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INTRODUCTION 

Populations and communities of organisms are in- 

fluenced by a host of abiotic and biotic factors. Climate, 

nutrients, natural enemies (including parasites and 

pathogens), symbionts, competitors, decomposers, re- 

source quality and quantity, and the availability of 

water are among the many potential forces that deter- 

mine population change and community structure. One 

major challenge for the discipline of ecology is to mea- 

sure the relative strengths of these forces, untangle in- 

teractions among them, and so explain the patterns of 

animal and plant distribution and abundance that we 

see in nature. 

Ecologists have taken many approaches to exam- 

ining the factors that drive population change and com- 

munity composition, from the purely empirical (e.g., 

Power et al. 1985, Terborgh 1988, Alford 1989, Hunter 

and West 1990, Tonn et al. 1990) to the purely theo- 

retical (May 1973, Cohen and Newman 1985, Stewart- 

Oaten and Murdoch 1990). Both extremes have proven 

valuable, and often feed from each other. The con- 

struction and analysis of food webs, for example, which 

emerged originally as an empirical investigation of links 

and potential interactions among organisms (Elton 

1927, Paine 1966, 1980), has developed into a prolific 

branch of ecological theory (DeAngelis 1975, Cohen 

1978, Pimm 1982, Cohen and Newman 1985). Even 

the most complex models of food webs, however, have 

major simplifying assumptions (Cohen and Newman 

1988, Paine 1988, Polis 1991) and, with a few excep- 

tions (e.g., Kitching 1987), often ignore environmental 

variability altogether. Only an experimental approach 

I For reprints of this Special Feature, see footnote 1, p. 723. 
2 Present address: D1partement de biologie, Universit& La- 

val, Sainte-Foy, Quebec, Canada G1K 7P4. 

(Pimm and Kitching 1988) will ultimately determine 

their real value. 

With a few notable exceptions (e.g., Menge 1976, 

Strong 1983, Power et al. 1985, Carpenter and Kitchell 

1988, Karr et al. 1992), there has been little synthesis 

of the relative roles of different ecological forces in 

determining population change and community struc- 

ture. Rather, there is a collection of idiosyncratic sys- 

tems, with their associated protagonists, in which op- 

posing views on the importance of particular factors 

are debated. The population dynamics and host plant 

choice of insect herbivores, for example, are either de- 

termined primarily by natural enemies (Hairston et al. 

1960, Lawton and Strong 1981, Bernays and Graham 

1988) or by resource limitation (Ohgushi and Sawada 

1985, Schultz 1988, Price 1990), depending upon the 

viewpoint and preferred system of study of the re- 

searcher involved. A similar debate permeates the lit- 

erature on large mammalian herbivores in grassland 

systems (McNaughton 1976, Sinclair 1985, deBoer and 

Prins 1990). There is a fundamental disagreement over 

whether bottom-up forces (for example, nutrient avail- 

ability) or top-down forces (for example, predators) 

predominate in populations and communities and 

whether little things (Wilson 1987) or big things (Ter- 

borgh 1988) run the world. 

INCORPORATING HETEROGENEITY 

We should expect the relative roles of different eco- 

logical forces to vary among biological systems, and 

even within the same system when environmental het- 

erogeneity is taken into account (Dunson and Travis 

1991). One reason that opposing views are long-stand- 

ing in the literature is that authors carry with them 

experience and prejudice developed from the particular 

organisms that they study. The classic debate over 
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whether abiotic or biotic factors determine animal pop- 

ulation change, for example, may have arisen in part 

from the relative stability of the environments in which 

the protagonists chose to do their research (see for 

example Andrewartha and Birch 1954, Lack 1954, Huf- 

faker and Messenger 1964). Similarly, it should be no 

surprise that our own work on oaks, where host plant 

phenology drives changes in insect abundance and 

community structure (Hunter and co-workers) and on 

willows, where host plant quality varies dramatically 

with extreme variability in water supply (Price and co- 

workers), has led us to suggest a dominant role for plant 

heterogeneity in insect population dynamics and com- 

munity structure (Craig et al. 1986, Price and Clancy 

1986, Hunter 1987, 1990, Hunter and Willmer 1989, 

Hunter and West 1990, Price et al. 1990). 

The real issue is whether or not we can accept the 

fact that many ecological factors simultaneously de- 

termine the patterns we observe in natural commu- 

nities (Southwood 1975, 1977b, Quinn and Dunham 

1983, Courtney 1988, Leibold 1989), that the domi- 

nant forces will vary within and among systems (Karr 

et al. 1992), and that incorporating and measuring that 

variability will increase our understanding of popula- 

tion and community ecology. We cannot envisage a 

single system in which bottom-up and top-down forces 

act in isolation, yet synthesis on these issues in terres- 

trial systems is remarkably rare. Synthesis is much 

better developed in aquatic systems, however, and some 

generalizations are available. About 50% of the vari- 

ation in productivity among lakes, for example, is de- 

termined from below by nutrient input, turnover time 

of the water, and vertical mixing (Schindler 1978, 

Schindler et al. 1978, Carpenter and Kitchell 1987, 

1988). The other half of the variation is hypothesized 

to result from a "trophic cascade" by which the influ- 

ence of top predators filters down through successive 

levels in the trophic web (Carpenter et al. 1985, Car- 

penter and Kitchell 1988). 

One purpose of writing this paper is to suggest that 

a similar synthesis is long overdue in terrestrial sys- 

tems, and that the synthesis must incorporate biotic 

and abiotic heterogeneity. While theory describing 

"bottom-up" and "top-down" effects in communities 

is quite well developed (Smith 1969, Rosenzweig 1971, 

Fretwell 1977, Oksanen et al. 198 1, Mittelbach et al. 

1988, Persson et al. 1988), most trophic interaction 

models treat primary producers, herbivores, and car- 

nivores as indivisible units (see Phillips 1974 and Lei- 

bold 1989 for exceptions) and make predictions based 

on characteristics of food chains, such as whether the 

number of levels in the chain is odd or even (e.g., Smith 

1969, Oksanen et al. 1981). In contrast, experimental 

studies, particularly in terrestrial systems, highlight the 

individuality of specific animal-plant interactions. Ex- 

perimental biologists dwell on the peculiarities of their 

chosen systems, measuring features of animal-plant 

interactions such as the influence of gall diameter on 

parasitism rates (Price et al. 1980) or the effect of de- 

foliation on leafrolling by caterpillars (Hunter 1987). 

We argue in this paper that a true synthesis of the 

roles of "top-down" and "bottom-up" forces in ter- 

restrial systems requires a model that encompasses het- 

erogeneity. That heterogeneity may be expressed as 

differences among species within a trophic level (e.g., 

Leibold 1989), differences in species interactions in a 

changing environment (e.g., Dunson and Travis 1991), 

or even changes in population quality with population 

density (e.g., Rossiter 1991), Simply put, the identities 

of individual species and environmental variation are 

as important determinants of population and com- 

munity dynamics as are the number of levels in a food 

chain or the position of the system along a resource 

gradient. We present a simple conceptual model in 

which the effects of ecological factors can cascade up 

as well as down the trophic system. Although the term 

"cascading upward" is an oxymoron, we use it delib- 

erately to parallel its use by aquatic biologists describ- 

ing the flow of interactions rather than the flow of en- 

ergj' from the top to the bottom of a trophic web. 

Interactions (such as those between primary producers 

and their symbionts) can cascade up trophic webs to 

determine species diversity and population dynamics 

at higher trophic levels. Our template model allows 

species at any trophic level to vary in importance and 

to dominate the community. In trophic webs, as in 

Escher paintings, flow can be upward or downward. 

From every intermediate level in a trophic web there 

are "ladders" going up and "chutes" going down, and 

the major players in the game are not restricted to the 

top or the bottom of the web. 

THE MODEL 

While we accept that top-down forces such as the 

impact of natural enemies may dominate populations 

and communities in some systems, whereas the influ- 

ence of primary producers may dominate in others, we 

suggest that the relative contributions of these are most 

easily distinguished by superimposing their effects on 

a bottom-up view of trophic structure. We do not in- 

tend to undermine the power of trophic cascades down 

through systems from higher to lower trophic levels 

(Carpenter et al. 1985), but a bottom-up template seems 

a logical basis for our conceptual model. This emerges 

from the fundamental reality that the removal of higher 

trophic levels leaves lower levels present (if perhaps 

greatly modified), whereas the removal of primary pro- 

ducers leaves no system at all. 

A single bottom-up template, with cascading influ- 

ences up the trophic web, is shown in Fig. la. In this 
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FIG. 1. Factors influencing population dynamics and com- 
munity structure in natural systems. (a) A simple model in 
which variation among primary producers, determined by 
climate, soil parameters and symbionts, cascades up the tro- 
phic system to determine heterogeneity among herbivores and 
their natural enemies. (b) With the addition of feedback loops, 
organisms at any trophic level can influence heterogeneity at 
any other level by cascading effects both up and down the 
system. 

system, variability in climate, soil parameters, decom- 

posers, and plant-soil symbionts determines the initial 

heterogeneity exhibited among primary producers. Es- 

sentially, these parameters are the first to reduce the 

"potential" plant community to the "realized" plant 

community (sensu Hutchinson 1958). We include 

within the formation of this realized community the 

selection of plant parameters such as dominant growth 

forms, and variation in the carbon and nutrient con- 

tents of plant parts, as well as the presence or absence 

of particular species. This is a conscious attempt to 

incorporate bottom-up effects on intraspecific and in- 

terspecific heterogeneity among primary producers into 

the trophic system, and so differs from previous dia- 

grammatic cascade models (e.g., Strong 1986). 

Plant quality and quantity then determine the pat- 

terns of spatial and temporal heterogeneity among her- 

bivore populations and communities. The initial car- 

rying capacity of herbivore populations, their 

distributions in space and time, and the intrinsic qual- 

ity of herbivores as resources for their natural enemies 

are seen to result from variation among the primary 

producers that they exploit. Heterogeneity among her- 

bivores, in turn, determines the density, species di- 

versity, and distribution of the first level of natural 

enemies, and so on up the trophic system. 

The pattern described in Fig. la represents the tem- 

plate upon which the complex interactions among spe- 

cies in real populations and communities are super- 

imposed. Fig. lb adds back some level of biological 

reality by allowing species at each trophic level to im- 

pact those below as well as above them, and by in- 

cluding the effects of abiotic heterogeneity at all trophic 

levels. Plant diversity, for example, may depend upon 

the prevalence of plant pathogens in natural popula- 

tions. Pathogens, therefore, may further mold the form 

of the "realized" plant community (cf. Price et al. 1986). 

Herbivores, too, can influence the quality and quantity 

of primary producers, and generate additional hetero- 

geneity in the system (cf. Gilbert 1975, 1991). Like- 

wise, the predators and parasites of herbivores are per- 

mitted to dominate the populations of primary 

consumers, thus releasing plants from the pressures of 

herbivory. 

A "bottom-up template" perspective is compelling 

because plants form a major component of large-scale 

patterns over landscapes and geographic regions (e.g., 

Tansley 1965, Whittaker 1970). Vegetation provides 

the habitat template central to Southwood's (1977a) 

constraints on adaptation by organisms, and their re- 

sponses to gradients in time and space (e.g., Southwood 

et al. 1983, 1986, 1988). In response to the abiotic 

environment, plant communities appear to produce 

the best understood, most general, and repeatable pat- 

terns on any landscape and in any biogeographic re- 
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gion. Such broad patterns best serve the development 

of general theory. 

ADVANTAGES OF THE MODEL 

Superimposing interactions among species and their 

environment upon a template of cascading effects up 

the system has several advantages. First, it permits the 

system to be dominated by species or guilds at any 

trophic level through "feedback loops." Because all 

members of the web are connected to each other and 

the abiotic environment by "chutes" and "ladders," 

the action of any one species (or the action of the en- 

vironment on that species) can have a pervasive influ- 

ence on all others. This is important because there is 

no theoretical reason why organisms at any trophic 

level should not act as keystone species (Pimm 1982). 

The effects of plant pathogens, for example, by deter- 

mining the species diversity or biomass of primary 

producers (cf. Burdon 1987), or even the availability 

of nutrients (Matson and Boone 1984), could feed back 

through the system and ultimately control variability 

among herbivores and their natural enemies. By al- 

lowing trophic cascades both up and down the system, 

the model supports the recent emergence of studies of 

keystone species at a variety of levels in food webs 

(Gilbert 1980, Ehrlich and Daily 1988, Howe and 

Westley 1988, Terborgh 1988, Brown and Heske 1990, 

Kerbes et al. 1990, Hunter 1992a). 

Second, the model can encompass the mechanisms 

of interactions (or routes of feedback) among species. 

It can therefore exploit the wealth of mechanistic stud- 

ies that have dominated the terrestrial animal-plant 

literature since the 1970s. The arrow from herbivores 

to plants in Fig. 1 b, for example, need not represent a 

simple change in biomass. Herbivores can influence 

the species diversity (Grubb 1971, Merton et al. 1976, 

Harper 1977, Lubchenco and Gaines 1981, Crawley 

1983, Hay 1985), growth form (Whitham and Mopper 

1985, Hunter 1987, Duffy and Hay 1990), phenology 

(Faeth 1987), chemistry (Green and Ryan 1972, Hau- 

kioja and Niemela 1977, Schultz and Baldwin 1982), 

and genetic diversity (Simms and Fritz 1991, Fritz and 

Simms 1992), of their host plants as well as simple 

abundance (Ross et al. 1970, Stark and Dahlsten 1970, 

Campbell and Sloan 1977, Louda 1982a, b). These 

routes of feedback allow certain keystone herbivores 

to change dramatically the composition of their plant 

community, changes that can cascade up the system, 

through their own trophic level, and beyond (Leibold 

1989, Hunter 1992a). 

A third advantage of the model is that it should focus 

attention on the extensive heterogeneity in natural sys- 

tems (Loucks 1970, Denno and McClure 1983, Pickett 

and White 1985). The question "Do natural enemies 

or does primary productivity regulate the population 

dynamics of insect herbivores or African ungulates?" 

should become, "Under what combinations of soil con- 

ditions, plant community structure, and abiotic vari- 

ability do natural enemies dominate trophic interac- 

tions?" This incorporation of heterogeneity is implicit 

in studies of tri-trophic interactions (Price et al. 1980, 

Power et al. 1985, Kareiva and Sahakian 1990, Schultz 

et al. 1990) where variation among plants modifies the 

efficacy of natural enemies, and in studies that inves- 

tigate the effects of abiotic characteristics (such as pH 

or temperature) on interspecific competition (Dunson 

and Travis 1991). 

DISADVANTAGES OF THE MODEL 

Our model does not consider explicitly changes in 

community structure nor interactions among animals 

and their abiotic environment over evolutionary time. 

While the bottom-up template approach can usefully 

be applied, for example, to the influence of host plant 

patches on frugivorous mammal demographics (Flem- 

ing 1992), it does not describe the evolutionary pro- 

cesses that generated the frugivore-fruit interaction. 

Evolutionary change is a vital component of plant- 

animal-natural enemy interactions (Denno and Mc- 

Clure 1983, Strong et al. 1984) in which both bottom- 

up and top-down forces are active (Bernays and Gra- 

ham 1988, Schultz 1988, Hunter 1990, Scriber and 

Lederhouse 1992). We see our model as more appro- 

priate for an ecological time scale in which heteroge- 

neity in natural systems generates patterns of popula- 

tion change and community structure rather than 

adaptation. 

That is not to say that all the ecological forces de- 

picted in Fig. lb must act on exactly the same time 

scale. In the same way that trophic cascades (from top 

to bottom) and physiochemical factors act at different 

time scales to determine the productivity of lakes (Car- 

penter and Kitchell 1988), so the processes of plant 

succession and changing resource availability act at a 

different time scale from natural enemies to determine 

the population dynamics and community structure of 

insects on plants (Price 1992). 

The model may be adaptable to an evolutionary per- 

spective in the future. Plants are basic in most terres- 

trial food webs, and every herbivore individual in a 

population relates to plants most of the time. This tight 

linkage will have strong evolutionary consequences 

within the constraints imposed by phylogeny (e.g., Price 

et al. 1990). Enemies of herbivores may have a pre- 

dictably weaker impact because some herbivores es- 

cape predators (none escape plants) and herbivores can 

evolve tolerance to parasites. Hence, the "bottom-up" 

perspective as a first approximation of real pattern in 

nature is likely to be fruitful for the development of 

evolutionary theory as well as ecological theory. 
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One further drawback of our approach is that it re- 

quires a greater level of understanding of the biological 

systems in which we conduct our research, and such 

information is often difficult, time-consuming, and ex- 

pensive to collect. It means that plant community ecol- 

ogists should not ignore the ecological impact of natural 

enemies cascading down the trophic system, nor should 

parasitoid biologists ignore variation in the soils and 

plant communities with which their organisms of choice 

are inextricably linked. 

It seems to us insufficient, for example, to consider 

the degree to which spatial density-dependent parasit- 
ism can stabilize the populations of insect herbivores 

(e.g., Elkinton et al. 1990, Stewart-Oaten and Murdoch 

1990) without considering the fundamental role of the 

host plant (such as variation in plant susceptibility) in 

determining the spatial distribution of the insect hosts. 

Spatial density-dependent parasitism cannot occur un- 

less hosts are distributed unevenly. Differences among 

plants in nutritional and defensive characteristics are 

powerful generators of contagious herbivore distribu- 

tions (Denno and McClure 1983). 

We join with others, therefore, who call for a broad- 

based, multi-disciplinary approach to population and 

community ecology (Faeth 1987, Pimm and Kitching 

1988, Dunson and Travis 1991, Karr et al. 1992). The 

success of this approach is apparent in several systems 

(Schindler 1978, Schindler et al. 1978, Carpenter and 

Kitchell 1987, 1988, Brown and Heske 1990). 

EVIDENCE FOR CASCADES uP TERRESTRIAL 

SYSTEMS-A CASE STUDY 

Our model demands that we accept the reality of 

cascades from lower to higher trophic levels in terres- 

trial systems, as is now well documented in aquatic 

systems (Menge 1976, Schindler 1978, Carpenter and 

Kitchell 1987, 1988, Leibold 1989). Studies of the pe- 

dunculate oak, Quercus robur, a dominant member of 

the deciduous forest community in much of Europe, 

provide an example of cascading ecological effects from 

the bottom up. 

The budburst phenology of Q. robur varies between 

years, between sites, and between individuals in the 

same site (Varley and Gradwell 1968, Crawley and 

Akhteruzzaman 1988, Hunter 1990, Hunter 1992b). 

Variation in phenology drives the population dynamics 

of two spring lepidopteran defoliators on oak, Oper- 

ophtera brumata and Tortrix viridana (Schutte 1957, 

Satchell 1962, Varley and Gradwell 1968) and usually 

maintains their populations below levels at which in- 

terspecific competition is severe (Hunter and Willmer 

1989). When competition does occur, the greater sen- 

sitivity of 0. brumata to budburst phenology (Hunter 

1990) reverses the competitive advantage it would en- 

joy over T. viridana in the absence of phenological 

variation (Hunter and Willmer 1989). 

Most of the natural enemies associated with 0. bru- 

mata and T. viridana track the yearly changes in de- 

foliator populations. Some passerine birds (especially 

Parus species), for example, have larger clutches in 

years of high defoliator density. Operophtera brumata 

abundance alone explains 47.5 and 39.3% of the vari- 

ation in clutch size of Parus major and Parus caeruleus, 

respectively (Perrins 1990). Changes in the fledgling 

success of Parus may even influence the demographics 

of the Sparrow Hawk (Accipiter nisus; I. Newton, per- 

sonal communication). Although some pupal predators 

of 0. brumata can act in a density-dependent fashion, 

they are not responsible for major changes in insect 

abundance (Varley et al. 1973). 

The cascading effects of variable budburst phenology 

in Q. robur up the trophic system are not restricted to 

spring. By determining the densities of T. viridana and 

O. brumata among trees, budburst phenology influ- 

ences three guilds of late-season insect herbivores on 

oak through defoliation-induced changes in foliage 

quality, maintained from spring to fall. The effects of 

defoliation are generally negative for late-season leaf 

miners and aphids (West 1985, Silva-Bohorquez 1987), 

and generally positive for late-season leaf chewers 

(Hunter 1987), and influence their within- and be- 

tween-tree distributions, the impact of their natural 

enemies, and their population dynamics. 

On Q. robur, then, environmental variability among 

sites interacts with yearly variation in climate and ge- 

netic variation in the oak population to determine 

complex patterns of budburst phenology. These effects 

cascade up the trophic system to spring defoliators, 

influencing competitive interactions between them, and 

their effects on late-season herbivores. Patterns of her- 

bivore abundance are then transmitted to at least one, 

if not two, higher trophic levels (Hunter 1 992a). 

THE GENERALITY OF A TEMPLATE/TROPHIC 

CASCADE MODEL 

Although we developed the conceptual model pre- 

sented here from our studies of insect-plant interac- 

tions, we believe that it has broad generality because 

it can encompass systems dominated by both top-down 

and bottom-up forces. The kind of bottom-up cascade 

at the heart of our model has been described from other 

terrestrial systems. For example, the population dy- 

namics, mating systems, social organization, and mi- 

gratory behavior of both microtine rodents (Ostfeld 

1992) and frugivorous and nectarivorous birds and 

mammals (Fleming 1992) are strongly influenced by 

heterogeneity among primary producers. 

Feedback loops, by which species or guilds at a given 

trophic level change the resources available for their 
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own trophic levels and consequently for species at high- 

er trophic levels, have been described in rodents (Brown 

and Heske 1990), tortoises (Merton et al. 1976), dam- 

selfish (Hixon and Brostoff 1983), zooplankton (Lei- 

bold 1989), grazing mammals (Hutchinson and King 

1980), and hippopotamus (Eltringham 1974), among 

others. 

We concur with authors who argue that "bottom- 

up" and "top-down" forces act on populations and 

communities simultaneously, and that the dichotomy 

between the two forms of regulation can be artificial 

(Oksanen et al. 1981, Mittelbach et al. 1988, Leibold 

1989). From our point of view, a much more inter- 

esting question is to what extent variation at different 

levels in the food chain, or in abiotic factors, can in- 

fluence the relative strengths of "bottom-up" and "top- 

down" forces (e.g., Oksanen 1983). Some theoretical 

models have addressed variation in the abundance of 

nutrients (i.e., a resource gradient) on vertical processes 

in food chains (Smith 1969, Rosenzweig 1971, Wiegert 

1977, Oksanen et al. 1981, Mittelbach et al. 1988, 

Persson et al. 1988), but such models almost exclu- 

sively ignore variation at more than one trophic level. 

Yet the last 20 yr of animal-plant ecology have dem- 

onstrated unequivocally that not all plants are equally 

edible, not all herbivores equally damaging, not all 

predators equally efficacious, and not all environments 

equally hospitable. Moreover, these heterogeneous 

variables interact with one another (Price et al. 1980, 

Karban 1989). We argue that a synthesis of "top-down" 

and "bottom-up" forces in populations and commu- 

nities will depend upon understanding interactions be- 

tween heterogeneous forces at all trophic levels. 

Cataloguing the outcome of single-factor studies is 

not synthesis. Ecologists tend to champion their fa- 

vorite ecological factor (indeed some have made ca- 

reers doing so), but collecting examples of where nat- 

ural enemies, climatic conditions, or primary producers 

dominate particular systems, and weighing their rela- 

tive importance by the number of manuscripts in sup- 

port of each, tells us little about the way the world 

works. The only way to overcome our ignorance is to 

pursue multi-trophic investigations (both experimental 

and theoretical) from the outset. 

We have presented a conceptual model that we feel 

is a start in the right direction. Experimental biologists 

can proceed by measuring heterogeneity at different 

levels in the web, and by manipulating ecological fac- 

tors, within the bounds of the heterogeneity measured, 

in a multi-factorial design (e.g., Karban 1989, Dunson 

and Travis 1991). Theoreticians must also play an im- 

portant role in any synthesis, and Leibold (1989), by 

building on the work of Phillips (1974) and Oksanen 

et al. (1981), has shown that modelling complex, het- 

erogeneous forces is a realistic goal. He argues that the 

relative edibility of plants, their relative responses to 

limiting resources, and the type of herbivore in the 

community will all influence the outcome of models 

in which resource availability, plant susceptibility to 

herbivores, and predation rates are allowed to vary. 

The development of ratio-dependent population mod- 

els, from which emerge intrinsic balance between "top- 

down" and "bottom-up" forces in communities (L. R. 

Ginzberg, personal communication), may also provide 

a valuable tool in the development of synthesis. What- 

ever the approach used, we must recognize that deter- 

mining the relative importance of cascades up and down 

trophic systems will depend upon measuring and un- 

derstanding heterogeneity at all trophic levels. 
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