has been presented, under the assumption of limited penalties per round. A recursive expression has 

been given for the evaluation of the maximum total cumulative loss; this expression can be exploited both 

numerically and analytically. However, binary penalty schemes provide an excellent approximation to the 

optimal scheme, and, remarkably, the greedy binary strategy has been proved optimal among binary schemes for 

the adversary. 
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