
Playout Adaptation for Peer-to-peer Streaming
Systems under Churn

Ilias Chatzidrossos and György Dán
School of Electrical Engineering

KTH, Royal Institute of Technology, Stockholm, Sweden
Email: {iliasc, gyuri}@kth.se

Abstract—We address the problem of playout adaptation in
peer-to-peer streaming systems. We propose two algorithms
for playout adaptation: one coordinated and one distributed.
The algorithms dynamically adapt the playback delay of the
peers so that the playout miss ratio is maintained within a
predefined interval. We validate the algorithms and evaluate their
performance through simulations under various churn models.
We show that playout adaptation is essential in peer-to-peer
systems when the system size changes. At the same time, our
results show that distributed adaptation performs well only if the
peers in the overlay have similar playback delays. Thus, some
form of coordination among the peers is necessary for distributed
playout adaptation in peer-to-peer streaming systems.

I. INTRODUCTION

Playout adaptation is widely used in multimedia communi-
cation to provide continuous playback of audio and/or video
information despite network induced impairments, such as
delay jitter and fast varying network throughput. To make
playout adaptation possible, the receiver stores the received
data in a playout buffer before eventually playing it out.
Playout adaptation consists then of two tasks. At the beginning
of a connection the receiver has to decide when to start the
playout and potentially what to start the playout with; later on
it aims to avoid that the playout buffer becomes empty or that
it overflows by, for example, adapting the playback rate [1]
or by rescheduling the playback of the subsequent talksuprts
during silence periods [2].

In peer-to-peer (P2P) streaming systems, the audio or video
data sent by a server can be forwarded by several peers before
it reaches a particular peer. While data forwarding saves server
upload bandwidth and cost, it makes the data delivery process
subject to several factors that are hard to control or to predict.
On one hand, the forwarding algorithms used by the peers
together with the varying upload bandwidths of the peers result
in a complex multi-path data distribution process, in which
out-of-order data delivery is not the exception but the rule [3].
On the other hand, the peer arrivals and departures disturb
the data forwarding and also influence the time needed to
distribute the data through changing the number of peers in
the system [4].

Thus, playout adaptation in P2P systems should not lead
to unnecessary adaptation, despite the highly stochastic nature
of the data distribution process. At the same time, it must
respond promptly to changes in the chunk missing ratio of
the peers, caused by, for example a sudden increase in the

number of peers. To meet these challenges, playout adaptation
in P2P streaming systems can potentially make use of more
information than in the case of point-to-point communication.
To support playout adaptation, the peers in the system might
use information from their neighbors, or could rely on global
information, obtained from a central or from a distributed
entity. Nevertheless, the playout adaptation performed by
individual peers might affect the data delivery to other peers,
thus the problem is inherently complex.

In this paper we address the problem of playout adaptation
in P2P live streaming systems. We propose a centralized and
a distributed algorithm to adapt the playback delay such as
to maintain the system in a desired operating regime. We use
extensive simulations to show that the algorithms are beneficial
in a steady state system, and they provide significant gains
when the number of peers changes.

The rest of the paper is organized as follows. In Section
II we review related work. In Section III we describe the
considered P2P streaming system and formulate the playout
scheduling and adaptation problem and in Section IV we
present the two adaptation algorithms. Section V provides
a simulation-based evaluation of the algorithms. Section VI
concludes the paper.

II. RELATED WORK

Playout scheduling and adaptation has received significant
attention for the case of point-to-point media transmission.
For streaming media, playout schedulers rely on time or
on buffer occupancy information [5]. In time-based playout
schedulers, timing information is embedded in the packets
so that the receiving host can measure absolute or relative
differences in the packet delivery times [6]. In buffer-based
playout schedulers the network’s condition is inferred from
the evolution of the buffer occupancy [7].

Playout adaptation can be performed in various ways,
depending on the type of media. In the case of voice com-
munications, schedulers can leverage the silence periods and
postpone the playout of the next talkspurt to ensure playout
continuity [2]. In the case of video/audio streaming, playout
adaptation can be performed by either frame (packet) dropping
or by altering the frames’ playout duration. In the case of
frame dropping, the receiver drops frames from the playout
buffer to avoid buffer overflow or freezes the playout to avoid
buffer underflow [8], [9]. By altering the frame duration the

receiver can decrease the rate of the playout so that the buffer
builds up and can decrease the playback delay if the playout
buffer occupancy is high [1], [7]. In [1], a window-based
playout smoothing algorithm changes the playout rate at the
receiver based on the current buffer occupancy and on the
traffic during the next time window as predicted by a neural
network. In terms of objectives our work is more similar to [7],
where an adaptive media playout algorithm selects the playout
rate according to the channel conditions in order to achieve
low latency for a given buffer underflow probability.

Contrary to point-to-point communication, playout adapta-
tion for P2P streaming has not received much attention. In [9],
the authors compare delay-preserving and data-preserving
playout schedulers and conclude that a playout scheduler
should keep the peers synchronized to improve the data ex-
change efficiency. They consider however, tree-based systems
where there are only peer arrivals. In [10], a playout adaptation
scheme for tree-based systems is proposed that allows peers
to adjust their playout rate in order to reduce the average
playback delay in the system. Two processes performed locally
at the peers, catching-up and parent-reversal, are defined so
that the propagation delay in the resulting overlay trees is
minimized. Nevertheless, none of these works consider the
need for playout adaptation due to the changes of the overlay
size. To the best of our knowledge, our work is the first that
addresses the playout scheduling and adaptation problem for
P2P streaming and focuses on mesh-based streaming systems,
which constitute the vast majority of deployed P2P streaming
systems nowadays.

III. PROBLEM FORMULATION

We consider a P2P live streaming system consisting of a
streaming server and a set N (t) of peers. Peers arrive to the
system according to a counting process A(t), and depart with
intensity μ(t). We denote the number of peers at time t by
N(t), the arrival time of peer n by T n

A and its departure
time by T n

D. The streaming server and the peers maintain
an overlay, and use the overlay connections to distribute the
video stream generated by the streaming server to the peers.
The video stream consists of a sequence of chunks of data,
e.g., data corresponding to a few frames or a group of frames,
generated at regular time intervals δ, and we denote the time
when chunk c is generated at the streaming server by t c. To
distribute the stream, the peers relay the chunks among each
other according to some forwarding algorithm, e.g., [11], [12].
In order to make relaying possible, each peer stores the chunks
that it has received in a buffer until the chunks are played out.

We denote the time when chunk c is received by peer n by
tnc . The time tnc − tc it takes for chunk c to be delivered to
peer n depends on many factors, such as the number of peers,
the overlay structure, the peers’ upload rates, the fowarding
algorithm, and is in general hard to predict. Consider now
an arbitrary peer n and the sequence of chunk arrival times
tnc , t

n
c+1 Peer n can only play out chunk c after it receives

it, i.e., at some time t ≥ tnc . We refer to the difference t−tc =
Bn(tnc) as the playback delay used for chunk c. We refer to

the share of chunks that a peer cannot play out on time as the
chunk missing ratio. For peer n and a time interval ι = [T1, T2]
we define the chunk missing ratio as

πn(ι) =
|{c : tnc ∈ ι ∩ [T n

A, T
n
D] ∧Bn(tnc) < tnc − tc}|

|{c : tnc ∈ ι ∩ [T n
A, T

n
D]}| (1)

Furthermore, we define the average chunk missing ratio π(ι)
calculated over all peers in the system in the interval ι.

The playback delay Bn(t) has to be chosen upon arrival, but
need not be constant until the departure of the peer. As shown
by recent work [13], the perceived visual quality is rather
insensitive to minor variations of the frame rate. According
to the model of perceived visual quality proposed in [13], the
mean opinion score (MOS) can be expressed as a function of
the frame rate f as

MOS(f) = Qmax
1− e−γ f

fm

1− e−γ
, (2)

where γ and Qmax are video specific constants and fm is the
maximum frame rate.

Consider now that the frame rate is changed to fa = (1+a)f
for some small a ≈ 0. For a ≈ 0 the derivative of the MOS
score can be approximated by

dMOS(fa)

da
≈ Qmaxγ

f

fm

e−γ f
fm

1− e−γ
, (3)

by using that ea|a=0 = 1. Observe that if (2) is high then (3) is
low. Similarly, it has been observed that the perceived quality
is not very sensitive to small variations of the playback rate [1],
[7]. We thus consider that the playback delay Bn(t) of a peer
can be adapted by accelerating or decelerating the playback.
We denote the maximum rate of adaptation by â > 0, and
assume that the effect of adaptation on the perceived visual
quality is negligible at adaptation rates |a| < â, similar to the
assumption in [1], [7].

For peer n to be able to play out all chunks, it has to adapt
its playback delay Bn(tnc) such that tc +Bn(tnc) ≥ tnc for all
chunks c that it should play out in the time interval [T n

A, T
n
D].

If all peers adapt their playback delay this way then π =
0, but this might be difficult to achieve in practice due to
the dynamics of the system. Thus, we consider that a chunk
missing ratio no higher than τ > 0 is acceptable, and can be
compensated for by some form of channel coding. At the same
time if channel coding capable of compensating for a chunk
missing ratio of τ is used, then the actual chunk missing ratio
should not be below ητ , where 1 > η > 0, because then the
bandwidth used for channel coding would be wasted. Thus,
we consider that the goal of playout adaptation is to adjust the
playback delay Bn(t) of the peers such that the chunk missing
ratio stays within the band [ητ, τ], subject to the constraint on
the maximum rate of adaptation â.

We measure the performance of playout adaptation over a
time interval ι = [T1, T2] by the square error of the chunk
missing ratio calculated over the interval ι,

SE(ι) = ([ητ − π(ι)]+)2 + ([π(ι) − τ]+)2 (4)

2

Algorithm 1 Adaptive band control algorithm for CA
1: Input: π(ι) for ι = [Ti −B(Ti), Ti]
2: σ = (1− β) · σ + β · |π − π(ι)|, (β = 1/4)
3: π = (1− α) · π + α · π(ι), (α = 1/8)
4: if π(ι) > τ then
5: if π > τ OR π(ι) > π + κ · σ then
6: if previous action == INCREASE then
7: γ = 2 · γ
8: else
9: γ = max(γ − 1, 1)

10: end if
11: B′ = B + γ · δ
12: previous action← INCREASE
13: end if
14: else if π(ι) < η · τ then
15: if π < η · τ OR π(ι) < π − κ · σ then
16: γ = max(γ − 1, 1)
17: B′ = B − δ
18: previous action← DECREASE
19: end if
20: else
21: γ = max(γ − 1, 1)
22: end if

where [.]+ denotes the positive part. When the SE is averaged
over consecutive intervals ι, then we get the mean square error
(MSE) of the chunk missing ratio. The MSE quantifies the
average deviation of the chunk missing ratio from the target
interval.

IV. PLAYOUT ADAPTATION ALGORITHMS

In the following we present two playout adaptation algo-
rithms. The first one, called Coordinated Adaptation (CA), is a
centralized algorithm and lets all peers have the same playback
delay calculated based on the average chunk missing ratio.
We use this algorithm mainly to illustrate the importance of
playout adaptation in P2P streaming. The second one, called
Distributed Adaptation (DA), allows each peer to adapt its
playback delay independently of the other peers, based on the
chunk missing ratio it experiences.

A. Coordinated Adaptation (CA)
In the case of coordinated adaptation the playback delay

is recalculated periodically by executing the adaptive band
control algorithm shown in Algorithm 1, and is the same for
all peers in the system.

At the ith execution of the algorithm, at time Ti, the input
to the control algorithm is the average chunk missing ratio
π(ι) over the interval ι = [Ti − B(Ti), Ti]. This is used to
calculate the exponentially weighted moving average π of the
chunk missing ratio and its deviation σ (lines 2-3 in Algorithm
1), similar to the round-trip time estimation in TCP [14], using
α = 0.125 and β = 0.25. The algorithm uses π, σ, and the
most recent average chunk missing ratio π(ι), to decide how to
change the playback delay. The playback delay B is increased

if both the average chunk missing ratio and its moving average
exceed the target τ or if the average chunk missing ratio
exceeds the target τ and is higher than the moving average plus
a constant κ > 0 times its deviation (lines 6-12). The second
condition resembles the RTO calculation used in TCP [14].
By tuning κ we can control the trade-off between fast adap-
tation to changing conditions and unnecessary adaptation in a
stationary system. The conditions for decreasing the playback
delay are similar (lines 15-18).

Adaptation is performed in time units equal to the chunk
time δ. The amount of time units γ by which the playback
delay is increased or decreased is determined by the history
of adaptations performed by the algorithm. Initially, γ = 1.
This value is doubled every time the playback delay has
to be increased consecutively, and is decremented by one
otherwise. The adaptation of γ resembles the additive increase
multiplicative decrease used in TCP congestion control [14],
and allows for a fast increase of the playback delay if needed,
but leads to a smaller rate of decrease.

If the playback delay is changed, the peers are informed
about the new playback delay B ′, and accelerate or decelerate
their playout rate to adapt their playback delay to B ′. The time
needed to perform the adaptation is |B ′−B|/â. The next time
the control algorithm is executed is time B ′ after the adaptation
has finished, that is, at time Ti+1 = Ti + |B′ − B|/â + B′.
The arriving peers set their playback delay to B n(T n

A) = B′

upon arrival and then adapt their playback delay as dictated
by the CA algorithm.

B. Distributed Adaptation (DA)

In the case of distributed adaptation the playback delay is
recalculated periodically by every peer through executing the
band control algorithm shown in Algorithm 2. The input to the
control algorithm is the length sj of the last eight loss intervals
(i.e., the number of chunks received between missed chunks),
which is used to estimate the average chunk missing ratio
using the Average Loss Intervals method as in TFRC [15].

The algorithm uses the estimated chunk missing ratio to
decide how to change the playback delay. The playback delay
is increased if the average chunk missing ratio exceeds the
target τ , is decreased if the average chunk missing ratio is
lower than ητ , and is left unchanged otherwise. The adaptation
step size γ is adjusted the same way as in the case of
Algorithm 1, i.e., it is doubled upon consecutive increases of
the playback delay, and is decremented by one unit otherwise.
Once the new playback delay B ′ is calculated, the peer
accelerates or decelerates its playout rate to adapt its playback
delay to the new value. The time needed for adaptation is
|B′ − B|/â. The next time the control algorithm is executed
is time B′ after the adaptation has finished, similar to CA.

We consider three policies that the peers can use to choose
their initial playback delay Bn(T n

A) upon arrival to the system.
• Global: The initial playback delay is the average play-

back delay of the peers in the overlay, i.e., B n(T n
A) =

1
|N (Tn

A)|
∑

j∈N (Tn
A) B

j(T n
A)

3

Algorithm 2 Band control algorithm for DA
1: w ← (1, 1, 1, 1, 0.8, 0.6, 0.4, 0.2)

2: ŝ←
∑8

j=1 wj ·sj
∑8

j=1 wj

3: π = 1
ŝ+1

4: if π > τ then
5: if previous action == INCREASE then
6: γ = 2 · γ
7: else
8: γ = max(γ − 1, 1)
9: end if

10: B′ = B + γ · δ
11: previous action← INCREASE
12: else if π < η · τ then
13: γ = max(γ − 1, 1)
14: B′ = B − δ
15: previous action← DECREASE
16: else
17: γ = max(γ − 1, 1)
18: end if

• Local: The initial playback delay is the average play-
back delay of the neighboring peers, i.e., B n(T n

A) =
1

|Dn(Tn
A)|

∑
j∈Dn(Tn

A) B
j(T n

A), where Dn(T
n
A) is the set

of neighbors of peer n.
• Fixed: The initial playback delay is Bn(T n

A) = B0 > 0.
Of these three policies, the Local policy is easiest to imple-

ment in a distributed way: An arriving peer can schedule for
playback the chunk that its average neighbor would play out.
The other two policies would require a globally synchronized
clock, and therefore we use them mainly as a basis for
comparison.

V. PERFORMANCE EVALUATION

In the following we use simulations to evaluate the proposed
algorithms and to get an insight into their operation.

A. Simulation Methodology
We implemented the playback adaptation algorithms in the

publicly available packet-level event-driven simulator P2PTV-
SIM [16]. We implemented an overlay management algorithm
that maintains an overlay graph in which every peer has
between 0.5d and d neighbors: arriving peers try to establish d
connections to randomly selected peers, potentially by letting
some peers drop one of their already established connections.
If the number of neighbors of a peer drops below 0.5d then it
tries to connect to new neighbors. In our simulations, we use
d = 20.

The video stream has a rate of 1 Mbps and is segmented
into equally sized chunks of 100 kbits, having thus δ = 0.1 s.
Chunk forwarding between the peers is based on the pull-
token algorithm from [12]. The download bandwidth of the
peers is unlimited, while for the upload bandwidth, we use the
distribution shown in Table I. In order to capture the effect of
network delays, peers are dispersed over seven geographical

Class Upload (Mbps) Peers (%)
1 5 10
2 1.5 10
3 1 40
4 0.55 40

TABLE I
PEER BANDWIDTH CLASSES

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

Chunk missing ratio (π)

CA − π = 0.0065
DA − Global − π = 0.0046
DA − Local − π = 0.0045
DA − Fixed − π = 0.0179
B = 12.5 − π = 0.0072

Fig. 1. Normalized histogram of the chunk missing ratio for the CA algorithm
and the DA algorithm with different startup policies. The target miss ratio is
τ = 0.01 and η = 0.5. Overlay of N = 500 peers.

regions according to the network model presented in [17] with
an average latency between a pair of peers of 96 ms. For
the adaptation algorithms CA and DA, we use â = 0.05 and
a value of κ = 2, which we found to yield a good trade-
off between fast response to the chunk missing ratio and
unnecessary adaptation of the playback delay.

We consider two models of peer churn. In the Markovian
churn model the peer arrival process is a Poisson process with
arrival intensity λ(t), and the peer holding time distribution is
exponential with mean 1/μ. In the Flash-crowd churn model
Nf peers arrive according to a homogeneous Poisson process
with intensity λf over a time interval [tf , tf + Nf/λf], and
the peers remain in the overlay until the end of the simulation.

B. Playout Adaptation in Steady State
The first scenario we consider is a system in steady state,

generated using the Markovian churn model. The peer arrival
rate is λ(t) = 1.66/s and the mean holding time is 1/μ =
300 s. The average number of peers is thus N = 500.

Fig. 1 shows the normalized histogram of the chunk missing
ratio of the peers after a warm-up period of 2000 seconds
in a simulation of 6000 seconds, for the CA, DA algorithms
and without playout adaptation (NA). For NA, we used a fixed
playback delay of B = 12.5 s, which is the average playback
delay obtained using the CA algorithm and τ = 0.01, η =
0.5. Fig. 2 shows the cumulative distribution function of the
playback delay for the same time interval.

The results show that even in the case of a system in
steady state, adaptation decreases the occurence of high chunk
missing ratios (the tail of the histogram compared to the
system without adaptation). Comparing the results for the CA
and for the DA algorithm with different policies we observe
that the Fixed policy not only leads to high chunk missing

4

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Playback delay (B)

C
D

F

CA − B = 12.5
DA − Global − B = 14.5
DA − Local − B = 14.8
DA − Fixed − B = 16.2

Fig. 2. CDF of the playback delays for the CA and the DA algorithms
with different startup policies. The average playback delays are shown in the
legend. The target miss ratio is τ = 0.01 and η = 0.5. Overlay of N = 500
peers.

0 2000 4000 6000 8000 10000 12000
0

0.005

0.01

0.015

0.02

Time (sec)

Sq
ua

re
 E

rr
or

 (S
E)

CA − MSE = 0.0014
DA − MSE = 0.0051
NA − B = 12.5 − MSE = 0.0048

Fig. 3. SE of the chunk missing ratio. The target chunk miss ratio is τ = 0.01
and η = 0.5 which means that the SE is 0 when π(t) ∈ [0.005, 0.01]. The
MSE is also shown in the legend.

ratios (Fig. 1) but it also leads to high playback delays (Fig. 2).
The Global and the Local policies, however, lead to lower
chunk missing ratios than the CA algorithm at the price of
higher playback delays. The reason is that using DA it is not
the average chunk missing ratio that is maintained in the target
band, but it is each invididual peer’s chunk missing ratio.

C. Adaptation in a Non-stationary System

The second scenario we consider is a non-stationary system,
generated using the Markovian churn model in the following
way. The total simulation time is 12000 s, and the peer arrival
intensity is λ(t) = 1.66/s for the time intervals [0, 3000) and
[7000, 12000], and it is λ(t) = 16.66/s for the time interval
[3000, 7000). The average peer holding time is 1/μ = 300 s.
Thus, there is a transition from an overlay of N = 500 peers
to an overlay of N = 5000 peers, and then back to an overlay
of N = 500 peers.

Fig. 3 shows the square error (SE) calculated over consec-
utive intervals of 50 seconds for the CA and DA algorithms
and without adaptation (NA). The figure also shows the mean
square error (MSE) for the entire simulation. The SE for the
CA algorithm is very small, which means that the algorithm
manages to keep the chunk missing ratio within the interval

0 2000 4000 6000 8000 10000 12000
26

28

30

32

34

36

38

40

Time (sec)

PS
N

R
 (d

b)

CA
DA
NA − B=12.5

Fig. 4. PSNR of the received video over time for the CA, DA algorithms
and for the an overlay without playout adaptation.

[ητ, τ] with small deviations, despite the increase in the
overlay size by a factor of ten. Without adaptation the chunk
missing ratio increases significantly during the time period
with high arrival intensity. We also notice an increase in the
SE for the DA and NA systems right after the the switch
from the high arrival intensity to the low arrival intensity
period (t = 7000 s). For the system without adaptation the
degradation is expected, since it takes some time for the peers
to acquire new neighbors and maintain an adequate download
rate.

For the system employing the DA algorithm, the explanation
for the performance degradation lies in the algorithm itself. If
peers do not change their playback delay in a coordinated
manner, but based on local information, clusters of peers with
similar playback delays emerge. When the departure rate in
the overlay is higher than the arrival rate, peers that are losing
their neighbors try to find new ones but the new neighbors may
have different playback delays, i.e., only partially overlapping
buffers, decreasing thus the efficiency of the data exchange.
This is the reason why the same degradation is not observed
when using the CA algorithm that keeps peers synchronized. It
is therefore necessary to use some form of coordination among
peers when performing playout adaptation in a distributed
manner in order to maintain similar playback delays for all
the peers in the overlay.

Next, we show the gain of playout adaptation in terms of the
video distortion. We quantify the video distortion through the
Peak Signal-to-Noise Ratio (PSNR) of the received video. The
PSNR is defined as PSNR = 10 ·log10(2552/D), where D is
the total (source and channel) distortion. In order to calculate
the distortion of the video as a function of the chunk missing
ratio, we use the loss-distortion model presented in [18].

Fig. 4 shows the average PSNR over time, calculated for
the Foreman sequence for the non-stationary system. During
the initial low arrival intensity period the performance with
and without adaptation is similar. When the overlay expands,
the PSNR degrades significantly if no adaptation is used,
the difference varying between 2 and 4 dB, compared to
the overlays using adaptation. The CA algorithm manages to
maintain the PSNR almost constant for the whole simulation

5

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−3

Time (sec)

Sq
ua

re
 E

rr
or

 (S
E)

λf=20

λf=40

λf=60

Fig. 5. SE of the chunk missing ratio for different arrival intensities during
the flash crowd. The target chunk miss ratio is τ = 0.01 and η = 0.5.

time and the transitions from the small to large overlay and
back are indistinguishable. The DA algorithm performs well
too but, as also shown earlier, its PSNR degrades sharply (up
to 6 dB) after the transition from the high arrival intensity
to the low arrival intensity period starts. Furthermore, the
PSNR of the system employing the DA algorithm exhibits
large variations after t = 7000 s, which can have a significant
impact on the perceived video quality.

D. Adaptation under Flash Crowd Scenarios
Finally, we evaluate the adaptation algorithms under a flash

crowd scenario. We study the transition from an overlay of
N1 = 500 peers to an overlay of N2 = 5000 peers at different
peer arrival intensities. We simulate the flash-crowd scenario
by superposing two processes. The first process is generated
using the Markovian churn model, with arrival rate λ(t) =
1.66/s for the whole duration of the simulation. The peer
holding times are exponentially distributed with mean 1/μ =
300 seconds. The second process is generated using the Flash-
crowd churn model with tf = 3000 s and arrival rates λf =
20/s, λf = 40/s and λf = 60/s to generate a small, moderate
and severe flash crowd, respectively. The total simulation time
is 6000 seconds.

Fig. 5 shows the square error (SE) of the chunk missing
ratio calculated over consecutive intervals of 50 seconds. For
the period before the flash crowd the SE lies in the same
region as in Fig. 3. During the flash crowd though, there is a
sharp increase in the SE, whose peak is higher with higher λf .
The important thing to observe here is that the CA algorithm
manages to converge to the desired band within a short period
after the flash crowd. The time it takes to return the chunk
missing ratio to the desired band does not seem to depend
on λf , which indicates that the CA algorithm adapts well to
different levels of impairment by appropriately increasing the
adaptation step size.

VI. CONCLUSION

In this work we addressed the problem of playout adap-
tation in P2P streaming systems. We defined two algorithms
that perform playout adaptation. Using coordinated adaptation
peers adapt their playback delay synchronously, maintaining

fully overlapping playout buffers. Using distributed adaptation
each peer adapts its playback delay on its own, without any
coordination with neighbors. We used extensive simulations to
validate the algorithms and to evaluate their performance under
various churn models. We showed that playout adaptation
does not decrease the system’s performance in steady state
and that it is essential when the overlay size is changing.
Our results indicate that peers can perform playout adaptation
based solely on information about the playout position of their
neighbors, which can be easily obtained locally. Nevertheless,
our results show that distributed playout adaptation works well
only if peers maintain similar playback delays across the whole
overlay, thus some form of coordination is necessary.

REFERENCES

[1] M.C. Yuang, Po L. Tien, and Shih T. Liang. Intelligent video smoother
for multimedia communications. IEEE Journal on Selected Areas in
Communications, 15(2):136 –146, February 1997.

[2] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne. Adaptive playout
mechanisms for packetized audio applications in wide-area networks. In
IEEE INFOCOM, pages 680 –688, June 1994.

[3] I. Chatzidrossos, Gy. Dán, and V. Fodor. Delay and playout probability
trade-off in mesh-based peer-to-peer streaming with delayed buffer map
updates. P2P Networking and Applications, 3:208–221, March 2010.

[4] Gy. Dán and V. Fodor. Delay asymptotics and scalability for peer-to-peer
live streaming. IEEE Transactions on Parallel and Distributed Systems,
20(10):1499–1511, October 2009.

[5] N. Laoutaris and I. Stavrakakis. Intrastream synchronization for con-
tinuous media streams: a survey of playout schedulers. IEEE Network,
16(3):30 –40, May/June 2002.

[6] Werner Geyer, Christoph Bernhardt, and Ernst Biersack. A synchroniza-
tion scheme for stored multimedia streams. In Interactive Distributed
Multimedia Systems and Services (IDMS), pages 277–295. Springer
Verlag, 1996.

[7] M. Kalman, E. Steinbach, and B. Girod. Adaptive media playout for low-
delay video streaming over error-prone channels. IEEE Transactions on
Circuits and Systems for Video Technology, 14(6):841–851, June 2004.

[8] E. Biersack, W. Geyer, and C. Bernhardt. Intra- and inter-stream
synchronisation for stored multimedia streams. In Proc. of the 3rd IEEE
International Conference on Multimedia Computing and Systems, pages
372 –381, June 1996.

[9] C. Vassilakis, N. Laoutaris, and I. Stavrakakis. On the impact of playout
scheduling on the performance of peer-to-peer live streaming. Computer
Networks, 53:456–469, March 2009.

[10] H. Jiang and S. Jin. NSYNC: Network synchronization for peer-to-peer
streaming overlay construction. In Proc. of NOSSDAV, pages 1–6, 2006.

[11] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg. Epidemic
live streaming: Optimal performance trade-offs. In Proc. of ACM
SIGMETRICS, June 2008.

[12] A. Carta, M. Mellia, M. Meo, and S. Traverso. Efficient uplink band-
width utilization in P2P-TV streaming systems. In Proc. of IEEE Global
Telecommunications Conference (GLOBECOM), pages 1–6, December
2010.

[13] Y.F. Ou, T. Liu, Z. Zhao, Z. Ma, and Y. Wang. Modeling the impact
of frame rate on perceptual quality of video. In Proc. of the 15th IEEE
International Conference on Image Processing (ICIP), pages 689–692,
2008.

[14] Computing TCP’s retransmission timer - IETF RFC 2988, November
2000.

[15] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based
congestion control for unicast applications. In Proc. of ACM SIGCOMM,
pages 43–56, August 2000.

[16] P2PTV-SIM, http://napa-wine.eu/cgi-bin/twiki/view/public/p2ptvsim.
[17] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S. Traverso.

QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoffs.
In Proc. of the 10th IEEE International Conference on Peer-to-Peer
Computing (P2P), pages 1 –10, August 2010.

[18] V. Vukadinovic and Gy. Dán. Multicast scheduling for scalable video
streaming in wireless networks. In ACM Multimedia Systems (MMSys),
February 2010.

6

