
Public Review for

Playing Chunk-Transferred DASH
Segments at Low Latency with QLive

Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang,
Wei Tsang Ooi, Roger Zimmermann

In this well-written paper, the authors present a thorough overview of QLive,
a live video streaming system using DASH, that aims to reduce transport
latency. It relies on chunked transfer encoding (CTE) with the common
media application format (CMAF) to start delivering chunks of each segment
before the segment is fully available in real-time. Its main contribution lies in
a set of techniques to resolve fundamental problems on bandwidth estimation
(e.g. present in the LoL algorithm it is based on), latency control and bitrate
selection.
QLive first addresses application-level bandwidth estimation through the use
of an existing chunk parser and a chunk data filter and then models the
rate and playback speed adaptation as an M/D/1/K queue to control the
latency within a given limit. In this way, QLive effectively optimizes the
interplay between playback speed and other system parameters such as the
estimated bandwidth, buffer latency and representation bitrate. A more clear
justification of why the approximation of the rate adaptation component by
an M/D/1/K queue is appropriate for the envisioned scenario could have
been beneficial.
QLive has been implemented on the Dash.js reference player and evalu-
ated for various performance metrics, both on a local proof-of-concept setup,
against three other algorithms, and over the Internet, for a diverse and re-
alistic set of network and system scenarios. The authors have then assessed
the aggregated Quality of Experience (QoE) of QLive, using two state-of-the-
art metrics, showing improved bandwidth estimation accuracy and latency
control with minimal changes in playback speed. While the authors provide
separate results for the different network profiles, the detailed impact of each
parameter on the QoE is still missing. The opportunity to present a subjec-
tive assessment of QLive has not been taken. Especially to also assess the
impact of variable playback speed, currently missing in the state of the art,
this would have been helpful.

Public review written by

Tim Wauters

Ghent University – imec,

Ghent, Belgium

ACM MMSys 2021

51

Playing Chunk-Transferred DASH Segments at Low Latency
with QLive

Praveen Kumar Yadav∗

Atlastream
praveenkyadav@u.nus.edu

Abdelhak Bentaleb
School of Computing

National University of Singapore
bentaleb@comp.nus.edu.sg

May Lim
School of Computing

National University of Singapore
maylim@comp.nus.edu.sg

Junyi Huang∗

School of Software Engineering
Xi’An Jiaotong University
huangjunyi1112@163.com

Wei Tsang Ooi
School of Computing

National University of Singapore
ooiwt@comp.nus.edu.sg

Roger Zimmermann
School of Computing

National University of Singapore
rogerz@comp.nus.edu.sg

ABSTRACT

More users have a growing interest in low latency over-the-top

(OTT) applications such as online video gaming, video chat, online

casino, sports betting, and live auctions. OTT applications face

challenges in delivering low latency live streams using Dynamic

Adaptive Streaming over HTTP (DASH) due to large playback bu�er

and video segment duration. A potential solution to this issue is the

use of HTTP chunked transfer encoding (CTE) with the common

media application format (CMAF). This combination allows the

delivery of each segment in several chunks to the client, starting

before the segment is fully available in real-time. However, CTE

and CMAF alone are not su�cient as they do not address other

limitations and challenges at the client-side, including inaccurate

bandwidth measurement, latency control, and bitrate selection.

In this paper, we leverage a simple and intuitive method to re-

solve the fundamental problem of bandwidth estimation for low

latency live streaming through the use of a hybrid of an existing

chunk parser and proposed �ltering of downloaded chunk data.

Next, we model the playback bu�er as a "/�/1/ queue to limit

the playback delay. The combination of these techniques is col-

lectively called QLive. QLive uses the relationship between the

estimated bandwidth, total bu�er capacity, instantaneous playback

speed, and bu�er occupancy to decide the playback speed and the bi-

trate of the representation to download. We evaluated QLive under

a diverse set of scenarios and found that it controls the latency to

meet the given latency requirement, with an average latency up to

21 times lower than the compared methods. The average playback

speed of QLive ranges between 1.01 - 1.26× and it plays back at 1×

speed up to 97% longer than the compared algorithms, without sac-

ri�cing the quality of the video. Moreover, the proposed bandwidth

estimator has a 94% accuracy and is una�ected by a spike in in-

stantaneous playback latency, unlike the compared state-of-the-art

counterparts.

∗This work was done when the author was at National University of Singapore.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8434-6/21/09.
https://doi.org/10.1145/3458305.3463376

CCS CONCEPTS

• Information systems → Multimedia streaming.

KEYWORDS

DASH, live streaming, low latency, queuing model, CMAF, CTE

ACM Reference Format:

Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei

Tsang Ooi, and Roger Zimmermann. 2021. Playing Chunk-Transferred

DASH Segments at Low Latency with QLive. In 12th ACM Multimedia

Systems Conference (MMSys ’21) (MMSys 21), September 28-October 1, 2021,

Istanbul, Turkey. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3458305.3463376

1 INTRODUCTION

Video streaming represents a signi�cant portion of Internet tra�c

today. The popularity of live video streaming applications, such

as online video games, live event streaming, and virtual reality

applications, is increasing with an expected growth of �fteen-fold

to reach 17% of the total tra�c by the end of year 2022 [2]. These

applications require low end-to-end latency (also called glass-to-

glass latency), i.e., the time lag between video capture and the actual

playback time at the client, to enable real-time interaction while

providing high quality and avoiding rebu�ering events. Dynamic

adaptive streaming over HTTP (DASH) [4] clients were initially

designed for video-on-demand (VoD) services without any stringent

latency requirements in mind. Therefore, legacy DASH solutions

face a severe problem in delivering low-latency live streaming. The

currently achieved latency by these solutions ranges from 6 to

40 seconds as shown in prior studies [5, 6, 55]. This unacceptable

latency is often due to a large playback bu�er and segment duration.

In traditional DASH solutions, the origin server has to wait for an

entire segment to be encoded and packaged before being pushed to

a content delivery network (CDN). This video contribution process

requires at least one segment duration delay. In practice, the DASH

video player has to bu�er several segments (e.g., three segments in

Apple HTTP live streaming) to start decoding and rendering. These

serial delays, from video capture until rendering, can signi�cantly

increase the end-to-end latency.

One way to reduce the end-to-end latency is to use a shorter

segment duration (one second or less). Although this solution can

control the latency to within target limits to some extent, it has

several problems: (8) decrease in encoding e�ciency, (88) frequent

52

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458305.3463376
https://doi.org/10.1145/3458305.3463376
https://doi.org/10.1145/3458305.3463376
https://creativecommons.org/licenses/by/4.0/

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

Internet

 Chunk of the Segment GET Segment

 Size of chunk Chunk Arrival

 and download interval

 Schedule of Download
 and Level for Next
 Representation
 Estimated Buffer Occupancy
 Bandwidth & Latency Chunks
 for Player

 Current Playback New Playback
 Speed Speed

Fetch API

Controller

Bandwidth Estimation Buffer

Video
Player

End User

Figure 1: Generic DASH rate and speed adaptation process

for low latency streaming using CTE and CMAF.

quality changes (quality instability), and (888) tremendous increase

in the number of HTTP requests and responses. To avoid these

problems while keeping the latency small, chunked transfer encod-

ing (CTE) with MPEG Common Media Application Format (CMAF;

ISO/IEC 23000-19) [23] has recently emerged as the standard pack-

ager for low-latency delivery. CTE is one of the main features of

HTTP/1.1 (RFC 7230) [20] that allows delivery of a segment in small

pieces called chunks. A chunk can be as small as a single frame, so

that it can be delivered to the client near real-time, even before the

segment is fully encoded and available at the origin side. In CMAF,

a chunk is the smallest referenceable unit of a segment that contains

Movie Fragment Box (“moof“) and Media Data Box (“mdat“) atoms.

These atoms make a chunk independently decodable, although rep-

resentation switching still happens at the �rst chunk of the segment

that contains the Instantaneous Decoder Refresh (IDR) frame.

Although CTE and CMAF solution is a step forward in low

latency streaming, it alone is not enough for reducing latency.

It requires e�cient content delivery networks (CDNs), resource-

e�cient encoders, and optimized adaptive rate and playback speed

adaptation algorithms. Figure 1 shows an overall architecture of the

DASH client for low latency live video streaming using CTE and

CMAF. A DASH client �rst requests the video segment based on the

information given in the media presentation description (MPD) �le.

The properties available in MPD, namely availabilityStartTime and

publishTime, allow the DASH client to calculate the instantaneous

latency and request the latest available segment from the server.

The Fetch API1 (currently supported by major browsers) at the

client enables the reading of a chunk out of a partially downloaded

segment and push it to the playback bu�er of the video player,

from where the video player renders it at a speci�c speed decided

by the controller. The controller is also responsible for estimating

the bandwidth using the downloaded chunk’s size (in bytes) and

the time interval for its download. The controller implements an

adaptive bitrate (ABR) algorithm that considers di�erent heuristics

based on the estimated bandwidth value and the bu�er information,

the required latency limits, and the instantaneous playback speed to

1https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

decide the subsequent representation of the segment to download

and the playback speed. This ABR algorithm is customizable as per

the DASH client’s requirements.

Unlike in the case of VoD streaming with DASH, the measured

value of the throughput for the downloaded segment is not a reason-

able estimate of the network transmission capacity [5, 34]; therefore,

we use the estimated bandwidth instead. As explained in the previ-

ous studies, the throughput measurement problem using the ratio of

segment size and segment download time always produces a value

equal to (or slightly smaller than) the segment encoding bitrate due

to inter-chunk idle periods introduced during CTE delivery [5, 6].

Hence, the ABR algorithm experiences incorrect throughput mea-

surements, which prevents it from switching to higher bitrate levels.

Moreover, a DASH client faces a longer latency if its bu�er contains

video chunks for a longer duration or a higher network latency

due to a sudden drop in bandwidth. When a client plays the entire

video at normal playback speed without skipping any of the chunks,

the latency becomes cumulative. Therefore, its future value cannot

go lower than the instantaneous value. One way to reduce the la-

tency is to skip some segments and download the latest segment.

However, this technique is not suitable for many applications such

as online gaming and live sports streaming as the user would not

like to skip key moments in a game to reduce the latency. Another

technique for reducing the latency is speeding up the playback of

the bu�ered chunks to play the later segments earlier. In such a

case, the controller needs to decide a reasonable value for the play-

back speed for this latency control process, as an overly aggressive

playback speedup leads to an empty bu�er, causing a playback stall.

In this paper, we address the issues mentioned above and pro-

pose an"/�/1/ queuing system-based model (termed QLive) for

bitrate adaptation and playback speed control using the estimated

bandwidth, bu�er occupancy, instantaneous playback speed, and

the total bu�er capacity.We leverage a hybrid bandwidth estimation

algorithm that combines the latest version of LoL’s [38] bandwidth

measurement module with a new chunk �ltering mechanism using

the maximum transfer unit (MTU).

We implement QLive over the latest Dash.js reference player [25]

and compare its performance with recently published ABR algo-

rithms2 for low latency streaming that includes LoL [38], L2A [32],

and Stallion [27].

Our method achieves 94% accuracy in the bandwidth prediction

regardless of the instantaneous latency. Furthermore, the bitrate and

playback speed adaptation algorithm controls the average latency to

meet the target limit, with an average playback speed of 1.01 to 1.26

for di�erent latency limits. Furthermore, the duration for playing at

normal speed is up to 97% longer than the current state-of-the-art

algorithms.

Paper Contributions. First, we leverage a simple and intuitive

hybrid bandwidth estimation method [38] with high accuracy re-

gardless of the instantaneous latency and network conditions. Next,

we model the DASH client as"/�/1/ queue to develop a joint

bitrate and playback speed adaptation algorithm that avoids exces-

sive playback speed, keeps the latency within the target limits, and

maintains a high quality-of-experience (QoE). Here, we measured

2Note that LoL and L2A are integrated with Dash.js player (v3.2.0) as default ABR
algorithms for low latency streaming.

53

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

the QoE using two state-of-the-art QoE modeling formulas for

adaptive video streaming [3, 62]. We evaluated QLive extensively

using di�erent network traces with di�erent segment durations

for di�erent latency thresholds. We also tested QLive on the public

Internet to stream video across two continents during the current

Covid-19 pandemic when the increase in video tra�c is burdening

the Internet. QLive controls the latency without causing excessive

playback speedup while avoiding stalls. We also show the e�ects

of the segment duration on the instantaneous and average latency.

Paper Organization. Section 2 provides an overview of the

related work to improve live streaming performance. Section 3

presents the hybrid bandwidth estimation method. Section 4 de-

scribes the proposed"/�/1/ queuing model for low latency live

streaming DASH clients as well as the QLive algorithm. Section 5

presents the evaluation of QLive. We conclude in Section 6.

2 RELATEDWORK

We now discuss the existing approaches to improve live streaming.

Encoding optimization. Retransmission of lost packets adds

signi�cant latency for progressive video streaming applications.

Liang et al. [37] have proposed an optimal picture selection tech-

nique for layered encoding based on video content, packet loss

probability, and channel feedback to avoid packet retransmission

for reducing the latency. Varodayan et al. [58] have proposed a

feedback mechanism to detect errors based on picture comparison

in time and space to improve the visual quality in live multicast

adaptive video streaming. In another approach, Zhou et al. [67]

have proposed a bitrate independent encoding to reduce the la-

tency in low-throughput networks using the number of encoded

symbols. In live streaming, the encoding of a segment cannot �n-

ish before all its frames have been produced (i.e., received from

the camera). Therefore, a client gets an error code if it requests a

segment earlier than its availability, which leads to re-requesting

the segment. On the other hand, another approach lets the server

wait to complete the segment before responding to the client. In

both scenarios, the segment duration has a signi�cant impact on

latency. Swaminathan et al. [55] have proposed dividing a segment

into equal-sized chunks to reduce this latency dependence on the

segment duration. Thus, the server responds with the available

chunks upon receiving the request without completing the seg-

ment encoding. To further mitigate the latency dependency on

encoding time, Bouzakaria et al. [8] have proposed a frame-level

transmission. The work shows that a frame-level transmission is

possible with acceptable overhead. In 2017, MPEG standardized the

chunk-based encoding with CMAF. Yahia et al. proposed a selective

frame dropping using HTTP/2 to reduce the latency while main-

taining visual quality [61]. Heikkinen et al. [28] and Aparicio et

al. [1] have addressed resource optimizations, whereas Bentaleb

et al. [6] have analyzed the impact of encoding parameters on live

streaming.

Transmission optimization. Peer-to-peer streaming is a well-

studied mechanism for live video streaming. Various algorithms

have been proposed for the admission control and identi�cation

of peers [11, 59]. Shen et al. proposed that peers available in a

LAN network can support each other [53], whereas Sweha et al.

proposed the inclusion of angel servers to support peer-to-peer

streaming [56]. Most of these approaches are less e�cient than

using CDNs, as the availability of a peer is not guaranteed, and

many do not support HTTP-based live streaming. Roverso et al.

have proposed a peer-to-peer-based approach that supports HTTP-

based live streaming and has comparable performance to CDNs by

using proactive-reactive hybrid prefetching [52]. Bruneau et al. have

proposed a mechanism to download chunks both from multiple

peers and dedicated servers [10]. In contrast, Evensen et al. [17]

proposed using 3G and WiFi to improve the quality of live streams.

Mirshokraie et al. optimized video encoding using layered encoding

for peer-to-peer streaming [40]. Other transmission optimization

techniques to improve live streaming include the use of HTTP/2 to

reduce the number of requests [31, 45], a hybrid of broadband and

multicast [36], optimization of TCP congestion control [7], multi-

server streaming [12], scheduling users to di�erent CDNs [65], and

selective retransmission of frames [50].

Player optimization. Due to the higher cost-e�ectiveness of

HTTP-based streaming, Akamai proposed a feedback control adap-

tive streaming for live video [14], where the server throttles the

sending rate based on the network conditions and the client bu�er.

De Cicco et al. [15] extended this approach to mitigate the network

underutilization in Akamai’s approach by matching the video bi-

trate to the network throughput. Steinbach et al. [54] showed a

reduction of latency by increasing the playback speed through sim-

ulation. Gualdi et al. [26] have proposed continuous playback speed

modi�cations for reducing the latency, whereas LAPAS [64] used

speed adaptation to reduce the latency for non-CMAF streams by

matching the playback �nishing time of a segment with the avail-

ability of the next segment. However, such approaches can hamper

the user experience as the end-user would rarely get to watch the

video at normal speed. Hooft et al. [57] have proposed prefetching

of a few segments along with the MPD �le using HTTP/2 to reduce

the latency. As mentioned in the earlier encoding optimization

paragraph, the latency for non-CMAF encoding is signi�cantly de-

pendent on the segment duration. Therefore, reducing the latency

for such encoded videos is very di�cult as the client can only play

the segments after fully downloading them. To handle this situa-

tion, LAPAS controls the playback speed of a segment to match the

playback �nishing time of the segment with the next segment’s

availability. Therefore, the algorithm reduces the playback speed

if the latency falls below the latency limit and increases the play-

back speed if it is more than the latency limit. In such a scenario,

a latency limit that is too low leads to a playback stall, whereas

maintaining the bu�er increases the latency, which makes CMAF

an obvious choice over other formats for low latency streaming.

Vabis [19] proposed a server-side bitrate adaptation using re-

inforcement learning to optimize the QoE. In the context of low-

latency with CTE and CMAF, Lim et al. [38] have re-visited and

extended several vital components (collectively called Low-on-

Latency, LoL) in adaptive streaming systems. LoL includes three

essential modules: bitrate adaptation (both heuristic and learning-

based), playback control, and throughputmeasurement. Karagkioules

et al. [32] designed the Learn2Adapt (L2A) ABR algorithm based on

online learning and online convex optimization. Similarly, Gutter-

man [27] developed Stallion, a simple algorithm that uses a sliding

window algorithm to measure the mean and standard deviation of

both the bandwidth and latency to perform ABR decisions. More

54

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

algorithms proposed bitrate adaptations along with skipping of

frames for controlling the latency [30, 43, 44, 66]. Montagud et

al. [41] and Rainer et al. [47, 48] have proposed playback speed

adjustment algorithms for media synchronization and preventing

bu�er under�ow and over�ow in adaptive media playout regardless

of latency.

In the proposed work, we focus on controlling the latency for

video playback in a DASH client without skipping frames using

limited playback speed modi�cations to improve QoE while maxi-

mizing the normal playback speed duration.

3 BANDWIDTH ESTIMATION

We now describe the need for bandwidth estimation and describe a

method to get a more accurate estimate regardless of the instanta-

neous latency and network conditions.

The encoding time of a segment in live video streaming is equal

to its content duration since the encoder has to wait to receive every

frame from the camera in real-time. This encoding time a�ects the

throughput measurement at the client end [5, 35]. For example, a

segment encoded at 2000 Kbps with a segment duration of 4 seconds

has a total size of 8000 Kb and takes 4 seconds to generate entirely

at the server (origin). In the hypothetical case of zero network delay,

the segment requested at the beginning of its encoding at the server

needs 4 seconds to get fully downloaded at the client’s end, resulting

in a throughput measurement of 2000 Kbps. Therefore, in the case

of additional network latency, the measured throughput cannot

exceed the segment’s bitrate value and cannot depict the available

bandwidth. This inaccuracy in measuring the bandwidth calls for

an alternative measurement for bandwidth estimation. In this paper,

we leverage a hybrid bandwidth estimation algorithm that combines

the latest version of LoL’s [38] bandwidth measurement module

with a new chunk �ltering mechanism using themaximum transfer

unit (MTU). The hybrid algorithm (LoL bandwidth measurement

module + MTU �ltering) works in three stages:

(1) Chunk Parsing: The support for the FetchAPI inweb browsers

provides an interface for fetching resources on the Internet

with more �exibility than the earlier XMLHttpRequest ap-

proach. The API allows the reading of the response body

content in real-time before the completion of its download.

A DASH client reads part of the HTTP response body by

using the read() method of Fetch API, creates a copy of it,

and pushes it to the playback bu�er. This functionality en-

ables the playing of a chunk before downloading the entire

segment. Our algorithm leverages this capability of the Fetch

API, tracks the chunk’s download progress, and parses the

chunk payload in real-time to check if “moof“ and “mdat“

boxes (or atoms) in fragmented MP4 data are present. It iden-

ti�es the exact arrival of the beginning and ending times of

each chunk download. When the �lter captures a “moof“ box

of a chunk, the algorithm stores the timestamp as the begin-

ning time of the chunk download using performance.now().

The next step stores the ending time of the chunk and its

size (in bytes) when the chunk is fully downloaded (end of

“mdat“).

(2) Chunk Filtering: Once the client downloads a segment, our

algorithm triggers a two-phase �ltering process to remove

the inter-chunk idle periods and noise. First, it checks again

for the time intervals for which “moof“ is present, and the

bytes received are equal to or more than the MTU. If the con-

dition is satis�ed, it considers this chunk in the bandwidth

calculation. Otherwise, the client considers the interval as

an idle period and �lter out the chunks from the bandwidth

estimation.

(3) Segment Bandwidth Estimation: Our algorithm uses the ratio

of the total bytes and their download time for such intervals

as the estimated bandwidth (see Equation 1). The MTU value

used for �ltering by the DASH client is 1448 bytes because

the bytes allocated for TCP and IP headers and timestamps

are not available at the application layer.

�>A 402ℎ 3>F=;>0343 2ℎD=: 9 > 5 B46<4=C 8 :

)>C0; (8I48 =)>C0; (8I48 + (8I42ℎD=: 9
)>C0;)8<48 =)>C0;)8<48 + �>F=;>03)8<42ℎD=: 9

Subject to :

(8I42ℎD=: 9 ≥ ")*

�;06<>>5 =)'*�

�BC8<0C43 �0=3F83Cℎ8 =)>C0; (8I48/)>C0;)8<48

(1)

We observed that LoL’s bandwidthmeasurementmodule success-

fully detects and eliminates idle periods between chunks introduced

during CTE delivery. However, we found that in some particular

cases where the instantaneous latency drops below one second,

the accuracy of the throughput measurement drops (as shown in

Section 5.5). The �ltering technique considers some chunks of a

segment as an idle period and �lters them out from the bandwidth

calculation. To mitigate the issue, we added another �ltering ap-

proach based on MTU; thus, we can maintain high estimation accu-

racy. The intuition behind the method is as follows: (8) The presence

of “moof“ atoms from the portion of the response body implies

the beginning of a new chunk. (88) Bytes received by the client are

more than or equal to the MTU implies that the fragmentation is

performed for the transmission because the available packet is too

large for transmission over the network interface. Therefore, the

chunk’s download is lesser a�ected by the encoding latency. We

show that the method has consistent accuracy for di�erent segment

durations and network conditions in Section 5.5.

4 QLIVE SYSTEM MODEL

With a mechanism to accurately estimate the available bandwidth,

we now describe how QLive performs joint bitrate and playback

speed adaptation. QLive approximates the playback bu�er as a

queuing system.

Using a queueing model, QLive estimates the DASH client’s

bu�er occupancy convergence for a given bitrate while playing the

video at a speci�c rate with the given network bandwidth. QLive

then selects the representation of the next segment to download

and the playback speed of the video so that the bu�er occupancy

converges to the ideal value.

A DASH client can be approximated as an "/�/1/ queuing

system where the live video stream chunks that belong to a �xed

duration segment arrive in the queue. Here, chunks’ arrival in

the queue with capacity K is assumed to beMemoryless, and sin-

gle decoder (1) process or decode the chunks of a segment at a

55

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Deterministic rate. This model has been shown to approximate the

DASH client playback bu�er well [60].

Each segment consists of several chunks. Let each segment of the

video is encoded into L representation levels, with bitrate values

' = {A1, A2, ..., AL}, and A8 < A 9 if 8 < 9 . The DASH client starts play-

ing the video as soon as the chunk arrives in the queue. Although

the video is played when a chunk is available, the decision to switch

the video’s representation level is taken by the client at the segment

boundary where IDR frames are present. The client requests a new

segment once it �nishes the download of the previous one. The

client model is similar to QUETRA [60] for VoD streaming, but

some changes to suit low latency streaming are required.

We now describe why QUETRA’s model is not applicable for

low latency live streaming. The model calculates the arrival rate of

the segment as _ = 1/(3 × A), where 1 is the measured throughput

for the entire segment download, 3 is the segment duration, and A

is the bitrate of the segment. The service rate is calculated based

on the video segment’s duration played per second, which is ` =

B/3 . Here, B is the playback speed. The queuing utilization d = _/`

is therefore 1/(A × B). For simplicity, the model considers B = 1,

which is the common scenario for VoD streaming, where the user

plays back the video at the normal speed. Therefore, the utilization

is simpli�ed to d = 1/A . Furthermore, the model considers the

bu�er capacity as the duration of the video available in the bu�er

(in seconds). Using the analysis for �nite bu�er queue by Brun

et al. [9], QUETRA calculates the average bu�er occupancy - for

a given d and . The average bu�er slack �(is the di�erence

between bu�er capacity and the average bu�er occupancy - . In

ideal case where the segment bitrate A equals to the throughput

1, gives 100% utilization (d = 1). When d = 1, the �(can be

approximated with /2. By choosing the bitrate such that the bu�er

occupancy �C at the time C is as close to the bu�er slack as possible,

the model, in the hypothetical case where the bitrate values are

continuous, converges to the bu�er occupancy to /2. Therefore,

the DASH bitrate adaptation algorithm determines the bitrate of

the representation to download for the next download step 8 with

an estimated throughput 18 as:

A8 = argmin
A ∈'

|�(,A,18 − �C | (2)

The slack calculated in the above equation uses a predetermined

playback speed of 1, which is the general case for VoD streaming,

where the user manually selects the playback speed. However, in

the case of low latency live streaming, the client needs to deter-

mine the representation level with a given bitrate and the playback

speed when the instantaneous latency is beyond the pre-speci�ed

limit. Also, Equation 2 aggressively choose a bitrate higher than

the capacity if the slack caused by it is nearer to the ideal value.

Therefore, such selection can cause rebu�ering for low latency

streaming, especially when the latency limit is very small, e.g., 1

second.

4.1 Proposed Model for Low Latency

CMAF-based video segmentation and the Fetch API allow chunks

as small as a single frame to be added to the bu�er and decoded

before downloading the entire segment. Therefore, we measure the

bu�er occupancy as the number of frames available in the bu�er for

playing. The algorithm calculates the value of bu�er occupancy by

taking the product of bu�er occupancy in seconds and the video’s

frame rate. Having a higher bu�er occupancy increases the latency

as the chunk waits for a longer time in the bu�er to get played.

So we set the bu�er capacity to the required latency limit. The

algorithm �rst �nds the ideal value of d for keeping the bu�er

half-�lled by considering the instantaneous bu�er occupancy as

the expected average bu�er slack as per the etiquette of "/�/1/

queue. Using this value of d and the estimated bandwidth �, by the

proposed method in Section 3, we calculate the product of bitrate

and playback speed with the help of queuing utilization d = _/` as:

A × B = �, /d (3)

4.2 QLive Design

Here we describe the rate and speed adaptation under di�erent

scenarios using the Equation 3 derived in the previous section.

Scenario 1: Latency is within the required limit. The set of

available bitrate values ' is discrete in practice. Therefore, in a

case when the latency is within the required latency limit, QLive

selects the playback speed B = 1 and the representation level with

the highest bitrate that is less than or equal to A∗ = �, /d , based

on Equation 3. Let this selected representation level be ~ with the

bitrate A~ . The algorithm uses the values ~, A~ , and A
∗ for rate and

speed adaptation in the next scenarios.

Scenario 2: Latency is more than the required limit and

the bu�er occupancy is high. When the bandwidth increases

abruptly, a client receives many chunks in the bu�er subject to the

server’s chunk availability. For instance, suppose a client plays a live

stream with segments of 1 second, and the instantaneous latency is

20 seconds due to a lower bandwidth in the past. This value implies

that 20 segments are available at the server for download. When

the bandwidth increases sharply, the bu�er occupancy will also

increase abruptly. Suppose our latency limit is 1 second, and the

client downloads 3 segments in less than 1 second due to a sudden

increase in bandwidth. In that case, the bu�er occupancy will grow

more than the latency limit, whereas the instantaneous latency

will still be around 17 seconds. In such a situation, QLive selects

an adjacent lower representation than the representation it would

select for B = 1, which is~−1with the bitrate A~−1. This selection of

representation level allows the algorithm to select a playback speed

B > 1, which satis�es the condition A~−1×B = �, /d . It is important

to note that while calculating d using bu�er occupancy at the time

C , QLive uses the e�ective instantaneous bu�er occupancy �C/B

instead of �C because B > 1, which leads to faster drainage of the

bu�er. Such a calculation of d accounts for the change in average

bu�er occupancy due to the change in playback speed to avoid

rebu�ering stalls. Since d is a monotonically decreasing function

of instantaneous bu�er occupancy, and there are a �nite set of

values for B due to the web browser and QoE constraints, we can

approximate the value of B that satis�es the relationship between A ,

B , �, , and d .

Scenario 3: Latency is more than the required limit with

lower bu�er occupancy, causing feasible bitrate to be lower

than the lowest available bitrate.When the network bandwidth

is lower than the bitrate for the selected representation level, it

56

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

causes the latency at the client-side to increase when the bu�er oc-

cupancy decreases. The bu�er occupancy is very low in such a case,

whereas the latency is beyond the latency limit. This lower value

of the bu�er occupancy leads to a A∗ value lower than the bitrate

of the lowest available representation. Therefore, QLive selects the

lowest representation level with bitrate A1 and the playback speed

B < 1, which satis�es the condition A1 × B = �, /d . Here, QLive

also uses �C/B to calculate d because the bu�er is now draining

slowly due to slower playback speed. Since the bu�er occupancy

is measured in the unit of time in the model, draining the bu�er

slower e�ectively increases the bu�er occupancy.

5 EVALUATION

To evaluate QLive, we compare it against three algorithms designed

for low-latency scenarios.

The �rst one is LoL [38] that develops three main modules: a self-

organizing map (SOM) learning-based ABR algorithm, playback

speed control, and throughput measurement. The ABR algorithm

of LoL considers four heuristics as an input (measured throughput,

latency, current bu�er level, and QoE [3]) in the SOM model to

perform an ABR decisions. It also develops a robust throughput

measurement algorithm that tracks when a chunk arrives and its

download �nishes.

The next algorithm is L2A [32], which uses an online optimiza-

tion convex optimization framework to formulate ABR selection

problem in low-latency live streaming and propose an online learn-

ing rule to solve the optimization problem. The main intuition

behind L2A is to learn the best policy that can select a suitable bi-

trate for each segment downloaded. It does so without requiring any

parameter tuning, modi�cations according to the application type,

statistical assumptions for the channel, or bandwidth estimation.

The third algorithm, Stallion [27], uses the throughput-based

ABR of Dash.js with the slight modi�cation that incorporates

a sliding window technique to measure the mean and standard

deviation of both the throughput and latency and then performs

ABR decisions. This modi�cation makes Stallion react well to low

latency requirements.

The playback speed algorithm for LoL, L2A, and Stallion is based

on the default Dash.js algorithm and is independent of the bitrate

adaptation algorithm. While L2A and Stallion use the original play-

back speed algorithm, LoL modi�es it to consider the bu�er state

before changing the playback speed to avoid rebu�erings. For a

fair comparison, we use the default playback speed algorithm of

Dash.js for LoL, L2A, and Stallion. The algorithm controls the

latency by increasing the playback speed based on the latency limit

and the instantaneous latency. The algorithm �rst calculates the

Δ!, which is the di�erence between the instantaneous latency and

the latency limit. This value is used for the calculation of playback

speed as ((2 × B<0G)/(1 + 4
−Δ!×5)) + 1 − B<0G . Here, B<0G is the

upper threshold for the playback speed. There are two main is-

sues with this playback speed control algorithm. First, it decreases

the playback speed when the latency is below the limit. Second,

if the latency is higher than the limit and the bu�er is empty, the

algorithm still increases the playback speed to reduce the latency,

which can cause an increase in the playback stalls. Besides, we used

the hybrid bandwidth estimation technique (Section 3) for all ABR

algorithms, including QLive.

5.1 Video Sample

We use the software library provided by Streamline [29] that gen-

erates a synthetic CMAF-based live stream with continuous mo-

tion and di�erent colors (random pattern). It uses FFmpeg (https:

//�mpeg.org/) to encode and package the streams in CMAF for-

mat and a Python origin server to deliver the packaged chunks

to the client using CTE. The original version of the source code

generates the video stream at one bitrate. We modi�ed the code

to generate the video stream with three bitrates, chunked at the

frame level. The highest bitrate for live streaming suggested by

Facebook is 4000 Kbps, although there is no guideline for the low-

est value [18]. YouTube suggests the lowest bitrate in the range of

300 Kbps to 700 Kbps for live streaming [63]. There are various other

bitrate recommendations in the similar range 500 Kbps to 4000 Kbps

from other platforms [13, 21, 22]. Therefore, we used three values

500 Kbps, 2500 Kbps, and 4000 Kbps. In addition, we choose the

segment duration that is less than or equal to the required latency

limit. E.g., for a 3-second latency limit, we use segment duration

of 1, 2, and 3 seconds. Similarly, for a 2-second latency limit, we

use segment duration of 1 and 2 seconds, and for 1-second latency

limit, we use just a segment duration of 1 second. We describe the

e�ect of choosing a segment duration with a higher value than

the latency limit in Section 5.5 by analyzing the algorithms with

a 6-second segment and a 3-second latency limit. The di�erent

playback speeds of algorithms can cause a di�erence in segments

played for a given time. Therefore we run each experiment for 10

minutes instead of accounting for the number of segments.

5.2 Network Pro�les

We used six network pro�les for evaluation. Table 1 shows the

summary of all the pro�les. Pro�les P1 and P2 are taken from the

DASH Industry Forum Guidelines [24]. It has �ve levels with rate

{1500, 2000, 3000, 4000, 5000} Kbps, with corresponding delay of

{100, 88, 75, 50, 38} ms, and packet loss {0.12, 0.09, 0.06, 0.08, 0.09}%

varying at the interval of the 30 seconds. P1 follows a high-low-high

pattern; P2 follows a low-high-low pattern. Pro�les P3 and P4 are

HSDPA network trace from a moving car and train with the rate

ranging from 241 to 5876 Kbps and 3 to 3344 Kbps varying at the

interval of 1 second [51]. These two pro�les are very challenging

as the bandwidth is very low, and there are a few periods where

avoiding rebu�ering is challenging. Pro�les P5 and P6 are 4G/LTE

network trace from a moving car and train with the rate ranging

from 0 to 103033 Kbps and 0 to 60555 Kbps varying at the 1-second

interval [39].

5.3 Evaluation Metrics

First, we evaluated the accuracy of our bandwidth estimation al-

gorithm. Next, we evaluated the traditional performance metrics

for bitrate adaptation, namely, average bitrate, number of changes

in representation, the magnitude of changes in quality (as the dif-

ference in bitrate values), number of stalls, duration of each stall,

latency, and playback speed. We used two QoE models (Yin et

al. [62] and Twitch grand challenge [3]) to calculate the QoE using

57

https://ffmpeg.org/
https://ffmpeg.org/

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

0 100 200 300 400 500 600

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Time (Sec)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Bandwidth

Actual Estimated

(a) Pro�le P1

0 100 200 300 400 500 600

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Time (Sec)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Bandwidth

Actual Estimated

(b) Pro�le P2

0 100 200 300 400 500 600

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Time (Sec)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Bandwidth

Actual Estimated

(c) Pro�le P3

0 100 200 300 400 500 600

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

Time (Sec)

B
a
n
d
w

id
th

 (
K

b
p
s
)

Bandwidth

Actual Estimated

(d) Pro�le P4

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Time (Sec)

B
a
n
d
w

id
th

 (
M

b
p
s
)

Bandwidth

Actual Estimated

(e) Pro�le P5

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Time (Sec)

B
a
n
d
w

id
th

 (
M

b
p
s
)

Bandwidth

Actual Estimated

(f) Pro�le P6

Figure 2: Actual and estimated bandwidth for di�erent network Pro�les.

Network Inter-variation Min Max Average Standard Deviation Delays Packet Loss Type

pro�le duration (sec) (kbps) (kbps) (kbps) (kbps) (ms) %

%1 30 1500 5000 3062.5 1208.23 38 to 100 0.06 to 0.12 High-Low-High

%2 30 1500 5000 3062.5 1208.23 38 to 100 0.06 to 0.12 Low-High-Low

%3 1 241 5876 1754 884.29 - - HSDPA Trace

%4 1 3 3344 667.58 569.74 - - HSDPA Trace

%5 1 0 103033 2161.49 19504.45 - - 4G/LTE Trace

%6 1 0 60555 23072.71 13878.16 - - 4G/LTE Trace

Table 1: Characteristics of Network Pro�les.

these metrics. Finally, we evaluated the latency-dependent matri-

ces. We measured the average latency to check if an algorithm

can control the latency with the preset limits. The instantaneous

value of latency is critical for applications such as online gaming

and video surveillance. Therefore, we checked for the maximum

instantaneous value of latency as well. We also checked the average

playback speed and the duration for which video is played at the

normal speed by di�erent algorithms.

5.4 Implementation and Experimental Setup

We implemented QLive on Dash.js [25] video reference player

(v3.1.3) Other low-latency ABR algorithms, LoL [38], L2A [32], and

Stallion [27], are already integrated in Dash.js. We evaluated the

algorithms mentioned above with three latency limits of 1, 2, and 3

seconds. For the playback speed adaptation, we used the YouTube

recommendation speed limit, i.e., 0.25 times to 2 times of normal

playback speed [46]. We used an Apache Web server to host the

Dash.js video player containing the four bitrate adaptation algo-

rithms for comparison. The FFmpeg encoder with CMAF packager

and origin ran on the server provided by Streamline [29]. The server

and client ran on two di�erent Linux-based machines connected

by a router. We used the tc NetEm network emulator to control the

network bandwidth according to the network pro�les.

We tested the algorithms for each network pro�le and latency

limit with di�erent segment durations for 10 minutes of the total

live video session. We repeated the network pro�les for network

traces that are shorter than 10 minutes. We measured all the metrics

in the interval of 30 milliseconds to cover the frame-level changes in

the bu�er because bu�er occupancy is often low in the low latency

streaming.

5.5 Results and Comparison

We now compare and describe the performance of the di�erent

algorithms. First, we describe the performance enhancement for

our proposed bandwidth estimation accuracy. Then, we compare

the performance of di�erent bitrate adaptation and speed control

algorithms using the metrics such as average bitrate, changes in

representation level, number of stalls, stall duration, playback speed,

latency, and QoE. Unless speci�ed otherwise, we present each algo-

rithm’s results for di�erent latency limits and the di�erent network

pro�les by averaging the results for di�erent segment durations.

5.5.1 Bandwidth estimation accuracy. As we discussed in Section

3, the accuracy of the bandwidth estimation algorithm used in LoL

is high in general. However, the method fails when the latency

drops below 1 second. This phenomenon is not common with the

LoL, L2A, and Stallion because these methods use Dash.js default

58

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

playback speed algorithm, which tends to slow down the play-

back speed to increase the instantaneous latency to the given limit

whenever the latency value drops below the limit. LoL’s bandwidth

estimation �lter out the ideal periods between the chunks. There-

fore the method works well when multiple chunks of a segment

are available for transmission at the server, i.e., when the latency is

more than 1 second.

However, when the total end-to-end latency is in the order of

chunk duration, a server must wait for the encoder to �nish the

encoding of a chunk for its transmission. In such a scenario, we

need additional �ltering for the latency caused by a single chunk’s

encoding duration to estimate the bandwidth accurately. As ex-

plained in Section 3, when bytes received by the client is more than

or equal to the MTU, it implies fragmentation is performed for the

transmission because the available packet is too large for transmis-

sion over that interface. Therefore, the chunk’s download is lesser

a�ected by the encoding latency. The QLive speed adaptation is

di�erent and does not aim to increase the latency regardless of

the instantaneous value. Figure 3 shows one such example where

the LoL’s bandwidth estimation fails when used together with the

bitrate adaptation of QLive. Around 330 seconds, the QLive latency

drops below 1 second, and the algorithm also selects the lowest

representation having the bitrate 500 Kbps. Such representation and

the lower instantaneous latency give a false bandwidth estimate,

which is too lower than the actual value. Therefore, QLive keeps

on selecting the lowest representation, and the instantaneous value

of latency remains lower than 1 second as the actual bandwidth is

much higher than the representation’s bitrate. Therefore, the error

in the bandwidth estimation continues.

To address this issue, we modi�ed the chunk �ltering approach

based on Equation 1. This modi�cation leads to a very high average

bandwidth estimation accuracy of 94%, with the minimum value of

87% for di�erent pro�les, and segment duration, calculated using

Dynamic Time Warping with Manhattan distance [42]. Some of

the inaccuracy is due to the experiment artifact, i.e., the segment’s

download falls in the time window when the NetEm is changing

the bandwidth, causing the averaging of the values at the client’s

end. However, as we have demonstrated in Figure 2 for one of the

experiment traces, the di�erence between the actual and estimated

bandwidth is minimal regardless of latency.

5.5.2 Stall duration and number of stalls. Figure 4 shows the XY

plot for comparing the number of stalls and their duration for

di�erent algorithms under di�erent latency limits and network

0 100 200 300 400 500 600

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

Time (Sec)

B
a

n
d

w
id

th
 (

K
b

p
s
)

Bandwidth

Actual Estimated

Figure 3: Bandwidth estimation error for algorithm used in

LoL when latency drops below one second.

pro�les. The points that are closer to the lower-left corner yield

better performance in both dimensions, i.e., the minimum number

of stalls with a minimum duration of stalls. QLive is almost in the

lower-left corner for all the cases. The stall duration is between 0 to

1.63 seconds, and the number of stalls is between 0 to 2 on average.

The most challenging scenarios are Pro�les P3 and P4, where the

bandwidth is extremely low for a total duration of 8 seconds and 20

seconds, respectively, causing more stalls than other pro�les. The

situation becomes more challenging for 1-second latency limits as

all the algorithms try to keep the bu�er within 1 second to control

the latency within limits. Small bu�er capacity is also challenging

with Pro�les P1 and P2 that have induced delays on the top of throt-

tled bandwidth. Nevertheless, QLive performance remains better

in these challenging scenarios. On average, Stallion performance

is worst with Pro�les P1 to P4 as it does not consider the bu�er

occupancy for bitrate adaptation. Stallion has up to 10 stalls with

9.3 seconds duration on average for the pro�les and latency limit

setting. Similarly, L2A also has up to 4.04 seconds of stalls. LoL has

a shorter stall duration but causes multiple small stalls with P3 and

P4 for 1-second latency limits.

The playback speed adaptation is also a vital factor for stalls. The

default Dash.js playback speed adaptation used by the compared

methods increases the playback speed to control the instantaneous

+

++

+

+++
+

+
++

+

+

++
+

+++
+

+
+++

+
++

+

++++

++
++

+
++

+

+

++

+

+++
+

++++

++++

++++

++++

+

+
++

+++
+

P1 P2 P3 P4 P5 P6

1
 S

e
c

2
 S

e
c

3
 S

e
c

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0

3

6

9

0

3

6

9

0

3

6

9

Number of Stalls

S
ta

ll
D

u
ra

ti
o

n
 (

S
e

c
)

+ + + +QLIVE L2A LOL STALLION

Figure 4: Stall vs. No. of stalls for di�erent latency limits and

network pro�les.

+
+ ++

+
+ ++

+
+ ++

++
++

++ ++

+
+

++

+
+
++

+ ++
+

++ +
+

++ ++

+
+++

++++

+

+

++

+

+

++

+

+

++

++
++

+
+

++

+
+

++

P1 P2 P3 P4 P5 P6

1
 S

e
c

2
 S

e
c

3
 S

e
c

0 60 120 180 0 60 120 180 0 60 120 180 0 60 120 180 0 60 120 180 0 60 120 180

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

Changes in Representation

A
ve

ra
g

e
 B

it
ra

te
 (

k
b

p
s
)

+ + + +QLIVE L2A LOL STALLION

Figure 5: Bitrate vs. changes in representation for di�erent

latency limits and network pro�les.

59

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

latency. In a scenario where latency is high during the stalls, an

increase in the playback speed aids in increasing the stalls as the

bu�er occupancy shrinks faster.

5.5.3 Average bitrate and changes in representation. Figure 6 shows

the XY plot for comparing the average bandwidth against the num-

ber of changes in representations for di�erent algorithms under

di�erent latency limits and network pro�les. The points that are

closer to the lower-left corner yield better performance in both

dimensions. We can see that QLive always has the highest bitrate

– up to 35% higher than the compared methods. In contrast, LoL

behaves conservatively to increase the bitrate to reduce the stalls.

Therefore it has the lowest bitrate on average, but it also has fewer

stalls than L2A and Stallion. Pro�les P5 and P6 are the ones where

bitrate is signi�cantly di�erent for di�erent algorithms. LoL, L2A

and Stallion have up to 86%, 29%, and 8.6 % lower bitrate than QLive,

respectively, with Pro�les P5 and P6.

Although the number of changes in the representations for QLive

is highest, the values are less than 1/3 times the maximum possible

values, based on the segment duration and total playback dura-

tion. Additionally, QLive also has the minimum stall duration as

described in the previous section, and stall avoidance is more crit-

ical to QoE than changes in representation [16]. Looking deeper

into the results, QLive has comparable changes in the representa-

tions with respect to other algorithms with Pro�les P3 to P6. Only

Pro�les P1 and P2, having induced delays and packet losses, cause

signi�cant changes in representation levels for QLive.

Stallion has the closest bitrate value to the QLive for 1- and 2-

second latency limit; On the other hand, it also has the highest stall

duration on average. Similarly, L2A has the closest bitrate to the

QLive for 3-second latency limit and has the highest stall duration.

Therefore, it is vital to see the bitrate, changes in the representation

levels, and stalls altogether.

1 Sec 2 Sec 3 Sec

P1

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P2

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P3

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P4

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P5

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P6

0
2

0
4

0
6

0

1 Sec 2 Sec 3 Sec

0
2

0
4

0
6

0

Latency Limit

A
ve

ra
g

e
 L

a
te

n
c
y
 (

S
e

c
)

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 6: Average latency for algorithms under di�erent la-

tency limits and network pro�les.

5.5.4 Average and maximum instantaneous latency. Figures 6 and 7

show the average and the maximum latency at any instance for

di�erent algorithms under di�erent latency limits. Applications

like online video games, live auctioning, and video surveillance

requires lower average latency and lower instantaneous latency,

making both factors vital for performance evaluation.

QLive has the lowest average latency when compared to the

other algorithms. Except for P3 with 3-second latency limit and

P4, the average latency for QLive is always within limits. Its maxi-

mum latency at any instance is also the lowest. Other algorithms

have variable performance for di�erent latency limits. However, the

pattern of their performance is similar for average latency and max-

imum latency. As we have seen for stalls, playback speed adaptation

also a�ects the latency for these algorithms when the latency limit

is small. When the default Dash.js playback speed adaptation used

by the compared methods increases the playback speed to control

the instantaneous latency, it causes playback stalls and further in-

creases the latency. Therefore, L2A and Stallion have exceptionally

bad performance with P4 with 1-second and 2-second latency limits.

L2A has a maximum latency of 44 seconds and 20 seconds for when

the latency limit is 1 second and 2 seconds respectively, whereas

Stallion has maximum latency of 42 seconds and 21 seconds. LoL,

being conservative for increasing bitrate, is not as a�ected for 1-

second latency limit, but it has a maximum latency of 34 seconds

for 2-second latency limits. The bandwidth for Pro�le P3 is also

comparatively lower than Pro�les P1, P2, P5, and P6 but is higher

than the lowest bitrate most of the time. Therefore, the average

latency with P3 is not as high as P4 for LoL, L2A, and Stallion and

ranges between 3 seconds to 8.9 seconds. Pro�les P1 and P2, having

induced delay, also cause the latency to exceed the limits for LoL,

L2A, and Stallion. Due to the high bandwidth in P5 and P6, all four

algorithms have average latency closer to the limits. However, in

P5 and P6, the bandwidth goes below the lowest available bitrate

1 Sec 2 Sec 3 Sec

P1

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P2

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P3

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P4

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P5

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

1 Sec 2 Sec 3 Sec

P6

0
4

0
8

0
1

2
0

1 Sec 2 Sec 3 Sec

0
4

0
8

0
1

2
0

Latency Limit

M

a
x
im

u
m

 L
a

te
n

c
y
 (

S
e

c
)

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 7: Maximum latency at any instance for algorithms

under di�erent latency limits and network pro�les.

60

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

1 Sec 2 Sec 3 Sec

P1

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

1 Sec 2 Sec 3 Sec

P2

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

1 Sec 2 Sec 3 Sec

P3

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

1 Sec 2 Sec 3 Sec

P4

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

1 Sec 2 Sec 3 Sec

P5

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

1 Sec 2 Sec 3 Sec

P6

0
.0

1
.0

2
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

Latency Limit

A
ve

ra
g

e
 P

la
y
b

a
c
k
 S

p
e

e
d

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 8: Average playback speed for algorithms under dif-

ferent latency limits and network pro�les.

1 Sec 2 Sec 3 Sec

P1

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

1 Sec 2 Sec 3 Sec

P2

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

1 Sec 2 Sec 3 Sec

P3

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

1 Sec 2 Sec 3 Sec

P4

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

1 Sec 2 Sec 3 Sec

P5

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

1 Sec 2 Sec 3 Sec

P6

0
2

0
6

0
1

0
0

1 Sec 2 Sec 3 Sec

0
2

0
6

0
1

0
0

Latency Limit

N
o

rm
a

l
P

la
y
b

a
c
k
 %

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 9: Normal Playback speed percentage for algorithms

under di�erent latency limits and network pro�les.

for a small duration, causing the instantaneous maximum latency

to be higher than the limits.

5.5.5 Playback speed. QLive and the compared algorithms modify

the playback speed to control the latency within the given limits.

Having lower latency is essential for QoE in live streaming, but

a frequent change in playback speed hampers the QoE [33]. We

analyze the average playback speed and the percentage of the total

time a video is played at normal speed using the di�erent algo-

rithms in Figures 8 and 9 respectively. As we can see, the average

playback speed for QLive is closer to the normal speed, i.e., between

1.01× to 1.26× for di�erent latency limits and pro�les. The percent-

age of time that QLive plays at normal speed is also the highest,

at 64% - 97%. Interestingly, this percentage declines with the in-

crease in the latency limit. This decline is because we use 1-, 2-, and

3-second segments for a 3-second latency limit. Pro�les P3 to P6

have a bandwidth that changes every second. Having a 3-second

segment makes the adaptation di�cult, as the player changes the

playback speed and representation level only at the segment bound-

ary. Therefore, in the case of 1-second latency limit where there

is just a 1-second segment to test, QLive average playback speed

is closer to the normal speed and plays at normal speed for the

longest duration.

The playback speed adaptation for other compared algorithms

causes them to play longer at a speed other than 1× because it

considers the gap between the latency limits and the instantaneous

value of latency, regardless of bandwidth and the bu�er condition.

Therefore, when the instantaneous latency is above the limit, and

the bu�er is draining, an increase in playback speed causes rebu�er-

ing and adds to the latency. L2A, in general, seldom plays back the

video at 1× speed, even for the 1-second segment. The duration

of playback at normal speed for L2A is less than 20% of the total

playback time in many cases.

5.5.6 �ality of experience. We measured QoE using two state-of-

art QoE models. The �rst model is proposed by Yin et al. [62] as

follows:

&>� =

N∑

==1

@('=) − _

N−1∑

==1

|@('=+1) − @('=) | − Δ)BC0;; − ΔB)B . (4)

Here,N is the total number of segments played for each experimen-

tal cycle; @ maps a bitrate to a quality value;)BC0;; is the total stall

duration during the playback, and)B is the startup delay. As in [62],

_ = 1, Δ and ΔB are set to the maximum bitrate of the video sample.

@(·) is the identity function for bitrate '= . These parameters ensure

that any increase in bitrate at the cost of an increase in changes of

representations or increase of stalls results in negative QoE.

The second QoE model [3] extends the �rst model to capture the

e�ect of playback speed and latency. It is used in Twitch’s ACM

MMSys 2020 Grand Challenge. The model is

&>� =

N∑

==1

(@('=) − q!= − f |1 − %= | − Δ)= − ΔB)B)

− _

N−1∑

==1

|@('=+1) − @('=) |.

(5)

The model additionally penalizes the QoE for latency !, and for

non-normal speed |1 − %= | for each segment = (%= is the playback

speed of segment =). Similar to the �rst model, we set q and f as

the maximum bitrate so that any increase in bitrate at the cost of

latency or change in the playback speed results in the negative

QoE.

Figures 10 and 11 shows this QoE for di�erent algorithms using

Equation (4), and (5) respectively. QoE is highest with Pro�les P5

and P6, and lowest with pro�le P3 and P4 for all four algorithms.

This is not surprising since Pro�les P5 and P6 has the highest

bandwidth, while P3 and P4 has the lowest.

61

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

1 Sec 2 Sec 3 Sec

P1

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P2

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P3

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P4

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P5

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P6

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 10: QoE for algorithms under di�erent latency limits

and network pro�les based on bitrate, changes in represen-

tations, and stalls.

1 Sec 2 Sec 3 Sec

P1

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P2

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P3

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P4

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P5

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

1 Sec 2 Sec 3 Sec

P6

0
.0

1
.0

2
.0

3
.0

1 Sec 2 Sec 3 Sec0
.0

1
.0

2
.0

3
.0

Latency Limit

Q
o

E
 (

 x
1

0
0

,0
0

0
)

QLIVE L2A LOL STALLIONQLIVE L2A LOL STALLION

Figure 11: QoE for algorithms under di�erent latency limits

and network pro�les based on bitrate, changes in represen-

tations, stalls, playback speed and latency.

QLive performs consistently well in both QoE metrics. It is either

the highest or is very close to the highest QoE value is almost all

of the pro�les and latency limit setting. It has up to 47% better

QoE than the compared methods using both QoE equations. Other

algorithms have highly varying QoE as their performance also a

high variation for di�erent performance metrics across di�erent

pro�les and latency limits.

5.5.7 Results over Internet. We tested QLive with the 1-second

latency limit over the Internet, where the encoding server and the

L2A LOL QLIVE STALLION

0
1
0

2
0

3
0

4
0

L2A LOL QLIVE STALLION

0
1
0

2
0

3
0

4
0

A
ve

ra
g
e
 L

a
te

n
c
y
 (

S
e
c
)

Segment Duration (Sec)

3s 6s

Segment Duration (Sec)

3s 6s

L2A LOL QLIVE STALLION

0
1
0

2
0

3
0

4
0

L2A LOL QLIVE STALLION

0
1
0

2
0

3
0

4
0

M
a
x
im

u
m

 L
a
te

n
c
y
 (

S
e
c
)

Segment Duration (Sec)

3s 6s

Segment Duration (Sec)

3s 6s

Figure 12: Average (left) andmaximum (right) latency using

3- and 6-second segments and 3-second latency limit.

client are on two di�erent continents and approximately 10900 km

away. We ran ten sessions, each of 1-hour duration, during the

COVID-19 pandemic period when the Internet tra�c is experienc-

ing an unexpected surge as most of the events and meetings are

happening online. As a result, many streaming services in the UK

and Europe are forced to reduce the video quality to prevent a

possible collapse of the Internet [49]. In this overloaded Internet sit-

uation, QLive achieved an average latency of 0.92 seconds with an

average stall of 1.6 seconds while playing at the unit speed for 99.2%

of the total time. The average bitrate measured is 3837 Kbps, where

the maximum attainable value is 4000 Kbps as per the encoding.

Unlike the playback speed control used in Dash.js and other com-

pared algorithms, QLive does not slow down the playback speed to

reach the latency limit. Our playback speed adaptation changes the

playback speed when the instantaneous latency is more than the

limit or bu�er occupancy is too low to avoid stalls. Therefore, QLive

plays the video at a latency lower than the limit for a prolonged

period when the bandwidth is su�cient.

5.5.8 Segment duration versus latency limit. To analyze the e�ect

of using a segment longer than the latency limit, we performed an

experiment using 6-second segments with 3-second latency limit

and compared the maximum instantaneous latency and average

latency for all the algorithms. Figure 12 compares the average and

maximum instantaneous latency using 3- and 6-seconds segments.

Since the changes in representation are only possible at the segment

boundaries, having a longer segment may result in more erroneous

decisions for rate and playback speed adaptation. Further, having

a segment longer than the latency limit leads to an increase in

the segment’s playback speed whose encoding is still in progress,

causing a bu�er drought and further increases the latency.

The average latency for QLive jumps more than 3 times when

the segment duration is 6 seconds compared to 3 seconds. L2A is

minimally a�ected as its original latency of 3 seconds was already

the highest compared to other algorithms. LoL and Stallion also

face 5 seconds and 4 seconds increase in average latency. Similarly,

the maximum latency also increased for all algorithms by 4 to 9

seconds when we increase the segment duration.

5.5.9 Summary. QLive performs better in most performance met-

rics compared to the state-of-the-art methods because of its com-

bined rate and playback speed adaptation algorithm. The default

Dash.js playback speed adaptation algorithm used by the com-

pared bitrate adaptation algorithm is not suitable when the bu�er

is low, and the latency is beyond the limit. Increasing the playback

speed in such a situation further increases the latency and causes

more stalls. Despite having more changes in representation levels,

QLive has the highest bitrate with minimal stall, while playing the

video longer at normal speed. Other ABR algorithms (LoL, L2A,

62

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Praveen Kumar Yadav, Abdelhak Bentaleb, May Lim, Junyi Huang, Wei Tsang Ooi, and Roger Zimmermann

and Stallion) have better performance in terms of the number of

changes in the representations. However, the network situation in

pro�le P3 to P6, where the bandwidth �uctuations are high, cre-

ates a challenging situation that needs more sensitive bitrate and

playback adaptation.

6 CONCLUSION

We showed that a DASH-based low latency live video streaming

system could control the latency for a given target without skipping

the frames and with an occasional increase in playback speed while

playing at the normal speed most of the time. The key techniques

that enable this are (8) an accurate application-level bandwidth

estimation technique, and (88) an analytical queuing model that

relates playback speed to other system parameters, including the

bu�ering latency, estimated bandwidth, and representation bitrate.

We also showed that despite the widespread belief about CMAF

with CTE making the latency independent of the segment, the

segment’s duration still plays a signi�cant role in the instantaneous

value of latency. This characteristic helped us formulate the policy

of keeping the segment duration less than or equal to the target

latency limit for e�ciently controlling the latency. The proposed

QLive bitrate adaptation is generic and can be extended to a non-

live scenario where a user may fast-forward a video or play the

video back in slow motion. One limitation of our work is that there

are no well-established QoE metrics that consider the e�ect of

playback speed on video quality, stall, and latency according to

the video content type and its application. Designing such a QoE

metric needs detailed user study for speci�c use cases and remains

an open problem for further research and development.

ACKNOWLEDGMENTS

This work is part of NExT++ research, supported by the National

Research Foundation, Prime Minister’s O�ce, Singapore under

its IRC@SG Funding Initiative and is partially supported by the

Singapore Ministry of Education Academic Research Fund Tier 1

(T1 251RES2038)

REFERENCES
[1] Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Simon. 2015.

Transcoding live adaptive video streams at a massive scale in the cloud. In
Proceedings of the 6th ACM Multimedia Systems Conference (MMSys ’15). ACM,
Portland, Oregon, 49–60.

[2] Thomas Barnett Jr., Shruti Jain, Usha Andra, and Khurana Taru. 2018. Cisco
Visual Networking Index (VNI)Complete Forecast Update, 2017–2022.
[Online]. Available: https://www.cisco.com/c/dam/m/en_us/network-
intelligence/service-provider/digital-transformation/knowledge-network-
webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf.

[3] Abdelhak Bentaleb. 2020. QoE Evaluation for CMAF-based Low-latency Stream-
ing. [Online]. Available: https://github.com/twitchtv/acm-mmsys-2020-grand-
challenge/blob/master/NQoE.pdf.

[4] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. 2019. A
Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP. IEEE
COMST 21, 1 (2019), 562–585. https://doi.org/10.1109/COMST.2018.2862938

[5] Abdelhak Bentaleb, Christian Timmerer, Ali C Begen, and Roger Zimmermann.
2019. Bandwidth prediction in low-latency chunked streaming. In Proceedings of
the 29th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’19). ACM, Amherst, Massachusetts, 7–13.

[6] Abdelhak Bentaleb, Christian Timmerer, Ali C Begen, and Roger Zimmermann.
2020. Performance Analysis of ACTE: a Bandwidth Prediction Method for Low-
Latency Chunked Streaming. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 16, 2s (2020), 1–24.

[7] Olga Bondarenko, Koen De Schepper, Ing-Jyh Tsang, Bob Briscoe, Andreas
Petlund, and Carsten Griwodz. 2016. Ultra-low delay for all: Live experience, live

analysis. In Proceedings of the 7th International Conference on Multimedia Systems
(MMSys ’16). ACM, Klagenfurt, Austria, Article 33, 4 pages.

[8] Nassima Bouzakaria, Cyril Concolato, and Jean Le Feuvre. 2014. Overhead and
performance of low latency live streaming using MPEG-DASH. In Proceedings of
the 5th International Conference on Information, Intelligence, Systems and Applica-
tions (IISA ’14). IEEE, Chania, Crete, Greece, 92–97.

[9] Olivier Brun and Jean-Marie Garcia. 2000. Analytical solution of �nite capacity
M/D/1 queues. Journal of Applied Probability 37, 4 (2000), 1092–1098.

[10] Joachim Bruneau-Queyreix, Mathias Lacaud, and Daniel Négru. 2017. A Hybrid
P2P/Multi-Server Quality-Adaptive Live-Streaming Solution Enhancing End-
User’s QoE. In Proceedings of the 25th ACM international conference on Multimedia
(MM ’17). ACM, Mountain View, California, USA, 1261–1262.

[11] Xu Cheng and Jiangchuan Liu. 2010. Tweeting videos: Coordinate live streaming
and storage sharing. In Proceedings of the 20th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV ’10). ACM,
Amsterdam, The Netherlands, 15–20.

[12] Simon Da Silva, Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Négru,
and Laurent Réveillère. 2018. MUSLIN demo: High QoE fair multi-source live
streaming. In Proceedings of the 9th ACM Multimedia Systems Conference (MMSys
’18). ACM, Amsterdam, Netherlands, 529–532.

[13] Dacast. 2019. What are the recommended encoder settings for my stream?
[Online]. Available: https://www.dacast.com/support/knowledgebase/what-are-
the-recommended-encoder-settings-for-my-stream/.

[14] Luca De Cicco and Saverio Mascolo. 2010. An experimental investigation of the
Akamai adaptive video streaming. In Proceedings of the 6th International Confer-
ence on HCI in Work and Learning, Life and Leisure: Workgroup Human-Computer
Interaction and Usability Engineering (USAB’10). Springer-Verlag, Klagenfurt,
Austria, 447–464.

[15] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. 2011. Feedback control
for adaptive live video streaming. In Proceedings of the Second Annual ACM
Conference on Multimedia Systems (MMSys ’11). ACM, San Jose, CA, USA, 145–
156.

[16] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. 2011. Understanding the Impact of Video Quality
on User Engagement. In Proceedings of the 2011 ACM SIGCOMM Conference
(SIGCOMM ’11, Vol. 41). ACM, Toronto, Ontario, Canada, 362–373.

[17] Kristian Evensen, Tomas Kupka, Dominik Kaspar, Pål Halvorsen, and Carsten
Griwodz. 2010. Quality-adaptive scheduling for live streaming over multiple
access networks. In Proceedings of the 20th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV ’10). ACM,
Amsterdam, The Netherlands, 21–26.

[18] Facebook. 2019. What are the video format guidelines for live streaming on Face-
book? [Online]. Available: https://www.facebook.com/help/1534561009906955.

[19] Tongtong Feng, Haifeng Sun, Qi Qi, Jingyu Wang, and Jianxin Liao. 2019. Vabis:
Video Adaptation Bitrate System for Time-critical Live Streaming. IEEE Transac-
tions on Multimedia 22, 11 (2019), 2963 – 2976.

[20] Roy Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. [Online]. Available: https://tools.ietf.org/html/
rfc7230.

[21] Flowplayer. 2019. Internet connection and recommended encoding settings.
[Online]. Available: https://support.video.ibm.com/hc/en-us/articles/207852117-
Internet-connection-and-recommended-encoding-settings.

[22] Flowplayer. 2019. Recommended Livestream settings. [Online]. Available: https:
//�owplayer.com/help/livestreaming/recommended-live-stream-settings.

[23] International Organization for Standardization and CH International Electrotech-
nical Commission, Geneva. 2019. Information technology–Multimedia appli-
cation format (MPEG-A) – Part19: Common media application format (CMAF)
for segmented media. Standard ISO/IEC 23000-19:2018. . [Online]. Available:
https://www.iso.org/standard/71975.html.

[24] DASH Industry Forum. 2014. Guidelines for implementation: DASH-AVC/264
test cases and vectors. [Online]. Available: http://dashif.org/guidelines/.

[25] DASH Industry Forum. 2017. dash.js. [Online]. Available: https://github.com/
Dash-Industry-Forum/dash.js/wiki.

[26] Giovanni Gualdi, Rita Cucchiara, and Andrea Prati. 2006. Low-Latency Live
Video Streaming over Low-Capacity Networks. In Proceedings of the 8th IEEE
International Symposium on Multimedia (ISM ’06). IEEE, San Diego, CA, USA,
449–456.

[27] Craig Gutterman, Brayn Fridman, Trey Gilliland, Yusheng Hu, and Gil Zussman.
2020. Stallion: video adaptation algorithm for low-latency video streaming. In
Proceedings of the 11th ACM Multimedia Systems Conference. ACM, Istanbul,
Turkey, 327–332.

[28] Antti Heikkinen, Pekka Pääkkönen, Marko Viitanen, Jarno Vanne, Tommi Riiko-
nen, and Kagan Bakanoglu. 2018. Fast and easy live video service setup using
lightweight virtualization. In Proceedings of the 9th ACM Multimedia Systems
Conference (MMSys ’18). ACM, Amsterdam, The Netherlands, 487–489.

[29] Devin Heitmueller and Colleen. 2019. Streamline Low Latency DASH preview.
[Online]. Available: https://github.com/streamlinevideo/low-latency-preview.

63

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1211_BUSINESS_SERVICES_CKN_PDF.pdf
https://github.com/twitchtv/acm-mmsys-2020-grand-challenge/blob/master/NQoE.pdf
https://github.com/twitchtv/acm-mmsys-2020-grand-challenge/blob/master/NQoE.pdf
https://doi.org/10.1109/COMST.2018.2862938
https://www.dacast.com/support/knowledgebase/what-are-the-recommended-encoder-settings-for-my-stream/
https://www.dacast.com/support/knowledgebase/what-are-the-recommended-encoder-settings-for-my-stream/
https://www.facebook.com/help/1534561009906955
 https://tools.ietf.org/html/rfc7230
 https://tools.ietf.org/html/rfc7230
https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings
https://support.video.ibm.com/hc/en-us/articles/207852117-Internet-connection-and-recommended-encoding-settings
https://flowplayer.com/help/livestreaming/recommended-live-stream-settings
https://flowplayer.com/help/livestreaming/recommended-live-stream-settings
https://www.iso.org/standard/71975.html
http://dashif.org/guidelines/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/streamlinevideo/low-latency-preview

Playing Chunk-Transferred DASH Segments at Low Latency with QLive MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

[30] Ruying Hong, Qiwei Shen, Lei Zhang, and Jing Wang. 2019. Continuous Bitrate
& Latency Control with Deep Reinforcement Learning for Live Video Streaming.
In Proceedings of the 27th ACM International Conference on Multimedia (MM ’19).
ACM, Nice, France, 2637–2641.

[31] Rafael Huysegems, Jeroen Van Der Hooft, Tom Bostoen, Patrice Rondao Alface,
Stefano Petrangeli, Tim Wauters, and Filip De Turck. 2015. HTTP/2-based
methods to improve the live experience of adaptive streaming. In Proceedings of
the 23rd ACM International Conference on Multimedia (MM ’15). ACM, Brisbane,
Australia, 541–550.

[32] Theo Karagkioules, Rufael Mekuria, Dirk Gri�oen, and Arjen Wagenaar. 2020.
Online learning for low-latency adaptive streaming. In Proceedings of the 11th
ACM Multimedia Systems Conference. ACM, Istanbul, Turkey, 315–320.

[33] Kazutaka Kurihara. 2012. CinemaGazer: A system for watching videos at very
high speed. In Proceedings of the International Working Conference on Advanced
Visual Interfaces (AVI ’12). ACM, Capri Island, Italy, 108–115.

[34] Will Law. 2018. Ultra-Low-Latency Streaming Using Chunked-
Encoded and Chunked-Transferred CMAF. [Online]. Available:
https://www.akamai.com/us/en/multimedia/documents/white-paper/low-
latency-streaming-cmaf-whitepaper.pdf.

[35] Will Law. 2018. Ultra-Low-Latency Streaming Using Chunked-Encoded
and Chunked-Transferred CMAF. Akamai White paper. [Online]. Avail-
able: https://www.akamai.com/us/en/multimedia/documents/white-paper/low-
latency-streaming-cmaf-whitepaper.pdf.

[36] Jean Le Feuvre, Cyril Concolato, Nassima Bouzakaria, and Viet-Thanh-Trung
Nguyen. 2015. MPEG-DASH for low latency and hybrid streaming services. In
Proceedings of the 23rd ACM International Conference on Multimedia (MM ’15).
ACM, Brisbane, Australia, 751–752.

[37] Yi J Liang and Bernd Girod. 2002. Low-latency streaming of pre-encoded video
using channel-adaptive bitstream assembly. In Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo (ICME ’02, Vol. 1). IEEE, Lausanne,
Switzerland, Switzerland, 873–876.

[38] May Lim, Mehmet N Akcay, Abdelhak Bentaleb, Ali C Begen, and Roger Zim-
mermann. 2020. When they go high, we go low: low-latency live streaming in
dash.js with LoL. In Proceedings of the 11th ACM Multimedia Systems Conference.
ACM, Istanbul, Turkey, 321–326.

[39] Britta Meixner, JanWillem Kleinrouweler, and Pablo Cesar. 2018. 4G/LTE channel
quality reference signal trace data set. In Proceedings of the 9th ACM Multimedia
Systems Conference (MMSys ’18). ACM, Amsterdam, Netherlands, 387–392.

[40] Shabnam Mirshokraie and Mohamed Hefeeda. 2010. Live peer-to-peer streaming
with scalable video coding and networking coding. In Proceedings of the First An-
nual ACM SIGMM Conference on Multimedia Systems (MMSys ’10). ACM, Phoenix,
Arizona, USA, 123–132.

[41] Mario Montagud, Fernando Boronat, Bernardino Roig, and Almanzor Sapena.
2017. How to performAMP? Cubic adjustments for improving the QoE. Computer
Communications 103 (2017), 61–73.

[42] Meinard Müller. 2007. Dynamic Time Warping. In Information Retrieval for
Music and Motion, Jan Fagerberg, David C. Mowery, and Richard R. Nelson (Eds.).
Springer, Chapter 4, 69–84.

[43] Ihsan Mert Ozcelik and Cem Ersoy. 2020. Low-Latency Live Streaming over
HTTP in Bandwidth-Limited Networks. IEEE Communications Letters (2020),
1–1.

[44] Huan Peng, Yuan Zhang, Yongbei Yang, and Jinyao Yan. 2019. A Hybrid Control
Scheme for Adaptive Live Streaming. In Proceedings of the 27th ACM International
Conference on Multimedia (MM ’19). ACM, Nice, France, 2627–2631.

[45] Stefano Petrangeli, Jeroen van der Hooft, Tim Wauters, Rafael Huysegems,
Patrice Rondao Alface, Tom Bostoen, and Filip De Turck. 2016. Live stream-
ing of 4K ultra-high de�nition video over the Internet. In Proceedings of the 7th
International Conference on Multimedia Systems. ACM, Klagenfurt, Austria, 1–4.

[46] Pallavi Powale. 2017. YouTube Engineering and Developers Blog - Variable
speed playback on mobile. [Online] https://youtube-eng.googleblog.com/2017/
09/variable-speed-playback-on-mobile.html.

[47] Benjamin Rainer and Christian Timmerer. 2014. A quality of experience model for
Adaptive Media Playout. In Sixth International Workshop on Quality of Multimedia
Experience (QoMEX ’14). IEEE, Singapore, 177–182.

[48] Benjamin Rainer and Christian Timmerer. 2014. A subjective evaluation using
crowdsourcing of Adaptive Media Playout utilizing audio-visual content features.
In IEEE Network Operations and Management Symposium (NOMS ’14). IEEE,
Krakow, Poland, 1–7.

[49] Ian Randall. 2020. YouTube and Amazon Prime Video follow Net�ix in slash-
ing the quality of their video streams across Europe to prevent the internet
collapsing under the strain of unprecedented usage during the coronavirus pan-
demic. [Online]. Available: https://www.dailymail.co.uk/sciencetech/article-

8133833/YouTube-reduce-streaming-quality-Europe-coronavirus.html.
[50] Devdeep Ray, Jack Kosaian, KV Rashmi, and Srinivasan Seshan. 2019. Vantage:

Optimizing video upload for time-shifted viewing of social live streams. In Pro-
ceedings of the ACM Special Interest Group on Data Communication (SIGCOMM
’19). ACM, Beijing, China, 380–393.

[51] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. 2013. Com-
mute Path Bandwidth Traces from 3G Networks: Analysis and Applications. In
Proceedings of the 4th ACM Multimedia Systems Conference (MMSys ’13). ACM,
Oslo, Norway, 114–118.

[52] Roberto Roverso, Riccardo Reale, Sameh El-Ansary, and Seif Haridi. 2015. Smooth-
Cache 2.0: CDN-quality adaptive HTTP live streaming on peer-to-peer overlays.
In Proceedings of the 6th ACM Multimedia Systems Conference (MMSys ’15). ACM,
Portland, Oregon, 61–72.

[53] Zhijie Shen and Roger Zimmermann. 2011. LAN-awareness: Improved P2P live
streaming. In Proceedings of the 21st International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV ’11). ACM,
Vancouver, British Columbia, Canada, 3–8.

[54] E. Steinbach, N. Farber, and B. Girod. 2001. Adaptive playout for low latency
video streaming. In Proceedings of the 2001 International Conference on Image
Processing (ICIP ’01, Vol. 1). IEEE, Thessaloniki, Greece, 962–965.

[55] Viswanathan Swaminathan and Sheng Wei. 2011. Low latency live video stream-
ing using HTTP chunked encoding. In Proceedings of the 13th IEEE International
Workshop on Multimedia Signal Processing (MMSP ’11). IEEE, Hangzhou, China,
1–6.

[56] Raymond Sweha, Vatche Ishakian, and Azer Bestavros. 2012. Angelcast: Cloud-
based peer-assisted live streaming using optimized multi-tree construction. In
Proceedings of the 3rd Multimedia Systems Conference (MMSys ’12). ACM, Chapel
Hill, North Carolina, 191–202.

[57] Jeroen van der Hooft, Dries Pauwels, Cedric De Boom, Stefano Petrangeli, Tim
Wauters, and Filip De Turck. 2018. Low-Latency Delivery of News-Based Video
Content. In Proceedings of the 9th ACM Multimedia Systems Conference (MMSys
’18). ACM, Amsterdam, The Netherlands, 537–540.

[58] David Varodayan and Wai-tian Tan. 2011. Error-resilient live video multicast
using low-rate visual quality feedback. In Proceedings of the Second Annual ACM
Conference on Multimedia Systems (MMSys ’11). ACM, San Jose, CA, USA, 233–
244.

[59] Miao Wang, Lisong Xu, and Byrav Ramamurthy. 2009. Providing statistically
guaranteed streaming quality for peer-to-peer live streaming. In Proceedings of
the 18th International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV ’09). ACM, Williamsburg, VA, USA, 127–132.

[60] Praveen Kumar Yadav, Arash Sha�ei, and Wei Tsang Ooi. 2017. QUETRA: A
queuing theory approach to DASH rate adaptation. In Proceedings of the 25th
ACM International Conference on Multimedia (MM ’17). ACM, Mountain View,
California, USA, 1130–1138.

[61] Mariem Ben Yahia, Yannick Le Louedec, Gwendal Simon, Lout� Nuaymi, and
Xavier Corbillon. 2019. HTTP/2-based frame discarding for low-latency adaptive
video streaming. ACM Transactions on Multimedia Computing, Communications,
and Applications 15, 1 (2019), 1–23.

[62] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15). ACM, London, United Kingdom, 325–338.

[63] YouTube. 2019. Choose live encoder settings, bitrates, and resolutions. [Online].
Available: https://support.google.com/youtube/answer/2853702?hl=en.

[64] Guanghui Zhang and Jack YB Lee. 2019. LAPAS: Latency-aware Playback-
Adaptive Streaming. In Proceedings of the 2019 IEEE Wireless Communications
and Networking Conference (WCNC ’19). IEEE, Marrakesh, Morocco, 1–6.

[65] Rui-Xiao Zhang, Tianchi Huang, Ming Ma, Haitian Pang, Xin Yao, Chenglei
Wu, and Lifeng Sun. 2019. Enhancing the crowdsourced live streaming: A deep
reinforcement learning approach. In Proceedings of the 29th ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV
’19). ACM, Amherst, Massachusetts, 55–60.

[66] Yin Zhao, Qi-Wei Shen, Wei Li, Tong Xu, Wei-Hua Niu, and Si-Ran Xu. 2019.
Latency Aware Adaptive Video Streaming using Ensemble Deep Reinforcement
Learning. In Proceedings of the 27th ACM International Conference on Multimedia
(MM ’19). ACM, Nice, France, 2647–2651.

[67] Fen Zhou, Shakeel Ahmad, Eliya Buyukkaya, Raouf Hamzaoui, and Gwendal
Simon. 2012. Minimizing server throughput for low-delay live streaming in
content delivery networks. In Proceedings of the 22nd International Workshop on
Network and Operating System Support for Digital Audio and Video (NOSSDAV
’12). ACM, Toronto, Ontario, Canada, 65–70.

64

https://www.akamai.com/us/en/multimedia/documents/white-paper/low-latency-streaming-cmaf-whitepaper.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/low-latency-streaming-cmaf-whitepaper.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/low-latency-streaming-cmaf-whitepaper.pdf
https://www.akamai.com/us/en/multimedia/documents/white-paper/low-latency-streaming-cmaf-whitepaper.pdf
https://youtube-eng.googleblog.com/2017/09/variable-speed-playback-on-mobile.html
https://youtube-eng.googleblog.com/2017/09/variable-speed-playback-on-mobile.html
https://www.dailymail.co.uk/sciencetech/article-8133833/YouTube-reduce-streaming-quality-Europe-coronavirus.html
https://www.dailymail.co.uk/sciencetech/article-8133833/YouTube-reduce-streaming-quality-Europe-coronavirus.html
https://support.google.com/youtube/answer/2853702?hl=en

	Abstract
	1 Introduction
	2 Related Work
	3 Bandwidth Estimation
	4 QLive System Model
	4.1 Proposed Model for Low Latency
	4.2 QLive Design

	5 Evaluation
	5.1 Video Sample
	5.2 Network Profiles
	5.3 Evaluation Metrics
	5.4 Implementation and Experimental Setup
	5.5 Results and Comparison

	6 Conclusion
	References

