
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005 669

Playing to Learn: Case-Injected Genetic Algorithms
for Learning to Play Computer Games

Sushil J. Louis, Member, IEEE, and Chris Miles

Abstract—We use case-injected genetic algorithms (CIGARs) to
learn to competently play computer strategy games. CIGARs pe-
riodically inject individuals that were successful in past games into
the population of the GA working on the current game, biasing
search toward known successful strategies. Computer strategy
games are fundamentally resource allocation games characterized
by complex long-term dynamics and by imperfect knowledge of
the game state. CIGAR plays by extracting and solving the game’s
underlying resource allocation problems. We show how case
injection can be used to learn to play better from a human’s or
system’s game-playing experience and our approach to acquiring
experience from human players showcases an elegant solution to
the knowledge acquisition bottleneck in this domain. Results show
that with an appropriate representation, case injection effectively
biases the GA toward producing plans that contain important
strategic elements from previously successful strategies.

Index Terms—Computer games, genetic algorithms, real-time
strategy.

I. INTRODUCTION

T
HE COMPUTER gaming industry is now almost as big

as the movie industry and both gaming and entertainment

drive research in graphics, modeling, and many other computer

fields. Although AI and evolutionary computing research has

been interested in games like checkers and chess [1]–[6],

popular computer games such as Starcraft and Counter-Strike

are very different and have not received much attention. These

games are situated in a virtual world, involve both long-term

and reactive planning, and provide an immersive, fun experi-

ence. At the same time, we can pose many training, planning,

and scientific problems as games in which player decisions bias

or determine the final solution.

Developers of computer players (game AI) for popular

first-person shooters (FPS) and real-time strategy (RTS) games

tend to acquire and encode human-expert knowledge in finite

state machines or rule-based systems [7], [8]. This works well,

until a human player learns the game AI’s weaknesses, and

requires significant player and developer time to create com-

petent players. Development of game AI, thus, suffers from

the knowledge acquisition bottleneck that is well known to AI

researchers.

This paper, in contrast, describes and uses a case-injected

genetic algorithm (CIGAR) that combines genetic algorithms

Manuscript received September 23, 2004; revised February 19, 2005. This
work was supported in part by the Office of Naval Research under Contract
N00014-03-1-0104.

The authors are with the Department of Computer Science, University of
Nevada, Reno, NV 89557-0148 USA (e-mail: sushil@cse.unr.edu; miles@
cse.unr.edu).

Digital Object Identifier 10.1109/TEVC.2005.856209

(GAs) with case-based reasoning to competently play a com-

puter strategy game. The main task in such a strategy game is

to continuously allocate (and reallocate) resources to counter

opponent moves. Since RTS games are fundamentally about

solving a sequence of resource allocation problems, the GA

plays by attempting to solve these underlying resource alloca-

tion problems. Note that the GA (or human) is attempting to

solve resource allocation problems with no guarantee that the

GA (or human) will find the optimal solution to the current re-

source allocation problem—quickly finding a good solution is

usually enough to get good game-play.

Case injection improves the GA’s performance (quality and

speed) by periodically seeding the evolving population with in-

dividuals containing good building blocks from a case-based

repository of individuals that have performed well on previously

confronted problems. Think of this case-base as a repository

of past experience. Our past work describes how to choose ap-

propriate cases from the case-base for injection, how to define

similarity, and how often to inject chosen cases to maximize

performance [9].

This paper reports on results from ongoing work that seeks

to develop competent game opponents for tactical and strategic

games. We are particularly interested in automated methods for

modeling human strategic and tactical game play in order to de-

velop competent opponents and to model a particular doctrine

or “style” of human game-play. Our long-term goal is to show

that evolutionary computing techniques can lead to robust, flex-

ible, challenging opponents that learn from human game-play.

In this paper, we develop and use a strike force planning RTS

game as a testbed (see Fig. 1) and show that CIGAR can: 1) play

the game; 2) learn from experience to play better; and 3) learn

trap avoidance from a human player’s game play.

The significance of learning trap avoidance from human

game-play arises from the system having to learn a concept

that is external to the evaluation function used by CIGAR.

Initially, the system has no concept of a trap (the concept) and

has no way of learning about traps through feedback from the

evaluation function. Therefore, the problem is for the system

to acquire knowledge about traps and trap-avoidance from

humans and then to learn to avoid traps. This paper shows how

the system “plays to learn.” That is, we show how CIGAR uses

cases acquired from human (or system) game-play to learn

to avoid traps without changing the game and the evaluation

function.

Section II introduces the strike force planning game and

CIGARs. Section III then describes previous work in this area.

Section IV describes the specific strike scenarios used for

testing, the evaluation computation, the system’s architecture,

1089-778X/$20.00 © 2005 IEEE

670 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 1. Game screenshot.

and the encoding. Sections V and VI describe the test setup

and results with using CIGAR to play the game and to learn

trap-avoidance from humans. Section VII provides conclusions

and directions for future research.

II. STRIKE FORCE PLANNING

Strike force asset allocation maps to a broad category of re-

source allocation problems in industry and, thus, makes a suit-

able test problem for our work. We want to allocate a collec-

tion of assets on platforms to a set of targets and threats on the

ground. The problem is dynamic; weather and other environ-

mental factors affect asset performance, unknown threats can

“popup,” and new targets can be assigned. These complications

as well as the varying effectiveness of assets on targets make the

problem suitable for evolutionary computing approaches.

Our game involves two sides: Blue and Red, both seeking to

allocate their respective resources to minimize damage received,

while maximizing the effectiveness of their assets in damaging

the opponent. Blue plays by allocating a set of assets on aircraft

(platforms), to attack Red’s buildings (targets) and defensive

installations (threats). Blue determines which targets to attack,

which weapons (assets) to use on them, as well as how to route

platforms to targets, trying to minimize risk presented, while

maximizing weapon effectiveness.

Red has defensive installations (threats) that protect targets

by attacking Blue platforms that come within range. Red plays

by placing these threats to best protect targets. Potential threats

and targets can also pop up on Red’s command in the middle

of a mission, allowing a range of strategic options. By cleverly

locating threats, Red can feign vulnerability and lure Blue into

a deviously located popup trap, or keep Blue from exploiting

such a weakness out of fear of a trap. The scenario in this paper

involves Red presenting Blue with a trapped corridor of seem-

ingly easy access to targets.

In this paper, a human plays Red, while a genetic algorithm

player (GAP) plays Blue. GAP develops strategies for the at-

tacking strike force, including flight plans and weapons tar-

geting for all available aircraft. When confronted with popups,

GAP responds by replanning in order to produce a new plan of

action that responds to the changes. Beyond purely responding

to immediate scenario changes we use case injection in order

to produce plans that anticipate opponent moves. We provide a

short introduction to CIGAR next.

A. Case-Injected Genetic Algorithms (CIGARs)

A CIGAR works differently than a typical GA. A GA ran-

domly initializes its starting population so that it can proceed

from an unbiased sample of the search space. We believe that

it makes less sense to start a problem solving search attempt

from scratch when previous search attempts (on similar prob-

lems) may have yielded useful information about the search

space. Instead, periodically injecting a GA’s population with rel-

evant solutions or partial solutions to similar previously solved

problems can provide information (a search bias) that reduces

the time taken to find a quality solution. Our approach borrows

ideas from case-based reasoning (CBR) in which old problem

and solution information, stored as cases in a case-base, helps

solve a new problem [10]–[12]. In our system, the data-base,

or case-base, of problems and their solutions supplies the ge-

netic problem solver with a long-term memory. The system does

not require a case-base to start with and can bootstrap itself by

learning new cases from the GA’s attempts at solving a problem.

While the GA works on a problem, promising members of the

population are stored into the case-base through a preprocessor.

Subsequently, when starting work on a new problem, suitable

cases are retrieved from the case base and are used to populate

a small percentage (say 10%–15%) of the initial population. A

case is a member of the population (a candidate solution) to-

gether with other information including its fitness and the gener-

ation at which this case was generated [13]. During GA search,

whenever the fitness of the best individual in the population in-

creases, the new best individual is stored in the case-base.

Like CIGAR, human players playing the game are also

solving resource allocation and routing problems. A human

player’s asset allocation and routing strategy is automatically

reverse engineered into CIGAR’s chromosomal representation

and stored as a case into the case-base. Such cases embody

domain knowledge acquired from human players.

The case-base does what it is best at—memory organiza-

tion; the GA handles what it is best at—adaptation. The re-

sulting combination takes advantage of both paradigms; the GA

component delivers robustness and adaptive learning, while the

case-based component speeds up the system.

The CIGAR used in this paper operates on the basis of so-

lution similarity. CIGAR periodically injects a small number

of solutions similar to the current best member of the GA

population into the current population, replacing the worst

members. The GA continues searching with this combined

population. Apart from using solution similarity, note that one

other distinguishing feature from the “problem-similarity”

metric CIGAR is that cases are periodically injected. The idea

is to cycle through the following steps. Let the GA make some

progress. Next, find solutions in the case-base that are similar

to the current best solution in the population and inject these

solutions into the population. Then, let the GA make some

progress, and repeat the previous steps. The detailed algorithm

can be found in [9]. If injected solutions contain useful cross

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 671

Fig. 2. Solving problems in sequence with CIGAR. Note the multiple periodic
injections in the population as CIGAR attempts problem P ; 0<i � n.

problem information, the GA’s performance will be signifi-

cantly boosted. Fig. 2 shows this situation for CIGAR when it

is solving a sequence of problems , each of which

undergoes periodic injection of cases.

We have described one particular implementation of such a

system. Other less elitist approaches for choosing population

members to replace are possible, as are different strategies for

choosing individuals from the case-base. We can also vary the

injection percentage: the fraction of the population replaced by

chosen injected cases.

CIGAR has to periodically inject cases because we do not

know which previously solved problems are similar to the cur-

rent one. That is, we do not have a problem similarity metric.

However, the Hamming distance between binary encoded chro-

mosomes provides a simple and remarkably effective solution

similarity metric. We, thus, find and inject cases that are similar

(close in Hamming distance) to the current best individual.

Since the current best individual changes, we have to find and

inject the closest cases into the evolving population. We are

assuming that similar solutions must have come from similar

problems and that these similar solutions retrieved from the

case-base contain useful information to guide genetic search.

Although this is an assumption, results on design, scheduling,

and allocation problems show the efficacy of this similarity

metric and, therefore, of CIGAR [9].

An advantage of using solution similarity arises from the

string representations typically used by GAs. A chromosome

is a string of symbols. String similarity metrics are relatively

easy to create and compute, and furthermore, are domain

independent.

What happens if our similarity measure is noisy and/or leads

to unsuitable retrieved cases? By definition, unsuitable cases

will have low fitness and will quickly be eliminated from the

GA’s population. CIGAR may suffer from a slight performance

hit in this situation but will not break or fail—the genetic search

component will continue making progress toward a solution. In

addition, note that diversity in the population—“the grist for the

mill of genetic search [14]” can be supplied by the genetic op-

erators and by injection from the case-base. Even if the injected

cases are unsuitable, variation is still injected. The system that

we have described injects individuals from the case-base that are

deterministically closest, in Hamming distance, to the current

best individual in the population. We can also choose schemes

other than injecting the closest to the best. For example, we have

experimented with injecting cases that are the furthest (in the

case-base) from the current worst member of the population.

Probabilistic versions of both have also proven effective.

Reusing old solutions has been a traditional performance

improvement procedure. The CIGAR approach differs in that:

1) we attack a set of tasks, 2) store and reuse intermediate

candidate solutions, and 3) do not depend on the existence of

a problem similarity metric. CIGAR pseudocode and more

details are provided in [9].

B. CIGAR for RTS Games

Within the context of RTS games as resource allocation prob-

lems, GAs can usually robustly search for effective strategies.

These strategies usually approach static game optimal strategies

but they do not necessarily approach optima in the real world

as the game is an imperfect reflection of reality. For example,

in complex games, humans with past experience “playing” the

real-world counterpart of the game tend to include external

knowledge when producing strategies for the simulated game.

Incorporating knowledge from the way these humans play

(through case injection) should allow us to carry over some of

this external knowledge into GAP’s game play. Since GAP can

gain experience (cases) from observing and recording human

Blue-players’ decisions as well as from playing against human

or computer opponents, case injection allows GAP to use cur-

rent game-state information as well as acquired knowledge to

play better. Our game is designed to record all player decisions

(moves) on a central server for later storage into a case-base.

The algorithm does not consider whether cases come from

humans or from past game-playing episodes and can use cases

from a variety of sources. We are particularly interested in

acquiring and using cases from humans in order to learn to play

with a specific human style and to be able to acquire knowledge

external to the game.

Specifically, we seek to produce a GAP that can play on a

strategic level and learn to emulate aspects of strategies used by

human players. Our goals in learning to play like humans are

the following.

• We want to use GAP for decision support, whereby

GAP provides suggestions and alternative strategies

to humans actively playing the game. Strategies more

compatible with those being considered by the humans

should be more likely to have a positive effect on the

decision-making process.

• We would like to make GAP a challenging opponent to

play against.

• We would like to use GAP for training. GAP plays not

just to win but to teach its opponent how to better play the

game, in particular to prepare them for future play against

human opponents. This would allow us to use GAP for

acquiring knowledge from human experts and transferring

that knowledge to human players without the expense of

individual training with experts.

672 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

These roles require GAP to play with objectives in mind be-

sides that of winning—these objectives would be difficult to

quantify inside the evaluator. As humans can function effec-

tively in these regards, learning from them should help GAP

better fulfill these responsibilities.

C. Playing the Game

A GA can generate an initial resource allocation (a plan) to

start the game. However, no initial plan survives contact with

the enemy.1 The dynamic nature of the game requires replan-

ning in response to opponent decisions (moves) and changing

game-state. This replanning has to be fast enough to not inter-

fere with the flow of the game and the new plan has to be good

enough to win the game, or at least, not lose. Can GAs satisfy

these speed and quality constraints? Initial results on small sce-

narios with tens of units showed that a parallelized GA on a

small ten-node cluster runs fast enough to satisfy both speed

and quality requirements. For the CIGAR, replanning is simply

solving a similar planning problem. We have shown that CIGAR

learns to increase performance with experience at solving sim-

ilar problems [9], [15], [16]–[18]. This implies that when used

for replanning, CIGAR should quickly produce better new plans

in response to changing game dynamics. In our game, aircraft

break off to attack newly discovered targets, reroute to avoid

new threats, and reprioritize to deal with changes to the game

state.

Beyond speeding up GAP’s response to scenario changes

through replanning, we use case injection in order to produce

plans that anticipate opponent moves. This teaches GAP to act

in anticipation of changing game states and leads to the avoid-

ance of likely traps and better capitalization on opponent vulner-

abilities. GAP learns to avoid areas likely to contain traps from

two sources.

• Humans: As humans play the game, GAP adds their play

to the case-base gaining some of their strategic knowl-

edge. Specifically, whenever the human player makes a

game move, the system records this move for later storage

into the case-base. The system, thus, acquires knowl-

edge from humans simply by recording their game-play.

We do not need to conduct interviews, deploy concept

maps, or use other expensive, error-prone, and lengthy

knowledge-acquisition techniques.

• Experience: As GAP plays games it builds a case-base

with knowledge of how it should play. Since the system

does not distinguish between human players and GAP,

it acquires knowledge from GAP’s game-play exactly as

described above.

Our results indicate GAP’s potential in making an effective

Blue player with the ability to quickly replan in response to

changing game dynamics, and that case injection can bias GAP

to produce good solutions that are suboptimal with respect to

the game simulation’s evaluation function but that avoid poten-

tial traps. Instead of changing evaluation function parameters

or code, GAP changes its behavior by acquiring and reusing

1We paraphrase from a quote attributed to Helmuth von Moltke.

knowledge, stored as cases in a case-base. Case injection also bi-

ases the GA toward producing strategies similar to those learned

from a human player. Furthermore, our novel representation al-

lows the GA to reuse learned strategic knowledge across a range

of similar scenarios independent of geographic location.

III. PREVIOUS WORK

Previous work in strike force asset allocation has been done

in optimizing the allocation of assets to targets, the majority of

it focusing on static premission planning. Griggs [19] formu-

lated a mixed-integer problem (MIP) to allocate platforms and

assets for each objective. The MIP is augmented with a decision

tree that determines the best plan based upon weather data. Li

[20] converts a nonlinear programming formulation into a MIP

problem. Yost [21] provides a survey of the work that has been

conducted to address the optimization of strike allocation assets.

Louis [22] applied CIGARs to strike force asset allocation.

From the computer gaming side, a large body of work exists

in which evolutionary methods have been applied to games

[2]–[4], [23], [24]. However, the majority of this work has been

applied to board, card, and other well-defined games. Such

games have many differences from popular RTS games such

as Starcraft, Total Annihilation, and Homeworld [25]–[27].

Chess, checkers and many others use entities (pieces) that have

a limited space of positions (such as on a board) and restricted

sets of actions (defined moves). Players in these games also

have well-defined roles and the domain of knowledge available

to each player is well identified. These characteristics make the

game state easier to specify and analyze. In contrast, entities in

our game exist and interact over time in continuous three-di-

mensional space. Entities are not controlled directly by players

but instead sets of parametrized algorithms control them in

order to meet goals outlined by players. This adds a level of

abstraction not found in more traditional games. In most such

computer games, players have incomplete knowledge of the

game state and even the domain of this incomplete knowledge

is difficult to determine. Laird [7], [8], [28] surveys the state of

research in using AI techniques in interactive computers games.

He describes the importance of such research and provides a

taxonomy of games. Several military simulations share some

of our game’s properties [29], [30], however, these attempt

to model reality, while ours is designed to provide a platform

for research in strategic planning, knowledge acquisition and

reuse, and to have fun. The next section describes the scenario

being played.

IV. THE SCENARIO

Fig. 3 shows an overview of our test scenario. We chose the

scenario to be simple and easy to analyze but to still encapsulate

the dynamics of traps and anticipation.

The translucent gray hemispheres show the effective radii of

Red’s threats placed on the game map. The scenario takes place

in Northern Nevada, Walker Lake is visible near the bottom of

the map covered by the largest gray hemisphere. Red has eight

targets on the right-hand side of the map with their locations de-

noted by the cross-hairs. Red has a number of threats placed to

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 673

Fig. 3. The scenario.

defend the targets and the translucent gray hemispheres show

the effective radii of some of these threats. Red has the poten-

tial to play a popup threat to trap platforms venturing into the

corridor formed by the threats.

Blue has eight platforms, all of which start in the lower left-

hand corner. Each platform has one weapon, with three classes

of weapons being distributed among the platforms. Each of the

eight weapons can be allocated to any of the four targets, giving

4 2 allocations. This space can be exhaus-

tively searched but more complex scenarios quickly become

intractable.

In this scenario, GAP’s router can produce three broad types

of routes that we have named black, white, and gray (see Fig. 3).

1) Black—Flies through the corridor in order to reach the

targets.

2) White—Flies around the threats, attacking the targets

from behind.

3) Gray—Flies inside the perimeter of known threats (not

shown in the figure).

Gray routes expose platforms to unnecessary risk from

threats and, thus, receive low fitness. Ignoring popup threats,

the optimal strategy contains black routes, which are the most

direct routes to the target that still manage to avoid known

threats. However, in the presence of the popup threat and our

risk averse evaluation function, aircraft following the black

route are vulnerable and white routes become optimal although

they are longer than black routes. The evaluator looks only at

known threats, so plans containing white routes receive lower

fitness then those containing black routes. GAP should learn to

anticipate traps and to prefer white trap-avoiding routes even

though white routes have lower fitness than black routes.

In order to search for good routes and allocations, GAP must

be able to compute and compare their fitnesses. Computing this

fitness is dependent on the representation of entities’ states in-

side the game, and our way of computing fitness and repre-

senting this state is described next.

A. Fitness

We evaluate the fitness of an individual in GAP’s population

by running the game and checking the game outcome. Blue’s

goals are to maximize damage done to red targets, while mini-

mizing damage done to its platforms. Shorter simpler routes are

also desirable, so we include a penalty in the fitness function

based on the total distance traveled. This gives the fitness calcu-

lated, as shown in (1)

(1)

is the total distance traveled by Blue’s platforms and is

chosen such that has a 10%–20% effect on the fitness of a

plan. Total damage done is calculated below

is an entity in the game and is the set of all forces belonging

to that side. is the value of , while is the probability

of survival for entity . We use probabilistic health metrics to

evaluate entity damage keeping careful track of time to ensure

that the probabilities are calculated at appropriate times during

game-play.

B. Probabilistic Health Metrics

In many games, entities (platforms, threats, and targets in

our game) possess hit-points that represent their ability to take

damage. Each attack removes a number of hit-points and the

entity is destroyed when the number of hit-points is reduced

to zero. In reality, weapons have a more hit or miss effect,

destroying entities or leaving them functional. A single attack

may be effective, while multiple attacks may have no effect.

Although more realistic, this introduces a large degree of

stochastic error into the game. Evaluating an individual plan

can result in outcomes ranging from total failure to perfect

success, making it difficult to compare two plans based on a

single evaluation. Lacking a good comparison, it is difficult to

search for an optimal strategy. By taking a statistical analysis

of survival we can achieve better results.

Consider the state of each entity at the end of the mission as a

random variable. Comparing the expected values for those vari-

ables allows judging the effectiveness of a plan. These expected

values can then be estimated by executing each plan a number of

times and averaging the results. However, doing multiple runs

to determine a single evaluation increases the computational ex-

pense manyfold.

We use a different approach based on probabilistic health

metrics. Instead of monitoring whether or not an object has

been destroyed, we monitor the probability of its survival. Being

attacked no longer destroys objects and removes them from the

game, it just reduces their probability of survival according to

(2)

(2)

is the entity being considered, a platform, target, or threat.

is the probability of survival of entity after the attack.

is probability of survival of up until the attack and

is the probability of that platform being destroyed by the

attack and is given by (3)

(3)

674 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 4. System architecture.

Fig. 5. How routes are built from an encoding.

Here, is the attacker’s probability of survival up until

the time of the attack and is the effectiveness of the at-

tacker’s weapon as given in the weapon-entity effectiveness ma-

trix. Our method provides the expected values of survival for all

entities in the game within one run of the game, thereby pro-

ducing a representative evaluation of the value of a plan. As

a side effect, we also gain a smoother gradient for the GA to

search as well as consistently reproducible evaluations. We ex-

pect that this approach will work for games where a contin-

uous approximation to discontinuous events (like death) does

not affect game outcomes. Note that this approach does not yet

consider: 1) ensuring that performance lies above a minimum

acceptable threshold and 2) a plan’s tolerance to small pertur-

bations. Incorporating additional constraints is ongoing work,

but for this paper the evaluation function described above pro-

vides an efficient approach to evaluating a plan’s effectiveness

for the GA.

The strike force game uses this approach to compute damage

sustained by entities in the game. The gaming system’s archi-

tecture reflects the flow of action in the game and is described

next.

C. System Architecture

Fig. 4 outlines our system’s architecture. Starting at the left,

Red and Blue, human and GAP, respectively, see the scenario

and have some initialization time to prepare strategy. GAP

applies the CIGAR to the underlying resource allocation and

routing problem and chooses the best plan to play against Red.

The game then begins. During the game, Red can activate

popup threats that GAP can detect upon activation. GAP then

runs the CIGAR producing a new plan of action, and so on.

To play the game, GAP must produce routing data for each

of Blue’s platforms. Fig. 5 shows how routes are built using

the algorithm [31]. builds routes between locations that

platforms wish to visit, generally, the starting airbase and targets

they are attacking. The router finds the cheapest route, where

cost here is a function of length and risk and leads to a preference

for the shortest routes that avoid threats.

We parameterize in order to represent and produce routes

that are not dependent on geographical location and that have

specific characteristics. For example, to avoid traps, GAP must

Fig. 6. Routing with rc = 1:0.

Fig. 7. Routing with rc = 1:3.

be able to specify that it wants to avoid areas of potential danger.

In our game, traps are most effective in areas confined by other

threats. If we artificially inflate threat radii, threats expand to

fill in potential trap corridors and produces routes that go

around these expanded threats. We, thus, introduce a param-

eter, that encodes threats’ effective radii. Larger ’s expand

threats and fill in confined areas, smaller ’s lead to more di-

rect routes. Figs. 6 and 7 show ’s effect on routing, as in-

creases, produces routes that avoid the confined area. In our

scenarios, values of produce gray routes, values with

produce direct black routes, and values of

produce white trap-avoiding routes. is limited cur-

rently to the range and encoded with 8 bits at the end of

our chromosome. We encoded a single for each plan but are

investigating the encoding of ’s for each section of a route.

Note that this representation of routes is location independent.

We can store and reuse values of that have worked in dif-

ferent terrains and different locations to produce more direct or

indirect routes.

D. Encoding

Most of the encoding specifies the asset-to-target allocation

with encoded at the end as detailed earlier. Fig. 8 shows how

we represent the allocation data as an enumeration of assets to

targets. The scenario involves two platforms (P1, P2), each with

a pair of assets, attacking four targets. The left box illustrates

the allocation of asset A1 on platform P1 to target T3, asset A2

to target T1, and so on. Tabulating the asset-to-target allocation

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 675

Fig. 8. Allocation encoding.

gives the table in the center. Letting the position denote the asset

and reducing the target id to binary then produces a binary string

representation for the allocation.

Earlier work has shown how we can use CIGAR to learn to

increase asset allocation performance with experience [9] and

we, therefore, focus more on and routing in this paper.

V. LEARNING TO AVOID TRAPS

We address the problem of learning from experience to avoid

traps using a two-part approach. First, from experience, we learn

where traps are likely to be, then we apply that acquired knowl-

edge and avoid potential traps in the future. Case injection pro-

vides an implementation of these steps: building a case-base of

individuals from past games stores important knowledge. The

injection of those individuals applies the knowledge toward fu-

ture search.

GAP records games played against opponents and runs offline

to determine the optimal way to win the previously played game.

If the game contains a popup trap, genetic search progresses to-

ward the optimal strategy in the presence of the popup and GAP

saves individuals from this search into the case-base, building

a case-base with routes that go around the popup trap—white

routes. When faced with other opponents, GAP then injects in-

dividuals from the case-base, biasing the current search toward

containing this learned anticipatory knowledge.

Specifically, GAP first plays our test scenario, likely picking

a black route and falling into Red’s trap. Afterward GAP replays

the game, while including Red’s trap. At this stage, black routes

receive poor fitness and GAP prefers white trap-avoiding routes.

Saving individuals to the case-base from this search stores a

cross-section of plans containing “trap avoiding” knowledge.

The process produces a case-base of individuals that contain

important knowledge about how we should play, but how can we

use that knowledge in order to play smarter in the future? We use

case injection when playing the game and periodically inject a

number of individuals from the case-base into the population,

biasing our current search toward information from those indi-

viduals. Injection replaces the worst members of the population

with individuals chosen from the case-base through a “proba-

bilistic closest to the best” strategy [9]. These new individuals

bring their “trap avoiding” knowledge into the population, in-

creasing the likelihood of that knowledge being used in the final

solution and, therefore, increasing GAP’s ability to avoid the

trap.

A. Knowledge Acquisition and Application

Imagine playing a game and seeing your opponents do some-

thing you had not considered but that worked out to great effect.

Seeing something new, you are likely to try to learn some of

the dynamics of that move so you can incorporate it into your

own play and become a better player. Ideally, you would have

perfect understanding of when and where this move is effective

and ineffective, and how to best execute it under effective cir-

cumstances. Whether the move is using a combination of chess

pieces in a particular way, bluffing in poker, or doing a reaver

drop in Starcraft, the general idea remains. In order to imitate

this process, we use a two-step approach with case injection.

First, we learn knowledge from human players by saving their

decision making during game play and encoding it for storage in

the case-base. Second, we apply this knowledge by periodically

injecting these stored cases into GAP’s evolving population.

B. Knowledge Acquisition

Knowledge acquisition is a significant problem in rule-based

systems. GAP acquires knowledge from human Blue players

by recording player plans, reverse engineering these plans into

GA chromosomes, and storing these chromosomes as cases in

our case-base. In the strike force game, we can easily encode

the human player’s asset allocation. Finding an that closely

matches the route chosen by the human player may require a

search but note that this reverse-engineering is done offline.

When a person plays the game, we store all human moves (so-

lutions) into the case-base. Injecting appropriate cases from a

particular person’s case-base biases the GA to generate candi-

date solutions that are similar to those from the player. Instead of

interviewing an expert game player, deriving rules that govern

the player’s strategy and style, and then encoding them into a

finite-state machine or a rule-base, our approach simply and au-

tomatically records player interactions, while playing the game,

automatically transforms player solutions into cases, and uses

these cases to bias search toward producing strategies similar

to those used by the player. We believe that our approach is

less expensive in that we do not need a knowledge engineer. In

addition, we gain flexibility and robustness. For example, con-

sider what happens when a system is confronted with an unex-

pected situation. In rule-based systems, default rules that may or

may not be appropriate to the situation control game play. With

CIGARs, if no appropriate cases are available, the “default” GA

finds near-optimal player strategies.

C. Knowledge Application

Consider learning from a human who played a white trap-

avoiding route, but had a nonoptimal allocation. The GA should

keep the white route, but optimize the allocation unless the al-

location itself was based on some external knowledge (a par-

ticular target might seem like a trap), in which case the GA

should maintain that knowledge. Identifying which knowledge

to maintain and which to replace is a difficult task even for

human players. In this research, we thus use GAP to repro-

duce a simple but useful and easily identifiable aspect of human

strategy: avoidance of confined areas.

VI. RESULTS

We designed test scenarios that were nontrivial but tractable.

In each of the test scenarios, we know the optimum solution

and can, thus, evaluate GAP’s performance against this known

optimum. This allows us to evaluate our approach on a well-

understood (known) problem. For learning trap-avoidance in the

676 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 9. Best/worst/average individual fitness as a function of generation—
averaged over 50 runs.

presence of “popup” traps, human experts (the authors) played

optimally and chose white trap-avoiding routes with an optimal

asset allocation.

Plans consist of an allocation of assets to targets and a pa-

rameter to that determines the route taken. For the

scenarios considered, reverse-engineering a human plan into a

chromosome is nontrivial but manageable. The human asset al-

location can be easily reverse-engineered, but we have to search

through values (offline) to find the closest chromosomal rep-

resentation of the human route. We present results showing the

following.

1) GAP can play the strike force asset allocation game

effectively.

2) Replanning can effectively react to popups.

3) GAP can use case injection to learn to avoid traps.

4) GAP can use knowledge acquired from human players.

5) With our representation, acquired knowledge can be gen-

eralized to different scenarios.

6) Fitness biasing can maintain injected information in the

search.

Unless stated otherwise, GAP uses a population size of 25,

two-point crossover with a probability of 0.95, and point muta-

tion with a probability of 0.01. We use elitist selection, where

offspring and parents compete for population slots in the next

generation [32]. Experimentation showed that these parameter

values satisfied our time and quality constraints. Results are av-

erages over 50 runs and are statistically significant at the 0.05

level of significance or below.

A. GAP Plays the Game

We first show that GAP can generate good strategies. GAP

runs 50 times against our test scenario, and we graph the min-

imum, maximum, and average population fitness against the

number of generations in Fig. 9. We designed the test scenario to

have an optimum fitness of 250 and the graph in Fig. 9 shows a

strong approach toward the optimum—in more the 95% of runs

the final solution is within 5% of the optimum. This indicates

that GAP can form effective strategies for playing the game.

Fig. 10. Complex mission.

Fig. 11. Best/worst/average individual fitness as a function of generation—
averaged over 50 runs on the complex mission.

B. Playing the Game—Complex Mission

Testing GAP on a more realistic/complex mission (in Fig. 10)

leads to a similar effect shown in Fig. 11. This mission has a

wider array of defenses, which are often placed directly on top

of targets. Note that the first generation best is now much far-

ther from the optimum compared with Fig. 9, but that the GA

quickly makes progress. Sample routes generated by GAP to

reach targets in the two widely separated clusters are shown and

there are no popups in this mission.

C. Replanning

To analyze GAP’s ability to deal with the dynamic nature of

the game, we look at the effects of replanning. Fig. 12 illus-

trates the effect of replanning by showing the final route fol-

lowed inside a game. A black (direct) route was chosen, and

when the popup occurred, trapping the platforms, GAP redi-

rected the strike force to retreat and attack from the rear. Re-

planning allows GAP to rebuild its routing information, as well

as modify its allocation to compensate for damaged platforms.

The routing algorithm’s cost function found that the lowest

cost route was to retreat and go around the threats rather than

simply fly through the popup. Using a different cost function

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 677

Fig. 12. Final routes used during a mission involving replanning.

may have allowed the mission to keep flying through the popup

even in the new plan. The white route shown in the figure is ex-

plained next.

D. Learned Trap Avoidance

GAP learns to avoid traps through playing games offline.

Specifically, GAP plays (or replays) games that it lost in order

to learn how to avoid losing. In our scenario, during GAP’s of-

fline play, the popup was included as part of the scenario and

cases corresponding to solutions that avoided the popup threat

were stored in the case-base. GAP learns to avoid the popup trap

through injection of these cases obtained from offline play. This

is also shown in Fig. 12, where GAP, having learned from past

experience, prefers the white trap-avoiding route.

GAP’s ability to learn to avoid the trap can also be seen by

looking at the numbers of black and white routes produced with

and without case injection, as shown in Fig. 13. The figures com-

pare the histograms of values produced by GAP with and

without case injection. Case injection leads to a strong shift in

the kinds of ’s produced, biasing the population toward using

white routes. The effect of this bias is a large and statistically

significant increase in the frequency at which strategies con-

taining white routes were produced (2% to 42%). These results

were based on 50 independent runs of the system and show that

case injection does bias the search toward avoiding the trap.

E. Case Injection’s Effect on Fitness

Fig. 14 compares the fitnesses with and without case injec-

tion. Without case injection the search shows a strong approach

toward the optimal black-route plan; with injection the popula-

tion quickly converges toward the white-route plan.

Case injection applies a bias toward white routes, however,

the GA has a tendency to act in opposition to this bias, trying

to search toward ever-shorter routes. GAP’s ability to overcome

the bias through manipulation of injected material depends on

the size of the population and the number of generations run.

We will come back to this later in the section.

Instead of gaining experience by replaying past games offline,

we can also gain experience by acquiring knowledge from good

players. Since we control the game’s interface, it is a simple

Fig. 13. Histogram of routing parameters produced (top) without case
injection and (bottom) with case injection from offline play.

Fig. 14. Effect of case injection on fitness inside the GA over time.

matter to capture all human player decisions during the course of

playing the game. We can then convert these decisions into our

plan encoding and store them in the case-base for later injection.

Using this methodology, we reverse engineer the human route

(shown in black in Fig. 15) into our chromosome encoding. The

closest encoding gives the route shown in white in Fig. 15. The

plans are not identical because the chromosome does not contain

exact routes—it contains the routing parameter . The overall

fitness difference between these two plans is less then 2%.

The values determine the route category produced and

GAP’s ability to generate the human route depends on the values

of found by the GA. Fig. 16 shows the distribution of

678 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 15. Plans produced by the human and GAP.

Fig. 16. Histogram of routing parameters produced (top) without injection and
(bottom) with injection of human cases.

produced by the noninjected GA and CIGAR. Comparing the

figures shows a significant shift in the ’s produced. This shift

corresponds to a large increase in the number of white routes

generated by CIGAR. Without case injection, GAP produced no

(0%) white trap-avoiding routes, but using case injection, 64%

of the routes produced by GAP were white trap-avoiding routes.

This difference is statistically significant and based on 50 dif-

ferent runs of the system with different random seeds. The fig-

ures indicate that case injection does bias the search toward the

human strategy.

Moving to the mission shown in Fig. 17 and repeating the

process produces the histograms shown in Fig. 18. The same ef-

fect on can be observed even though the missions are signif-

Fig. 17. Alternate mission.

Fig. 18. Histogram of routing parameters on the alternate mission (top)
without case injection and (bottom) with case injection.

icantly different in location and in optimal allocation, and even

though we use cases from the previous mission. Case injection

and the general routing representation allows GAP to generalize

and learn to avoid confined areas from play by the human expert.

F. Fitness Biasing

Case injection applies a bias to the GA search, while the

number and frequency of individuals injected determines the

strength of this bias. However, the fitness function also con-

tains a term that biases against producing longer routes. Thus,

we would expect that as the number of evaluations allotted to

the GA increases, the bias against longer routes outweighs the

bias toward white trap-avoiding longer routes and fewer white

routes are produced. The effect is shown in Fig. 19. We use

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 679

Fig. 19. Percentage of white trap-avoiding routes produced over time.

fitness biasing to change this behavior. Fitness biasing effec-

tively changes the fitness landscape of the underlying problem

by changing the fitness of an individual.

One possible approach to changing the fitness landscape is to

change the fitness function. This would either involve rewriting

code, or parameterizing the fitness function and using some al-

gorithm to set parameters to produce desired behavior. Either

way, changing the fitness function is equivalent to changing the

strike force game and is domain dependent. However, we want

to bias fitness in a domain-independent way without changing

the game.

We propose a relatively domain independent way to use infor-

mation from human derived cases to bias fitness. An individual’s

fitness is now the sum of two terms: 1) the fitness returned from

evaluation and 2) a bonus term that is directly proportional to the

number of injected bits in the individual. Let be the biased fit-

ness and let be the fitness returned by evaluation. Then, the

equation below computes the biased fitness.

where is the number of injected bits in this individual, is

the chromosome length, and

if

otherwise

where , and are constants. In our work, we used

, and resulting the simple bias function below

if

otherwise.

Since the change in fitness depends on the genotype (a bit string)

not on the domain dependent phenotype, we do not expect to

have to significantly change this fitness biasing equation for

other domains.

With fitness biasing, there is a significant increase in the

number of white trap-avoiding routes produced, regardless of

the number of evaluations permitted. Fig. 20 compares the

number of white trap-avoiding routes produced by the GA, by

CIGAR, and by CIGAR with fitness biasing. Clearly, fitness

biasing increases the number of white routes.

Fig. 20. (Top) Times trapped: (Middle) Without injection: With injection—
(Bottom) No fitness biasing: With fitness biasing.

Fitness biasing’s long-term behavior is depicted in Fig. 21.

The figure shows that as the number of evaluations increases, the

number of white routes produced with fitness biasing remains

relatively constant and that this number decreases otherwise.

Summarizing, the results indicate that CIGAR can produce

competent players for RTS games. GAP can learn through ex-

perience gained from human Blue players and from playing

against Red opponents. Fitness biasing changes the fitness land-

scape in response to acquired knowledge and leads to better

performance in learning to avoid traps. Finally, our novel route

representation allows GAP to generalize acquired knowledge to

other geographic locations and scenarios.

VII. SUMMARY, CONCLUSION, AND FUTURE WORK

In this paper, we developed and used a strike force planning

RTS game to show that CIGAR can: 1) play the game; 2) learn

from experience to play better; and 3) learn trap avoidance from

a human player’s game play. We cast our RTS game play as

680 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 21. Fitness biasing’s effect over time.

the solving of resource allocation problems and showed that a

parallel GA running on a ten-node cluster can efficiently solve

the problems considered in this paper. Thus, the GA can play

the strike force RTS game by solving the sequence of resource

allocation problems that arise during game play.

Case injection allows GAP to learn from past experience

and leads to better and quicker response to opponent game

play. This past experience can come from previous game play

or from expert human game play. To show that CIGARs can

acquire and use knowledge from human game play, we first de-

fined a structured scenario involving laying and avoiding traps

as a testbed. We then showed how CIGARs use cases saved

from human game play in learning to avoid confined areas

(potential traps). Although the system has no concept of traps

or how to avoid them, we showed that the system acquired and

used trap-avoiding knowledge from automatically generated

cases that represented human moves (decisions) during game

play. Specifically, the system works by automatically recording

human player moves during game play. Next, it automatically

generates cases for storage into a case-base from these recorded

moves. Finally, the system periodically injects relevant cases

into the evolving population of the GA. Since humans recognize

and avoid confined areas that have high potential for traps, cases

generated from human play implicitly contain trap-avoiding

knowledge. When injected, these cases bring trap-avoiding

knowledge into the evolving GA population.

However, the evaluation function does not model the knowl-

edge being acquired from human players: Trap-avoiding knowl-

edge in our scenarios. GAP may, therefore, prematurely lose

these low-fitness injected individuals. To ensure that GAP does

not lose acquired knowledge, we proposed a new method, fit-

ness biasing, for more effectively retaining and using acquired

knowledge. Fitness biasing is a domain independent method for

changing the fitness landscape by changing the value returned

from the evaluation function by a factor that depends on the

amount of acquired knowledge. This amount of acquired knowl-

edge is measured (domain independently) by the number of bits

that were inherited from injected cases in the individual being

evaluated.

We parameterized the search algorithm in order to define a

representation for routes that allows trap-avoidance knowledge

to generalize to new game scenarios and locations. Specifically,

this new representation allows using cases acquired during game

play in one scenario (or map) to bias system play in other sce-

narios. Recent work in adding more parameters to the routing

system has shown that GAP can effectively emulate many at-

tack strategies, from pincer attacks to combined assaults.

We plan to build on these results to further develop the game.

We would like to make the game more interesting, allow mul-

tiple players to play, and to develop the code for distribution. In

the next phase of our research we will be developing a GAP for

the Red side. Coevolving competence has a long history in evo-

lutionary computing approaches to game playing, and we would

like to explore this area for RTS games.

REFERENCES

[1] P. J. Angeline and J. B. Pollack, “Competitive environments evolve
better solutions for complex tasks,,” in Proc. 5th Int. Conf. Genetic Algo-

rithms, 1993, pp. 264–270. [Online]. Available: citeseer.ist.psu.edu/an-
geline93competitive.html.

[2] D. B. Fogel, Blondie24: Playing at the Edge of AI. San Mateo, CA:
Morgan Kauffman, 2001.

[3] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM J. Res. Develop., vol. 3, pp. 210–229, 1959.

[4] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a backgammon
player,” in Proc. 5th Int. Workshop Synthesis Simulation of Living Syst.

(Artificial Life V), C. G. Langton and K. Shimohara, Eds. Cambridge,
MA, 1997, pp. 92–98.

[5] G. Tesauro, “Temporal difference learning and TD-gammon,” Commun.

ACM, vol. 38, no. 3, 1995.
[6] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A self-learning evo-

lutionary chess program,” Proc. IEEE, vol. 92, no. 12, pp. 1947–1954,
Dec. 2004.

[7] J. E. Laird, “Research in human-level RAI using computer games,”
Commun. ACM, vol. 45, no. 1, pp. 32–35, 2002.

[8] J. E. Laird and M. van Lent, The Role of AI in Computer Game Genres,
2000.

[9] S. J. Louis and J. McDonnell, “Learning with case injected genetic al-
gorithms,” IEEE Trans. Evol. Comput., vol. 8, no. 4, pp. 316–328, Aug.
2004.

[10] C. K. Riesbeck and R. C. Schank, Inside Case-Based Rea-

soning.. Cambridge, MA: Lawrence Erlbaum, 1989.
[11] R. C. Schank, Dynamic Memory: A Theory of Reminding and Learning

in Computers and People. Cambridge, U.K.: Cambridge Univ. Press,
1982.

[12] D. B. Leake, Case-Based Reasoning: Experiences, Lessons, and Future

Directions. Menlo Park, CA: AAAI, 1996.
[13] S. J. Louis, G. McGraw, and R. Wyckoff, “Case-based reasoning assisted

explanation of genetic algorithm results,” J. Exper. Theor. Artif. Intell.,
vol. 5, pp. 21–37, 1993.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Reading, MA: Addison-Wesley, 1989.
[15] S. J. Louis, “Evolutionary learning from experience,” J. Eng. Opt., vol.

26, no. 2, pp. 237–247, 2004.
[16] , “Genetic learning for combinational logic design,” J. Soft

Comput., vol. 9, no. 1, pp. 38–43, 2004.
[17] , “Learning from experience: Case injected genetic algorithm

design of combinational logic circuits,” in Proc. 5th Int. Conf. Adapt.

Comput. Design Manuf., 2002, pp. 295–306.
[18] S. J. Louis and J. Johnson, “Solving similar problems using genetic al-

gorithms and case-based memory,” in Proc. 7th Int. Conf. Genetic Algo-

rithms, 1997, pp. 283–290.
[19] B. J. Griggs, G. S. Parnell, and L. J. Lemkuhl, “An air mission plan-

ning algorithm using decision analysis and mixed integer programming,”
Oper. Res., vol. 45, no. 5, pp. 662–676, Sept.–Oct. 1997.

LOUIS AND MILES: PLAYING TO LEARN: CIGARS FOR LEARNING TO PLAY COMPUTER GAMES 681

[20] V. C.-W. Li, G. L. Curry, and E. A. Boyd, “Strike force allocation with
defender suppression,” Ind. Eng. Dept.t, Texas A&M Univ., College Sta-
tion, TX, Tech. Rep., 1997.

[21] K. A. Yost, “A survey and description of usaf conventional munitions
allocation models,” Office of Aerospace Studies, Kirtland AFB, Albu-
querque, NM, Tech. Rep., Feb. 1995.

[22] S. J. Louis, J. McDonnell, and N. Gizzi, “Dynamic strike force asset
allocation using genetic algorithms and case-based reasoning,” in Proc.

6th Conf. Syst., Cybern. Inf., Orlando, FL, 2002, pp. 855–861.
[23] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:

Finding opponents worth beating,” in Proc. 6th Int. Conf. Genetic Algo-

rithms, L. Eshelman, Ed., 1995, pp. 373–380.
[24] G. Kendall and M. Willdig. An investigation of an adaptive poker player.

presented at Proc Australian Joint Conf. Artif. Intell.
[25] Blizzard, Starcraft. (1998). [Online]. Available: www.blizzard.com/star-

craft. www.blizzard.com/starcraft
[26] Cavedog, Total Annihilation. [Online]. Available: www.cavedog

com/totala. www.cavedog.com/totala
[27] R. E. Inc, Homeworld. (1999). [Online]. Available: homeworld.

sierra.com/hw
[28] J. E. Laird and M. van Lent, “Human-level AI’s killer application: Inter-

active computer games,” Invited Talk at the AAAI-2000 Conf., [Online].
Available: http://ai.eecs.umich.edu/people/laird/papers/AAAI-00.pdf,
2000.

[29] G. Tidhar, C. Heinze, and M. C. Selvestrel. (1998) Flying together: Mod-
eling air mission teams. Appl. Intell. [Online], vol (3), pp. 195–218

[30] D. McIlroy and C. Heinze, “Air combat tactics implementation
in the smart whole air mission model,” in Proc. 1st Int. SimTecT

Conf., Melbourne, Australia, 1996, [Online]. Available: citeseer.
nj.nec.com/mcilroy96air.html.

[31] B. Stout, “The basics of A for path planning,” Game Programming

Gems, pp. 254–262, 2000.

[32] L. J. Eshelman, “The CHC adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,”
in Foundations of Genetic Algorithms-1, G. J. E. Rawlins, Ed. San
Mateo, CA: Morgan Kaufmann, 1991, pp. 265–283.

Sushil J. Louis (M’01) received the Ph.D. degree
from Indiana University, Bloomington, in 1993.

He is an Associate Professor and Director of
the Evolutionary Computing Systems Laboratory,
Department of Computer Science and Engineering,
University of Nevada, Reno.

Dr. Louis and is a member of the Associa-
tion for Computing Machinery (ACM). He is an
Associate Editor of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, and he is also
Co-General Chairman of the 2006 IEEE Sym-

posium on Computational Intelligence in Games to be held in Reno, NV,
May 22-24, 2006.

Chris Miles is currently working towards the Ph.D. degree in the Evolutionary
Computing Systems Laboratory, University of Nevada, Reno.

He is working on using evolutionary computing techniques for real-time
strategy games.

	toc
	Playing to Learn: Case-Injected Genetic Algorithms for Learning
	Sushil J. Louis, Member, IEEE, and Chris Miles
	I. I NTRODUCTION

	Fig.€1. Game screenshot.
	II. S TRIKE F ORCE P LANNING
	A. Case-Injected Genetic Algorithms (CIGARs)

	Fig.€2. Solving problems in sequence with CIGAR. Note the multip
	B. CIGAR for RTS Games
	C. Playing the Game
	III. P REVIOUS W ORK
	IV. T HE S CENARIO

	Fig.€3. The scenario.
	A. Fitness
	B. Probabilistic Health Metrics

	Fig.€4. System architecture.
	Fig.€5. How routes are built from an encoding.
	C. System Architecture

	Fig.€6. Routing with $rc = 1.0$.
	Fig.€7. Routing with $rc = 1.3$.
	D. Encoding

	Fig.€8. Allocation encoding.
	V. L EARNING TO A VOID T RAPS
	A. Knowledge Acquisition and Application
	B. Knowledge Acquisition
	C. Knowledge Application

	VI. R ESULTS

	Fig.€9. Best/worst/average individual fitness as a function of g
	A. GAP Plays the Game

	Fig.€10. Complex mission.
	Fig.€11. Best/worst/average individual fitness as a function of
	B. Playing the Game Complex Mission
	C. Replanning

	Fig.€12. Final routes used during a mission involving replanning
	D. Learned Trap Avoidance
	E. Case Injection's Effect on Fitness

	Fig.€13. Histogram of routing parameters produced (top) without
	Fig.€14. Effect of case injection on fitness inside the GA over
	Fig.€15. Plans produced by the human and GAP.
	Fig.€16. Histogram of routing parameters produced (top) without
	Fig.€17. Alternate mission.
	Fig.€18. Histogram of routing parameters on the alternate missio
	F. Fitness Biasing

	Fig.€19. Percentage of white trap-avoiding routes produced over
	Fig.€20. (Top) Times trapped: (Middle) Without injection: With i
	VII. S UMMARY, C ONCLUSION, AND F UTURE W ORK

	Fig.€21. Fitness biasing's effect over time.
	P. J. Angeline and J. B. Pollack, Competitive environments evolv
	D. B. Fogel, Blondie24: Playing at the Edge of AI . San Mateo, C
	A. L. Samuel, Some studies in machine learning using the game of
	J. B. Pollack, A. D. Blair, and M. Land, Coevolution of a backga
	G. Tesauro, Temporal difference learning and TD-gammon, Commun.
	D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, A self-learnin
	J. E. Laird, Research in human-level RAI using computer games, C
	J. E. Laird and M. van Lent, The Role of AI in Computer Game Gen
	S. J. Louis and J. McDonnell, Learning with case injected geneti
	C. K. Riesbeck and R. C. Schank, Inside Case-Based Reasoning. .
	R. C. Schank, Dynamic Memory: A Theory of Reminding and Learning
	D. B. Leake, Case-Based Reasoning: Experiences, Lessons, and Fut
	S. J. Louis, G. McGraw, and R. Wyckoff, Case-based reasoning ass
	D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
	S. J. Louis, Evolutionary learning from experience, J. Eng. Opt.
	S. J. Louis and J. Johnson, Solving similar problems using genet
	B. J. Griggs, G. S. Parnell, and L. J. Lemkuhl, An air mission p
	V. C.-W. Li, G. L. Curry, and E. A. Boyd, Strike force allocatio
	K. A. Yost, A survey and description of usaf conventional muniti
	S. J. Louis, J. McDonnell, and N. Gizzi, Dynamic strike force as
	C. D. Rosin and R. K. Belew, Methods for competitive co-evolutio
	G. Kendall and M. Willdig . An investigation of an adaptive poke
	Blizzard, Starcraft . (1998). [Online] . Available: www.blizzard
	Cavedog, Total Annihilation . [Online] . Available: www.cavedog
	R. E. Inc, Homeworld . (1999). [Online] . Available: homeworld.
	J. E. Laird and M. van Lent, Human-level AI's killer application
	G. Tidhar, C. Heinze, and M. C. Selvestrel . (1998) Flying toget
	D. McIlroy and C. Heinze, Air combat tactics implementation in t
	B. Stout, The basics of ${\rm A}^*$ for path planning, Game Prog
	L. J. Eshelman, The CHC adaptive search algorithm: How to have s

