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Learning curves have been proposed as an adequate description of learning processes,

no matter whether the processes manifest within minutes or across years. Different

mechanisms underlying skill acquisition can lead to differences in the shape of learning

curves. In the current study, we analyze the tournament performance data of 1383 chess

players who begin competing at young age and play tournaments for at least 10 years.

We analyze the performance development with the goal to test the adequacy of learning

curves, and the skill acquisition theories they are based on, for describing and predicting

expertise acquisition. On the one hand, we show that the skill acquisition theories implying

a negative exponential learning curve do a better job in both describing early performance

gains and predicting later trajectories of chess performance than those theories implying a

power function learning curve. On the other hand, the learning curves of a large proportion

of players show systematic qualitative deviations from the predictions of either type of

skill acquisition theory. While skill acquisition theories predict larger performance gains in

early years and smaller gains in later years, a substantial number of players begin to show

substantial improvements with a delay of several years (and no improvement in the first

years), deviations not fully accounted for by quantity of practice. The current work adds

to the debate on how learning processes on a small time scale combine to large-scale

changes.
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INTRODUCTION

Anderson (2002) drew attention to the problem of time scales

in psychology with the programmatic article Spanning Seven

Orders of Magnitude. On the one hand, acquisition of expertise

is known to takes years (e.g., Ericsson et al., 1993). On the other

hand, expertise research has a strong basis in cognitive psychology

paradigms wherein a large repertoire of laboratory tasks are used

to understand and chart changes in potential subcomponents of

expertise acquisition over minutes or hours. This includes com-

ponent skills such as verifying and storing chess patterns (Gobet

and Simon, 1996a,b,c, 1998; Campitelli et al., 2005, 2007; Bilalić

et al., 2009a), learning to discard irrelevant perceptual features

from processing (e.g., Gaschler and Frensch, 2007; Reingold and

Sheridan, 2011) or overcoming dysfunctional bindings of knowl-

edge structures (e.g., Bilalić et al., 2008a,b). Anderson suggested

that while meaningful educational outcomes take at least tens of

hours to achieve, those outcomes can be traced back to opera-

tions of attention and learning episodes at the millisecond level.

He went beyond offering the perspective that expertise acquisition

should in principle be reducible to small scale learning episodes.

Rather, Anderson suggested that the problem of linking domains

of (a) laboratory cognitive psychology/neurocognitive research

and (b) educational/developmental science should be tractable,

because small scale learning episodes would sum up to large

scale developmental/educational changes of the same functional

form. Increases in overall performance as well as increases in effi-

ciency of components (e.g., keystrokes, eye movements and fact

retrieval) over time are well described by the power function (see

also Lee and Anderson, 2001). Power functions of improvements

in simple components add up to a power-function improve-

ment at the large scale. Scalability across time-scales would offer

straightforward linking of change taking place within minutes to

change taking place over years.

The power function (as well as the negative exponential func-

tion, see Table 1 and Figure 1) describes negatively accelerated

change of performance with practice. Early in practice, the abso-

lute improvement in performance per unit of time invested is

large. Later on, the improvement per unit of time diminishes.

Apart from improvements in hour-long laboratory learning tasks,

the power function has been used to describe motor skills in

individuals differing in amount of practice on the scale of years

(e.g., up to 7 years of cigar-rolling in Crossman, 1959, see Newell
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et al., 2001 for an overview). Description of practice gains with

the power function are widespread in the literature (Newell and

Rosenbloom, 1981; Kramer et al., 1991; Lee and Anderson, 2001;

Anderson, 2002) and consistent with prominent models of skilled

performance such as ACT-R (Anderson, 1982) or the instance

model of automatization (Logan, 1988, 1992).

However, the reason for the dominance of the power func-

tion in describing the functional form of describing practice has

been debated in the literature on skill acquisition. Heathcote et al.

(2000) see also Haider and Frensch (2002) argued that the analysis

of averaged data favors the power over the exponential function

as a statistical artifact. They suggested computation of power and

exponential curves with non-aggregated data, separately for each

participant. They found an advantage of the negative exponential

function over the power function in 33 of 40 different re-analyzed

data sets with an average improvement in fit of 17%. Note that

success of a mathematical model in fitting data better than a com-

petitor model might not mean that it provides a more concise

description. Potentially, one mathematical model is more flexible

than the other, and better able to accommodate systematic as well

Table 1 | Formulas of negative exponential and power function and

the example parameters used for Figure 1.

Formula Negative Power

exponential function

function

Rating = A − B * Rating = A − B*

exp(−C * T) T** − C

Parameter

descriptions

and numerical

examples from

Figure 1

A = asymptote 1830 2200

B = difference

between

asymptote and

initial

performance

790 1000

C = curvature 0.18 0.3

T = time Year 1–20 Year 1–20

as chance features in the data. Thus, further credence is lent to a

model by accurate prediction rather than fitting (i.e., without any

further parameter adjustments; cf. Roberts and Pashler, 2000; Pitt

et al., 2002; Wagenmakers, 2003; Marewski and Olsson, 2009).

It is worthwhile considering the exact shape of the learning

curve to predict future performance. Furthermore, the differ-

ences between exponential and power function are linked to

assumptions in theories of skill acquisition (see below). Figure 1

represents schematic examples of learning curves and deriva-

tives. The left panel depicts a power function and an exponential

function that start at the same level in the first year of chess tour-

nament participation and approach similar levels in year 20 of

tournament participation. The power function shows especially

strong performance gains in the first years. For instance, the gain

in rating points (e.g., Elo, 1978) in year one is about double the

size of the gain in year two. Year two still yields considerably more

performance gain as compared to year three, and so on and so

forth. Absolute gain per year is depicted in the right panel. It is

decreasing for both, the power and the exponential function. The

qualitative difference between the two types of learning curves

becomes most obvious when considering the relative learning rate

(RLR). This rate is decreasing for the power function, but remains

constant for the exponential function. In our example, the expo-

nential function has a relative learning rate of about 20%. In each

year, the players gain about 20% of the ELO points they have

not gained yet. If someone starts with 1000 and will end up with

1500 points (see Method for an explanation of the scale used in

chess), this would mean a gain of 100 points for the first year and

80 points in the second year (20% of 1500 − (1000 + 100) = 80

points).

One qualitative aspect of learning curves is that they rep-

resent the diminishing absolute payoff of practice-investment.

Exponential practice functions can be derived from a narrow

set of assumptions. As Heathcote et al. (2000) explained one

needs only to assume that learning is proportional to the time

taken to execute the component in case of a continuous mech-

anism. First, a component that takes longer to execute presents

more opportunity for learning. Second, as learning proceeds,

the time to execute the component decreases. Therefore, the
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FIGURE 1 | (A) Schematic plot of the power function (blue lines) and negative exponential function (red lines) over 20 time points. (B) Shows the absolute

differences in performance from one time point to the next (filled symbols) and the relative learning rate (empty symbols).
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absolute learning rate decreases, resulting in exponential learning.

Similarly, for discrete mechanisms, such as chunking, exponential

learning can be explained by a reduction in learning opportu-

nity. As responses are produced by larger and larger chunks,

fewer opportunities for further composition are available. Time-

demanding control is no longer necessary for small steps but

only for scheduling sets consisting of fixed series of small pat-

terns. Naturally, the opportunities for compilation of small single

knowledge units into larger ones reduce, as more and more

patterns are already chunked.

Additional theoretical assumptions are needed to accommo-

date a decreasing RLR. For instance, Newell and Rosenbloom

(1981) see also Anderson (2002) assumed that chunks are

acquired hierarchically and that every time a larger chunk is prac-

ticed, this entails practice of its smaller components. Thus, by

practicing a knowledge unit consisting of sub-units, the sub-

units and the overall pattern are fine-tuned and strengthened.

Furthermore, at least in combinatorial environments, acquisition

proceeds ordered by chunk span. No larger span chunk is acquired

until all chunks of smaller span have been acquired.

The above research suggests that one or the other simple

learning function might be adequate to describe improvements

over long time intervals (cf. Howard, 2014). Functions known

from work on short-term skill acquisition should be relevant

to describe long-term expertise acquisition. We take chess as an

example to explore this perspective. First, longitudinal data span-

ning years of practice are available. Second, theories on expertise

in chess can be taken to suggest that scalability between small scale

learning and large scale expertise acquisition should be especially

likely to hold in this domain. Expertise development in chess

might predominantly be based on cumulatively storing more and

more patterns of chess positions (Chase and Simon, 1973; Gobet

and Simon, 1996b). Spatial (Waters et al., 2002; Connors and

Campitelli, 2014; Leone et al., 2014) and perceptual capabilities

are deemed crucial (Charness et al., 2001; Reingold et al., 2001;

Bilalić et al., 2008a,b; Kiesel et al., 2009; Bilalić et al., 2010; Bilalić

and McLeod, 2014). This suggests that attentional and learn-

ing episodes taking place at the time scale of milliseconds might

together lead to expertise acquisition. This in turn would make it

likely that expertise acquisition can be described by the learning

function exhibited during learning episodes that take place within

a single laboratory session.

In order to explore the potential of this conjecture in the cur-

rent study, we provide a descriptive analysis of the development of

chess performance in German players who start playing chess at

an early age and continue with the activity for at least 10 years.

Relevant for theoretical as well as practical purposes, the time

courses of expertise acquisition could thus potentially be pre-

dicted. Based on the shape of the curve of improvements during

the first years of expertise acquisition, one might be able to pre-

dict the time course of improvements over the years of practice to

come (Ericsson et al., 1993; Charness et al., 2005).

METHODS

DATABASE

We used archival data of the population of German play-

ers recorded by the German chess federation (Deutscher

Schachbund) from 1989 to 2007. Data were kindly provided

by the federation and analyzed in line with guidelines of the

ethics review board at Humboldt-Universität, Berlin. With over

3000 rated tournaments in a year, the German chess feder-

ation is one of the largest and the best-organized national

chess federations in the world. Given that almost all German

tournaments are rated, including events such as club champi-

onships, the entire playing careers of all competitive and most

hobby players in Germany are tracked in detail. This is par-

ticularly important because we wanted to capture the very

first stage of chess skill acquisition by focusing on the very

young chess players who just started to play chess. The German

database provides a perfect opportunity to study the initial

stages of skill acquisition because even school tournaments are

recorded.

THE MEASURE—CHESS RATING

Besides precise records of players, the German federation’s

database and chess databases in general use an interval scale, the

Elo rating, for measuring skill level. Every player has an Elo rating

that is obtained on the basis of their results against other players of

known rating (see Elo, 1978). Average players are assumed to have

rating of 1500 Elo points, experts over 2000 points, grandmaster,

the best players, over 2500. Beginners usually start at around 800

Elo points. The German database uses the same system but labels

the rating as Deutsche Wertzahl (DWZ), which is highly corre-

lated (r > 0.90) with the international Elo rating (Bilalić et al.,

2009b).

SELECTION CRITERIA AND GROUPING OF DATA ANALYZED

The German chess federation database contains records of over

124,000 players and the average rating of these players is 1387

points with standard deviation of 389 points. For all practical

purposes, the database contains the entirety of the population

of tournament chess observations in Germany (for more infor-

mation about the database, see Bilalić et al., 2009b; Vaci et al.,

2014). With interest in expertise development (rather than main-

tenance), we used the subset of data from all players who entered

the database between age 6 and 20. This population consisted of

1383 players that played competitive chess for at least 10 years.

All players took part in tournaments in each of the 10 years. To

be sure that the initial observation was indeed first entry into

competitive chess, we excluded players who were already listed

in the first year the federation started tracking players. For the

players starting young, there should have been little opportunity

for expertise acquisition prior to taking part in tournaments cov-

ered by the database. To track this issue, we split the sample into

age-groups (see Table 2 gender and age as well as for means and

standard deviations of games played, rating reached by year 10,

change in rating between year 1 and 10, and change in rating per

game played).

Note that since we are working with the entirety of tournament

chess performances in Germany since 1989, we provide descrip-

tion of the entire population of interest—chess players that played

competitive chess in Germany for at least 10 years (means,

standard deviations, correlations that allow for an estimation

of effect sizes). Generalization of findings, beyond the internal
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Table 2 | Sample characteristics and summary statistics on games played and ratings.

Age N (females) Mean age (SD) Mean total number Mean rating in Mean rating change Mean rating change

of games (SD) Year 10 (SD) from Year 1–10 (SD) per games played (SD)

6–9 173 (24) 8.3 (0.9) 359.9 (196) 1705.1 (308.2) 894 (368.6) 3.21 (1.72)

10–13 689 (72) 11.6 (1.1) 239 (135, 8) 1668.8 (268.9) 640.7 (294.9) 3.52 (2.15)

14–17 414 (22) 15.2 (1.1) 201.9 (116.1) 1660 (231.6) 457.4 (235.5) 3.04 (1.9)

18–20 107 (3) 18.8 (0.8) 180 (126.7) 1582.5 (200.6) 270.0 (201.7) 1.96 (1.5)

predictions, will have to be based on replications with other or

future databases (see e.g., Asendorpf et al., 2013).

PREDICTING AND FITTING WITH THE POWER AND EXPONENTIAL

FUNCTION

Fits were derived with constrained optimization, requiring the A

and B parameters to take sensible values (0 < B < A < 3000)

using the MATLAB Curve Fitting Toolbox. For each participant

we compared estimated and observed ratings and determined

whether the power function or the exponential function led to a

smaller squared deviation. For predictions, we only used the data

of the first 5 years to extract the parameters of the power function

and the exponential function. Then we used these parameters to

extrapolate the predicted ratings for the next years (at least 5—

each person in the sample had database entries for a minimum

of 10 years). The predicted values were then compared to the rat-

ings actually achieved. For instance, for a given participant who

played for 10 years, we took the performance in the first five,

acting as if the trajectory data of the next years were not yet avail-

able. The power function and the exponential function were fit

to the data of the first 5 years in order to obtain the parame-

ter values exemplified in Table 1. Next we used these values in

order to extrapolate for the coming years of tournament partici-

pation. These predicted values were than compared to the actual

ratings obtained. For each participant we could thus compare the

root mean square error (RMSE) between power function-based

prediction and prediction based on the exponential function.

RESULTS

DESCRIPTIVE STATISTICS

Table 2 indicates that our sample was predominantly male.

Participants starting to play tournaments younger accumulated

more games as compared to those starting at an older age. For

instance, the 6 to 9 year olds played twice as many games than

the 18 to 20 year olds. The rating reached by Year 10 was similar

across age groups. Yet, this implied a much stronger improvement

compared to Year 1 for the players starting young rather than old.

For instance, the youngest group showed trifold the increase of

the oldest group. The increase in rating relative to the number

of games played was similar across age groups (with the players

starting oldest, who showed a reduced gain per games played).

EXPONENTIAL BETTER THAN POWER FUNCTION IN PREDICTIONS

AND FITS

Figure 2 presents a random subset of individual time courses.

Despite fluctuations from one year to the next, participants

generally showed increases in skill, as measured by Elo, over years

FIGURE 2 | A random sample of individual time courses.

of chess played. Some participants showed large gains especially

in their first years. In order to systematize such observations, we

tested the capability of the power function and the exponential

function to fit and predict the observed trajectories. Prediction

is interesting for practical purposes as we can infer the skill

level someone will have after ten years of activity based on the

pattern of performance in their first years. On the other hand, pre-

diction circumvents methodological problems inherent in curve

fitting. For instance, one mathematical function might fit bet-

ter than another, because it is flexible enough to mimic the

competitor.

Across individuals from all age groups, the exponential func-

tion provided better prediction and fit to the data than the power

function (Table 3). The average RMSE and its standard devi-

ation were smaller for the exponential function than for the

power function (with exception of the prediction among those

starting chess at ages 18–20). For 88% of the players, the expo-

nential function was better in fitting the first 5 years the skill

acquisition process, and for 62% it was better in predicting the

skill level in later years. As shown in Figure 3, the distribution

of RMSE values was heavily left-skewed. For a substantial pro-

portion of participants neither the exponential nor the power

function provided an account of the dynamics of individuals’ skill

development.
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Table 3 | Average and standard deviation of RMSE per age group.

Prediction Fitting

Age Power Exponential Power Exponential

6–9 381.3 (179.9) 197.5 (127.4) 143.6 (88.7) 83 (37.8)

10–13 225.4 (135.6) 149.8 (99.3) 96 (62.8) 60.3 (28.1)

14–17 115.4 (84) 104.1 (63.3) 69.9 (45.9) 45.4 (20.4)

18–20 75.1 (48.1) 87.8 (56.7) 51.8 (30.5) 39 (19.6)

FIGURE 3 | Distribution of root mean square error (RMSE) of rating

points of the power function (blue) and exponential function (red) in

fitting the time course of the first 5 years (filled lines) vs. predicting

the time course for the next years based on the parameters derived

from fitting the first years (dotted lines).

INCREASING GAINS IN PARTICIPANTS STARTING YOUNG

We grouped players by the age they started to play tournaments

in order to explore reasons for the substantial problems in fit

and prediction encountered with both the power and exponential

functions. Potentially, players starting tournament participation

at older ages might have profited from substantial opportuni-

ties to practice chess before they entered our window of analysis.

Thus, the expected learning gains might manifest more readily in

those players that started at younger ages. Figure 4A indeed shows

that players entering tournament chess at older ages demonstrate

higher skill levels by the end of their first year, while players

entering at younger ages, start at lower levels. Most notably, how-

ever, the shape of the improvements deviates systematically from

the patterns of change that would be expected based on either

the exponential or the power function. Both learning functions

predict that participants should show a higher absolute gain in

rating points from the first to the second year compared to the

gain from the second to the third year, which in turn should

yield a higher gain as compared to the change from the third

to the fourth year, and so on and so forth. Among the subset

of players starting young, however, the contrary seemed to be

the case (see also Figure 4B for difference values). Over the first

years of tournament participation, the absolute amount of gain

per year increased rather than decreased. The deviation from the

expected learning curve might be related to year-to-year varia-

tions in practice. For example, the players starting young may,

at first, participate in very few tournaments, and then, in the

next few year, increase in the number of tournament games they

take part in. This is indeed the case (Figure 4C). Therefore, it is

conceivable that the amount of practice which increases over the

years accounts for the dynamics of the skill increase—only once

the players starting young take part in more and more games,

their skill might start to increase in the manner predicted by

the learning curves. As we do not possess any further data on

changes in the amount of practice per year (i.e., off tournament

practice), we cannot conclusively judge this account. However, at

least we can state that the increase in the number of tournament

games played cannot fully account for the dynamics. As shown in

Figure 4D, the change in rating per year per number of tourna-

ment games played also shows an increase over the first years for

players starting young.

FLUCTUATIONS IN GAMES PLAYED PER YEAR RELATE TO MISFIT WITH

POWER FUNCTION

It is conceivable that the misfit and inaccurate prediction of the

power and the exponential functions are related to variability in

the number of games played per year. While we only examined

the subset of players who played in tournaments in each of the 10

years tracked, the number of games per year might have fluctu-

ated. We computed the within-person (intraindividual) standard

deviation of games played per year, assuming that fits should

be optimal if the number of games a player takes part in does

not change over the years. This index is equivalent to comput-

ing the deviation from a zero-slope line in numbers of games

played. Table 4 shows the Spearman rank order correlation of

intraindividual variability in number of games played per year

with the RMSE obtained from fitting and predicting ratings based

on the power function and the exponential function. The corre-

lations suggest that larger intraindividual variability in number

of games played per year was weakly but consistently related to

worse fit in case of the power function (while the pattern was less

consistent for the exponential function). A similar pattern was

observed when correlating the overall number of games played to

accuracy in prediction and fitting. Participants who played more

games showed worse fits compared to participants who played less

games. This was likely the case, because the number of games

played over the ten years (a count variable) was closely linked

to the intraindividual variability in games per year (Spearman

correlations ranging between 0.84 and 0.88 across the four age

groups).

Figure 4C suggests that variability in number of games played

per year is not purely random. Instead it can be based on

an ordered pattern (inverted U-shape). Separately for each age

group, we took the average profile in number of games played per

year (displayed in Figure 4C) as a prototypical pattern. Then, we

determined for each participant the profile correlation between

his/her pattern of numbers of games played with the average

pattern of the respective age group. Our analyses suggested that

there was substantial variability, with some participants following
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FIGURE 4 | (A) Charts the average time course in tournament

performance for players starting at 6–20 years of age. (B) Shows the

time course of the gain in performance from one year to the next for

the different starting-age groups. In (C) the time course of number of

tournament games played per year is charted for the different

starting-age groups. (D) Shows the time course of the improvement in

tournament performance from year to year relative to the number of

tournament games played in the respective year.

the pattern represented in the group mean and others deviat-

ing from it. Median within-person correlations per age group

were r = 0.58, 0.5, 0.47, and 0.19. The percentage of individu-

als showing a negative correlation with the prototypical pattern

was 9.8, 15.2, 19.6, and 31.8%. However, as suggested by Table 4,

the extent to which the dynamics of an individual’s number of

games played per year was represented by the average pattern of

the age group was not systematically related to the accuracy in

power function or exponential function fits and predictions.

OFF-THE-CURVE PATTERNS IN 2/3rds OF THE SAMPLE

We sought to provide descriptive data on the number of partic-

ipants who deviated from the predictions of the learning curves

by showing smaller rather than larger rating gains during their

early as compared to their later years of tournament participa-

tion. For this we sorted individuals into tertiles based on the total

gains achieved during the first 3 years (lowest, medium, and high-

est rating gains). As shown in Figure 5A, the third of players with

the lowest gains even showed small decreases in rating during the

first years, while only the individuals with the largest gain yielded

performance changes in line with the predictions by the learn-

ing curves (i.e., larger gain per year in early rather than late years,

compare Figure 5B). Players that did not improve in their first

three tournament years caught up to some extent in later years,

but did not reach the same level by year 10 as those players with

a steep increase early on. Thus, irrespective of complex dynamics

of the shape of the performance curve, the first years do seem to

offer a proxy for predicting the level a player will eventually reach.

COHORT DIFFERENCES

There have been many changes in resources available for chess

players since 1989. We analyzed the time course in development

of chess ratings separately for different cohorts in order to explore

whether deviations from the pattern predicted by the learning

curves varied in relation to the historical period that a chess

career was started. Deviations from the learning curve were not
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Table 4 | Spearman rank order correlations of (a) indices of regularity

in numbers of games played per year with (b) the fitting and

prediction error.

Age Prediction Fitting

Power Exponential Power Exponential

SD of games per

year

6–9 0.13 −0.22 0.29 −0.05

10–13 0.14 −0.16 0.45 0.20

14–17 0.22 0.02 0.36 0.24

18–20 0.18 0.20 0.47 0.44

Overall number of

games

6–9 0.22 −0.30 0.37 −0.01

10–13 0.21 −0.14 0.50 0.21

14–17 0.24 −0.02 0.39 0.22

18–20 0.18 0.23 0.56 0.48

Prototypical profile

in games per year

6–9 −0.03 −0.36 0.21 −0.02

10–13 −0.06 −0.17 0.06 −0.06

14–17 0.04 −0.08 0.08 0.05

18–20 0.22 −0.01 0.23 0.22

Years played

Δ Ra�ng

Ra�ng

A

B

Years played

FIGURE 5 | (A) Charts the average time course in tournament performance

for players starting at 6–20 years of age grouped by improvement over the

first three years. (B) Shows the change in ELO per year.

Years played

FIGURE 6 | Average time course in tournament performance for

players starting at 6–20 years of age grouped by birth cohort

(1970–1990). Due to small n (11) we dropped the 14–17 year old starters

born between 1970 and 1975.

accounted for by cohort. Rather, for all 5-year cohorts from 1970

to 1990 and age-groups displayed in Figure 6, the increase in rat-

ing during the first years of performance was linear or positively

accelerated. The pattern of negative acceleration (larger gains in

earlier as compared to later years, compatible with the learning

curves) was not observed.

Age-groups and cohorts differed more with respect to the rat-

ing level they started out with (i.e., reached by end of their first

year) than with respect to their level of performance in Year

10. As already observable in Figure 5A, people starting to play

tournaments at younger age, started out at a lower level. In addi-

tion, Figure 6 shows that later cohorts started at lower levels.

This might be taken to suggest that players starting young in late

cohorts are the best candidates to track trajectories in chess per-

formance based on tournament ratings, while ratings of players

starting older and earlier cohorts might be shaped more strongly

by off-tournament practice.

GAIN IN RATING FROM GAMES PLAYED

The above analyses suggest that the success of the power func-

tion and the exponential function in predicting development of

chess performance might be rather limited due to quantitative

and qualitative misfit. Furthermore, the number of tournament

games played seemed to be linked to deviations from the learn-

ing curve. Therefore, we sought to describe the extent to which

early vs. late years in playing tournament chess are related to

gain in rating as well as performance level reached by Year 10.

For this we used games played per year and gain in rating per

year. We applied Spearman rank order correlations separately for

each age group and year of tournament participation. Figure 7A
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FIGURE 7 | Spearman rank order correlations per age group between performance variables taken from single years and rating gain per year (A,B) or

overall rating gain (C,D).

shows that number of games played per year is related to between-

person differences in gain in rating. Participants playing more

tournament games in a year tend to show a larger increase in rat-

ing compared to those playing less games. This holds consistently

across age-groups and especially so for early years of tournament

participation. However, diminishing returns seem to be observ-

able with respect to the extent to which more tournament games

can lead to an increase in rating. Figure 7B shows that the rela-

tionship between (a) games played per year and (b) gain per

games played per year can become negative. Thus, overall it does

not seem to be the case that playing more tournament games can

lead to an increase in efficiency in taking gains in rating from

a tournament game. For instance, those players starting tourna-

ment participation at age 10–13 who played more tournament

games, seemed to show a reduced gain in rating per tournament

game played in their middle years.

The gain in rating that players show from Year 1 to Year 10

can be predicted by gain in rating per year in early years of

tournament participation. As depicted in Figure 7C, gain in later

years is less predictive of the overall increase in rating. While the

power and the exponential function would have predicted that we

can observe large gains in rating in early years, we thus, somewhat

analogously, observer a larger predictive power of between-person

differences in early as compared to late years of chess tournament

participation. Apart from the gain per year, also the gain per year

relative to the number of games played per year could be used

to predict the overall increase in rating between Year 1 and 10

(Figure 7D). Participants who, during the first years of tourna-

ment participation, efficiently increased their rating per games

played, ended up at a higher performance level than those, who

did not show a large gain per games played during early years.

SELECTIVE ATTRITION

Finally, we checked for selective attrition. While in our main

analyses we only used 10 years of subsequent tournament partic-

ipation, some participants provided records for additional years

(up to 19 years overall). Rank order correlations indicated that

the number of overall years of tournament participation per age
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group was neither systematically related to gain between Year 1

and Year 10, nor the gain in rating within the first 3 years (rs

between −0.10 and 0.16).

DISCUSSION

In the current work we have explored the potential of the power-

and the negative exponential learning functions to account for the

development of chess performance measured in ratings based on

tournament outcomes. In line with re-evaluations of the power

law of practice (Heathcote et al., 2000; Haider and Frensch, 2002),

we documented that the exponential function was better than the

power function in fitting and predicting the time course of chess

ratings over years of practice. However, a crucial aspect shared by

both of these mathematical functions and the underlying theories

of skill acquisition was not reflected in the data. While accord-

ing to the power- as well as the negative exponential function

players should achieve large absolute gains early in practice and

small gains later in practice, this was not the case for many of

the participants. Rather, many players started to show substantial

improvements only after their first years of tournament participa-

tion. They were playing off the learning curves suggested by skill

acquisition theories. If expertise acquisition is not well described

by learning functions used to describe skill acquisition, the link-

ing of underlying cognitive processes of attention and learning

that proceed on time-scales measuring milliseconds to hours with

learning processes that proceed on time-scales measured in years

seems much less straightforward than one could have hoped for

(i.e., Anderson, 2002).

Many players showed an acceleration of gain in rating in the

first years of tournament participation, followed by a decelera-

tion. Based on the power function and the exponential function

we would have expected to only find the latter. Newell et al.

(2001) suggested to mathematically and conceptually accommo-

date such findings by assuming a mixture of learning processes

taking place on different time scales. Acceleration followed by

deceleration could be captured by a sigmoid function that con-

sists of two exponential components, a positive (acceleration)

and a negative one (deceleration). Learning opportunities and

efficiency in using them might increase during first years of tour-

nament performance for many players, while in later years returns

of investing in chess performance are diminishing. In line with

this view, year-long trajectories of skill acquisition might be better

understood from a perspective that takes lifespan-developmental

and educational changes into account (Li and Freund, 2005).

For instance, players starting to take part in tournaments at a

young age are likely to promote changes in self-regulation strate-

gies available (Lerner et al., 2001; Freund and Baltes, 2002) and

acquire the potential to shape their social and learning environ-

ment. Their ability to learn about chess from (foreign language)

media and options to travel to and communicate with other play-

ers will increase. Deliberate practice (cf. Ericsson et al., 1993)

might require that young players develop skills to competently

use of their motivational resources, by, for instance, scheduling

work on skill acquisition such that as many of the activities as

possible are intrinsically motivating (cf. Rheinberg and Engeser,

2010 as well as Christophel et al., 2014, for training of motiva-

tional competence). Underlining this challenge, Coughlan et al.,

2014 reported that participants in the expert group of their study

rated their practice as more effortful and less enjoyable compared

to other participants. The experts were successful in improving

performance, by predominantly practicing the skill they were

weaker at. However, such gains in potential to learn might for

many players no longer compensate for the physical and social

changes faced during puberty (Marceau et al., 2011; Hollenstein

and Lougheed, 2013), at the end of adolescence, during sec-

ondary education, family formation or labor force participation.

Future research should thus try to simultaneously account for

development in the individual, the opportunities provided by the

environment (cf. Ram et al., 2013) and to model different trajec-

tories in one framework (e.g., Grimm et al., 2010; Ram and Diehl,

in press).

For skill acquisition mechanisms such as chunking, negative

exponential learning can be explained by a reduction in learning

opportunities (cf. Heathcote et al., 2000). The later in practice, the

fewer chunks are yet to be learned. While a deceleration of learn-

ing should be observed late in practice, such an account does not

preclude that strong increases in learning opportunities early in

practice can lead to an acceleration of chunks acquired per time

invested. It appears that, for at least some players, opportunities

and efficiency in increasing chess performance are already fully

present at the time they start to play tournaments. They start at

the turning point of the sigmoid function. The “upper” negative

exponential portion of the sigmoid is sufficient to describe their

performance gains, which are large in their early years and then

diminish as performance approaches the asymptote. For other

players, both positive and negative exponential portions of the

sigmoid function are needed to represent the dynamics of their

chess performance over time. These players appear to be less sat-

urated with respect to learning opportunities and efficiency when

starting to take part in tournaments covered by the database. They

thus first show an acceleration in rating gains per year, followed

by the deceleration when approaching asymptote.

In line with these speculations, Howard (2014) reported

an average trajectory of rating increases showing deceleration

only for International Chess Federation (FIDE) players (rather

than acceleration followed by deceleration). The shape of the

curve reported by Howard matches the exponential curve from

Figure 1A. Starting at an average of about 2200 points, the sam-

ple mean increased beyond 2500 points with practice. Different

from the database used in the current study, the threshold to be

listed in the FIDE database is high (cf. Vaci et al., 2014 for a

discussion of problems implied by restriction of range in chess

databases). Likely, players were already taking full advantage of

opportunities to improve chess performance when entering the

database so that an acceleration in rating gain with practice was

no longer possible. Descriptive analyses suggest that the dynamic

in rating improvement that players at the international level show

with practice seems consistent with the negatively accelerated

exponential function. As implied by the exponential function, the

relative learning rate (RLR) estimated based on the average data

published by Howard (2014) is constant. While the power func-

tion should lead to a decrease of RLR with practice (cf. Heathcote

et al., 2000), the RLR is fluctuating around 20%. Focusing on

the first half of practice in order to avoid inflation of RLR at the
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end of the practice curve, we obtained an r = 0.11 correlation

of RLR with time point. Thus there was no hint toward a

decrease.

Our correlational analyses suggest that interindividual vari-

ability in rating gain over the course of ten years of tournament

participation can be predicted by between-person differences in

performance during the first years. Even by taking data from sin-

gle years, number of games played, rating points gained or rating

points gained per games played, allow to predict overall gain at

a moderate level. While the power and the exponential learn-

ing curve would suggest that the first years of practice should

be important because of the large performance gains, we thus

can somewhat analogously conclude that the first years are more

important than later years for predicting between-person differ-

ences in performance level reached on the long run (cf. Ackerman

and Woltz, 1994).

We focused on examining changes in rating with year of prac-

tice (rather than number of games played, cf. Howard, 2014).

This allowed us to explore changes in rating gain and rating gain

per games played with age and cohort. Yet, a direct compari-

son of the capability to capture performance change is lacking

so far for the two potential time scales, (1) number of games

played, (2) chronological time in years, as well as (3) a mixture

of both scales. Several issues are worth considering when explor-

ing the complexity of models needed to account for expertise

acquisition over years, as compared to models of skill acquisi-

tion in hour-long laboratory sessions. In the lab, quantity and

quality of practice per unit of time is usually well controlled. In

skill acquisition processes outside the lab they might vary con-

siderably over the years of practice an individual engages in. In

addition, potential cohort differences should not be neglected (cf.

Gobet et al., 2002; van Harreveld et al., 2007; Connors et al.,

2011). Future work should consider how data on both, quan-

tity of practice and quality of practice, can be used to explain

the time course of chess skill development (cf. Baker et al., 2003;

Charness et al., 2005; Gobet and Campitelli, 2007; Howard, 2014).

Apart from obtaining data on the amount of off-tournament

learning opportunities, available data sets could be used to gauge

variability in specific aspects of the learning opportunities. For

instance, taking part in tournaments with large spread in oppo-

nent strength might provide more opportunities for improve-

ment as compared to tournaments with more homogenous

competitors.

REFERENCES
Ackerman, P. L., and Woltz, D. J. (1994). Determinants of learning and perfor-

mance in an associative memory/substitution task: task constraints, individual

differences, and volition. J. Educ. Psychol. 86, 487–515. doi: 10.1037/0022-

0663.86.4.487

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychol. Rev. 89, 369–406. doi:

10.1037/0033-295X.89.4.369

Anderson, J. R. (2002). Spanning seven orders of magnitude: a challenge

for cognitive modeling. Cogn. Sci. 26, 85–112. doi: 10.1207/s15516709cog

2601_3

Asendorpf, J. B., Conner, M., De Fruyt, F., De Houwer, J., Denissen, J. J., Fiedler, K.,

et al. (2013). Recommendations for increasing replicability in psychology. Eur.

J. Pers. 27, 108–119. doi: 10.1002/per.1919

Baker, J., Côté, J., and Abernethy, B. (2003). Sport-specific practice and the devel-

opment of expert decision-making in team ball sports. J. Appl. Sport Psychol. 15,

12–25. doi: 10.1080/10413200305400
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