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PLEIJEL’S NODAL DOMAIN THEOREM FOR

NEUMANN AND ROBIN EIGENFUNCTIONS

by Corentin LÉNA (*)

Abstract. — We show that equality in Courant’s nodal domain theorem can
only be reached for a finite number of eigenvalues of the Neumann Laplacian, in
an open, bounded, and connected subset of Rn with a C1,1 boundary, when n > 2.
This result is analogous to the theorem proved by Pleijel in 1956 for the Dirichlet
Laplacian. We also show that the argument and the result extend to a class of
Robin boundary conditions.

Résumé. — Nous montrons que le cas d’égalité dans le théorème de Courant
n’est réalisé que pour un nombre fini de valeurs propres du laplacien de Neumann,
dans un ouvert borné connexe de R

n à bord C1,1, lorsque n > 2. Ce résultat est
analogue au théorème démontré par Pleijel en 1956 pour le laplacien de Dirichlet.
Nous montrons de plus que la méthode de démonstration et le résultat peuvent
être étendus à une classe de conditions au bord de Robin.

1. Introduction

1.1. Problem and results

The main objective of this paper is to extend Pleijel’s nodal domain theo-
rem to eigenfunctions of the Laplacian which satisfy a Neumann boundary
condition. Let Ω ⊂ R

n, with n > 2, be a connected open set, which we
assume to be bounded, with a sufficiently regular boundary. For technical
reasons (appearing in Section 3), we ask for ∂Ω to be C1,1. In the rest
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of the paper, we denote by −∆N
Ω the self-adjoint realization of the (non-

negative) Laplacian in Ω, with the Neumann boundary condition, and by
(µk(Ω))k>1 its eigenvalues, arranged in non-decreasing order and counted
with multiplicities. Similarly, in the case of the Dirichlet boundary condi-
tion, we denote the self-adjoint realization of the Laplacian by −∆D

Ω and
its eigenvalues by (λk(Ω))k>1.

For any function f continuous in Ω, we call nodal set of f the closed set

N (f) := {x ∈ Ω ; f(x) = 0}

and nodal domains the connected components of Ω \ N (f). We denote by
ν(f) the cardinal of the set of nodal domains. We are interested in estimat-
ing ν(u) from above when u is an eigenfunction of −∆N

Ω . A fundamental
result of this type was first obtained by R. Courant in 1923 (see [8] or [9,
Section VI.6]).

Theorem 1.1. — If k is a positive integer and u an eigenfunction asso-

ciated with λk(Ω) or µk(Ω), ν(u) 6 k.

Å. Pleijel showed in 1956 that, in the Dirichlet case, equality in the previ-
ous theorem can only occur for a finite number of eigenvalues. He originally
proved it for domains in R

2 [18]. The result was extended by J. Peetre in
1957 to some domains on two-dimensional Riemannian manifolds [17], and
a general version, valid for n-dimensional Riemannian manifolds with or
without boundary, was obtained by P. Bérard and D. Meyer in 1982 [2,
Section II.7]. In those three works, the authors actually proved a stronger
result, in the form of an asymptotic upper bound. To state it, let us denote
by νD

k (Ω) the largest possible value of ν(u), when u is an eigenvalue of
−∆D

Ω associated with λk(Ω). Let us also define

γ(n) :=
2n−2n2Γ

(
n
2

)2

jn
n
2 −1,1

,

where jn
2 −1,1 is the smallest positive zero of the Bessel function of the first

kind Jn
2 −1. We recall the inequality γ(n) < 1 when n > 2, proved in [2,

Section II.9] (see also [15, Section 5] for more precise results).

Theorem 1.2. — If Ω ⊂ R
n is an open, bounded, and connected set

which is Jordan measurable,

lim sup
k→+∞

νD
k (Ω)
k

6 γ(n).

Theorem 1.2 is actually proved in [2] for closed Riemannian manifolds,
or for Riemannian manifolds with smooth boundary in the Dirichlet case.
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However, the results in [2] do not include the Neumann case. Let us note
that Jordan measurability is imposed in Theorem 1.2 so that Weyl’s law
holds for the sequence (λk(Ω))k>1 (see [21, Section XIII.15]). The require-
ment that ∂Ω be C1,1 is of course stronger.

The constant γ(n) has the following interpretation:

γ(n) =
(2π)n

λ1(Bn)
n
2 ωn

,

where ωn is the volume of the unit ball in R
n, and B

n is a ball of volume 1 in
R

n. It was proved in [15, Section 5] that the sequence (γ(n))n>2 is strictly
decreasing and converges to 0 exponentially fast.

For n > 2, γ(n) < 1 and Theorem 1.2 then implies that there exists a fi-
nite smallest rank kD(Ω) > 1 such that, for all k > kD(Ω), an eigenfunction
of −∆D

Ω associated with λk(Ω) has strictly less than k nodal domains. Two
recent papers [1, 3] give upper bounds of kD(Ω) in term of the geometry
of Ω.

As in the Dirichlet case, let us denote by νN
k (Ω) the largest possible

value for ν(u) when u is an eigenfunction of −∆N
Ω associated with µk(Ω).

The question of finding an asymptotic upper bound of νN
k (Ω) was already

raised by Pleijel, who showed that, for a square, the same upper bound
as in the Dirichlet case holds true. Pleijel conjectured that this would be
the case for any two-dimensional domain [18, Section 7]. The most general
result known so far involving νN

k (Ω) has been obtained by I. Polterovich in
2009 [19]. His proof uses estimates by J. A. Toth and S. Zelditch [24] of the
number of nodal lines touching the boundary, and is therefore restricted to
two-dimensional domains with quite regular boundaries.

Theorem 1.3. — If Ω ⊂ R
2 is an open, bounded, and connected set

with a piecewise-analytic boundary,

lim sup
k→+∞

νN
k (Ω)
k

6 γ(2) =
4
j2

0,1
.

In this paper, we prove the following result, valid in any dimension.

Theorem 1.4. — If Ω ⊂ R
n is an open, bounded, and connected set

with a C1,1 boundary,

lim sup
k→+∞

νN
k (Ω)
k

6 γ(n).

Furthermore, our proof can be quite easily extended to some Robin-type
boundary conditions. Let us be more specific: we assume that Ω satisfies
the same hypotheses as above and that h is a Lipschitz function in Ω such

TOME 69 (2019), FASCICULE 1



286 Corentin LÉNA

that h > 0 on ∂Ω. By analogy with the Dirichlet and Neumann cases, we
denote by −∆R,h

Ω the self-adjoint realization of the Laplacian in Ω with the
Robin boundary condition

∂u

∂n
+ hu = 0 on ∂Ω.

Here ∂u
∂n

is the exterior normal derivative. We denote by (µk(Ω, h))k>1 the
eigenvalues of −∆R,h

Ω and by νR
k (Ω, h) the maximal number of nodal do-

mains for an eigenfunction of −∆R,h
Ω associated with µk(Ω, h). Let us note

that in dimension 2, this eigenvalue problem gives the natural frequencies
of a membrane elastically held at its boundary [25, Section 9.5]. The con-
dition h > 0 implies that each point x on the boundary is subject either
to no force (if h(x) = 0) or to a binding elastic force pulling it back to its
equilibrium position (if h(x) > 0). We prove the following result.

Theorem 1.5. — If Ω ⊂ R
n is an open, bounded, and connected set

with a C1,1 boundary, and if h is a Lipschitz function in Ω with h > 0
on ∂Ω,

lim sup
k→+∞

νR
k (Ω, h)
k

6 γ(n).

Theorem 1.4 is of course a special case of Theorem 1.5, corresponding to
h = 0. However, in order to make the argument more readable, we prefer
to treat first the Neumann case, and then outline the few changes to be
made in order to prove Theorem 1.5.

Let us note that the same constant γ(n) appears in the Dirichlet, Neu-
mann, and Robin cases. It is known from the works of J. Bourgain [5] and
of S. Steinerberger [23] that this constant is not optimal when n = 2 in
the Dirichlet case. This was generalized to n-dimensional Riemannian man-
ifolds by H. Donnelly [10]. See [13] for an extensive discussion, in connection
with minimal partition problems. I. Polterovich [19] conjectures that for a
sufficiently regular open set Ω ⊂ R

2,

lim sup
k→+∞

νD
k (Ω)
k

6
2
π

and

lim sup
k→+∞

νN
k (Ω)
k

6
2
π
.

The constant 2
π

is the smallest possible, as can be seen by considering rect-
angles [4, 13, 19]. Let us finally point out that the analogue to Theorems 1.2,
1.4, and 1.5, with the same constant γ(n), holds for the Schrödinger opera-
tor −∆+V in R

n, for some classes of potentials V . This was shown recently
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by P. Charron [6] for the harmonic oscillator and P. Charron, B. Helffer, and
T. Hoffmann-Ostenhof for two classes of radially symmetric potentials [7].

1.2. Overview of the paper

Let us now introduce the main ideas of the paper. The proof of The-
orem 1.4 is given in Section 2, and follows quite closely Pleijel’s original
argument [18]. This consists in obtaining a control of νD

k (Ω) in terms of
λk(Ω) and |Ω|, the volume of Ω, by applying the Faber–Krahn inequality
to each nodal domain of an eigenfunction u, associated with λk(Ω). The
key fact at this point is the equality λk(Ω) = λ1(D) where D is a nodal
domain. The upper bound in Theorem 1.2 then follows from Weyl’s law.
In the Neumann case, the same method cannot be applied to the nodal
domains touching the boundary of Ω, since the eigenfunctions do not sat-
isfy a Dirichlet boundary condition there. The proof in [19] relies on the
fact that the number of nodal domains touching the boundary is controlled
by

√
µk(Ω), under the hypotheses of Theorem 1.3. As far as the author

knows, a similar estimate is not available in dimension higher than 2, nor
for a less regular boundary. To overcome this obstacle, we classify the nodal
domains of the eigenfunction u into two types: those for which the L2-norm
of u is mostly concentrated inside Ω (bulk domains), and those for which a
significant proportion of the L2-norm is concentrated near ∂Ω (boundary

domains). To control the number of boundary domains, we reflect them
through ∂Ω before applying the Faber–Krahn inequality. To make this ap-
proach precise, we use some rather standard partition-of-unity arguments.
Let us point out that P. Bérard and B. Helffer propose a closely related
strategy for proving a version of Pleijel’s theorem, on a manifold with
boundary M , in the Neumann case. They suggest to consider the double
manifold M̂ , obtained by gluing two copies of M along the boundary ∂M .
They obtain in this way a manifold which is symmetric with respect to
∂M . They can then identify the Neumann eigenfunctions on M with the
symmetric eigenfunctions of the Laplacian on M̂ . The results in [2] would
then give

lim
k→+∞

νN
k (M)
k

6 2γ(n),

with 2γ(n) < 1 for n > 3 (see [15, Section 5]). However, for this geometric
approach to work, one has to require that the metric on M̂ is sufficiently
regular, so that the asymptotic isoperimetric inequality of [2, Section II.15]
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holds, and therefore also the asymptotic Faber–Krahn inequality of [2, Sec-
tion II.16]. This would impose strong constraints on ∂M , for instance that
∂M is totally geodesic, which are unnecessary in the approach of the present
paper.

For the sake of completeness, we give in Section 3 the proof of two tech-
nical results, which are used in Section 2. The first is a regularity result up
to the boundary for Neumann eigenfunctions.

Proposition 1.6. — Let Ω ⊂ R
n be an open, bounded, and con-

nected set with a C1,1 boundary. An eigenfunction u of −∆N
Ω belongs to

C1,1−
(
Ω

)
:=

⋂
α∈(0,1) C

1,α
(
Ω

)
. In particular, u ∈ C1

(
Ω

)
.

The proof follows a remark from [16, Section 1.2.4] and uses the regular-
ity results for elliptic boundary value problems contained in the classical
monograph [11].

The second result, used repeatedly in Section 2, is Green’s formula for
Neumann eigenfunctions.

Proposition 1.7. — Let Ω ⊂ R
n be an open, bounded, and connected

set with a C1,1 boundary. If u is an eigenfunction of −∆N
Ω associated with

the eigenvalue µ, and if D is a nodal domain of u, then

(1.1)
∫

D

|∇u|2 dx = µ

∫

D

u2 dx.

In dimension 2, the nodal set of u is the union of a finite number of C1

curves, possibly crossing or hitting the boundary of Ω at a finite number of
points, where they form equal angles (see for instance [14, Section 2]). In
particular, this implies that D is a Lipschitz domain (even piecewise-C1).
We can therefore apply Green’s formula for bounded Lipschitz domains (see
for instance [11, Theorem 1.5.3.1]), and obtain Equation (1.1) directly. In
higher dimension, there exists as far as the author knows no proof that the
nodal domains are Lipschitz (see however [12], where it is shown that the
critical set has locally finite (n−2)-dimensional Hausdorff measure). A way
around this difficulty is indicated in [2, Appendix D]. The authors approx-
imate a nodal domain by super-level sets of the eigenfunction for regular
values. The boundary of these sets is regular enough to apply Green’s for-
mula, and Sard’s theorem provides a sequence of regular values converging
to 0. We give a proof of Proposition 1.7 along similar lines. We also use
this method in Section 2.5 to carry out the reflection argument.

In Section 4, we indicate the changes to be made in order to treat Robin
boundary conditions. We give a precise formulation of the eigenvalue prob-
lem and prove Theorem 1.5.
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2. Proof of the main theorem

2.1. Preliminaries

For any δ > 0, we write

∂Ωδ := {x ∈ R
n ; dist(x, ∂Ω) < δ}.

and
∂Ω+

δ := {x ∈ Ω ; dist(x, ∂Ω) < δ}.

Let us first note that, since the boundary of Ω is C1,1, we can locally
straighten it. More explicitly, there exists a finite covering (Ui)16i6N of
∂Ω by coordinate charts. By coordinate chart, we mean that, for i ∈

{1, . . . , N}, Ui is an open set in R
n, and there exists an open ball B(0, ri)

in R
n and a C1,1 diffeomorphism ψi : B(0, ri) → Ui, such that ψi and ψ−1

i

are bounded, with first order derivatives bounded and Lipschitz, and such
that

Ui ∩ Ω = ψi

(
B+(0, ri)

)

where

B+(0, ri) := {y = (y′, yn) ∈ R
n−1 × R, ; y ∈ B(0, ri) and yn > 0}.

There exists an associated family (χi)16i6N of C1,1 non-negative functions
and a positive constant δ1 such that

(1) supp(χi) is compactly included in Ui for i ∈ {1, . . . , N};
(2)

∑N
i=1 χ

2
i 6 1 in R

n and
∑N

i=1 χ
2
i ≡ 1 in ∂Ωδ1 .

Let us note that N , δ1, and the family (χi)16i6N depend only on Ω, and are
fixed in the rest of this section. As a consequence of this local straightening
of the boundary, we have the existence of partitions of unity adapted to
our problem.

Lemma 2.1. — There exist two positive constants 0 < a < A such that,

for all 0 < δ < δ1/A, there exists two non-negative functions ϕδ
0 and ϕδ

1,

C1,1 in Ω, satisfying

(i) (ϕδ
0)2 + (ϕδ

1)2 ≡ 1 on Ω;

(ii) supp(ϕδ
0) ⊂ Ω \ ∂Ω+

aδ and supp(ϕδ
1) ⊂ ∂Ω+

Aδ;

(iii)
∣∣∇ϕδ

i (x)
∣∣ 6 C

δ
for x ∈ Ω and i ∈ {0, 1}, with C a constant indepen-

dent of δ.

Proof. — This construction is rather standard, and we merely give an
outline of the demonstration. It is enough to find a C1,1 function fδ such
that

TOME 69 (2019), FASCICULE 1



290 Corentin LÉNA

(a) 0 6 fδ 6 1 on Ω;
(b) fδ ≡ 1 on ∂Ω+

aδ and supp(fδ) ⊂ ∂Ω+
Aδ;

(c)
∣∣∇fδ(x)

∣∣ 6 K
δ

for x ∈ Ω, with K a constant independent of δ.

Indeed, we can then set

ϕδ
1(x) :=

fδ(x)√
fδ(x)2 + (1 − fδ(x))2

and ϕδ
0(x) :=

1 − fδ(x)√
fδ(x)2 + (1 − fδ(x))2

,

and we obtain functions satisfying Properties (i)–(iii) of Lemma 2.1. In
order to construct fδ, we fix 0 < b < B such that for all i ∈ {1, . . . , N}

and all y = (y′, yn) ∈ B+(0, ri),

byn 6 dist(ψi(y), ∂Ω) 6 Byn.

We also fix a non-increasing smooth function g : R → R such that g(t) = 1
for all t ∈ (−∞, 1/4] and g(t) = 0 for all t ∈ [3/4,+∞). We now define the
function fδ

i for each i ∈ {1, . . . , N} by fδ
i (x) = 0 if x /∈ Ui and

fδ
i (x) := g

(yn

δ

)
χi(x)

for x ∈ Ui, with y = (y′, yn) = ψ−1
i (x). Then the function fδ =

∑N
i=1

(
fδ

i

)2

satisfies Properties (a)–(c) with a = b/4 and A = B. �

Let us now write µ = µk(Ω), with k > 2, and let u be an associated
eigenfunction with νN

k (Ω) nodal domains. We set δ := µ−θ, with θ a positive
constant to be determined later. We write u0 := ϕδ

0u and u1 := ϕδ
1u.

According to Property i of Lemma 2.1, we have, for every nodal domain D,∫

D

u2 dx =
∫

D

u2
0 dx+

∫

D

u2
1 dx.

2.2. First main step: two types of nodal domains

We fix ε > 0, and we distinguish between the bulk domains, i.e. the
domains D satisfying ∫

D

u2
0 dx > (1 − ε)

∫

D

u2 dx,

and the boundary domains, i.e. the domains D satisfying∫

D

u2
1 dx > ε

∫

D

u2 dx.

We denote by ν0(ε, µ) the number of bulk domains, and the bulk do-
mains themselves by D0

1, . . . , D
0
ν0(ε,µ). Similarly, the number of boundary

domains and the boundary domains themselves are denoted by ν1(ε, µ) and
D1

1, . . . , D
1
ν1(ε,µ) respectively.
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2.3. Bulk domains

We begin by giving an upper bound of the number of bulk domains
ν0(ε, µ). Let us fix j ∈ {1, . . . , ν0(ε, µ)}. According to the Faber–Krahn
inequality (see for instance [16, Section 3.2]) and the variational character-
ization of λ1(D0

j ), we have

(2.1) λ1(Bn)
∣∣D0

j

∣∣− 2
n 6

∫
D0

j

|∇u0|2 dx
∫

D0
j

u2
0 dx

6
1

1 − ε

∫
D0

j

|∇u0|2 dx
∫

D0
j

u2 dx
.

We have, in Ω,

∇u0 = ϕδ
0∇u+ u∇ϕδ

0,

and therefore, according to Young’s inequality,

|∇u0|2 6 (1 + ε)(ϕδ
0)2 |∇u|2 +

(
1 +

1
ε

) ∣∣∇ϕδ
0

∣∣2
u2.

Integrating over D0
j , and using Properties (i) and (iii) of Lemma 2.1, we

find

(2.2)
∫

D0
j

|∇u0|2 dx 6 (1 + ε)
∫

D0
j

|∇u|2 dx+
(

1 +
1
ε

)
C2

δ2

∫

D0
j

u2 dx.

Injecting Inequality (2.2) into Inequality (2.1), we find

λ1(Bn)
∣∣D0

j

∣∣− 2
n 6

1 + ε

1 − ε

∫
D0

j

|∇u|2 dx
∫

D0
j

u2 dx
+

(
1 + 1

ε

)
C2

(1 − ε)δ2

According to Proposition 1.7, we have
∫

D0
j

|∇u|2 dx = µ

∫

D0
j

u2 dx,

and therefore

λ1(Bn)
∣∣D0

j

∣∣− 2
n 6

1 + ε

1 − ε
µ+

1 + 1
ε

1 − ε
C2µ2θ.

We obtain

1 6

∣∣D0
j

∣∣
λ1(Bn)

n
2

(
1 + ε

1 − ε
µ+

1 + 1
ε

1 − ε
C2µ2θ

) n
2

,

TOME 69 (2019), FASCICULE 1
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and, summing over j ∈ {1, . . . , ν0(ε, µ)},

(2.3) ν0(ε, µ) 6
1

λ1(Bn)
n
2

(
1 + ε

1 − ε
µ+

1 + 1
ε

1 − ε
C2µ2θ

) n
2

∣∣∣∣∣∣

ν0(ε,µ)⋃

j=1

D0
j

∣∣∣∣∣∣

6
1

λ1(Bn)
n
2

(
1 + ε

1 − ε
µ+

1 + 1
ε

1 − ε
C2µ2θ

) n
2

|Ω| .

2.4. Boundary domains

Let us now give an upper bound of the number of boundary domains
ν1(ε, µ). We further decompose the function u1 in the following way. Using
the family (χi)16i6N introduced at the beginning of this section, we set
ui

1 := χiu1. Let us now fix j ∈ {1, . . . , ν1(ε, µ)}. According to Property (ii)
for the family (χi)16i6N (here we use the assumption δ < δ1/A), we have

∫

D1
j

u2
1 dx =

N∑

i=1

∫

D1
j

(ui
1)2 dx.

As a consequence, there exists ij ∈ {1, . . . , N} such that

(2.4)
∫

D1
j

(uij

1 )2 dx >
1
N

∫

D1
j

u2
1 dx >

ε

N

∫

D1
j

u2 dx.

Let us note that uij

1 := χ̃u, with χ̃ := χij
ϕδ

1. The function χ̃ is C1,1,
0 6 χ̃ 6 1, supp(χ̃) ⊂ ∂ΩAδ, and

(2.5) |∇χ̃| 6
C ′

δ
,

with C ′ a constant depending only on Ω.
Up to replacing u by −u, we assume that uij

1 is non-negative in D1
j .We

define the open set

U := {x ∈ D1
j ; uij

1 (x) 6= 0} ⊂ ∂Ω+
Aδ ∩ Uij

.

We now straighten the boundary locally, that is to say we set v := u
ij

1 ◦ψij

and V := ψ−1
ij

(U). The set V is open and contained in B+(0, rij
). Thanks

to the properties imposed on the coordinate chart ψij
, there exist positive

constants C ′′ and C ′′′, depending only on Ω, such that

(2.6) |V | 6 C ′′|U |

ANNALES DE L’INSTITUT FOURIER
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and

(2.7)

∫
V

|∇v|2 dy∫
V
v2 dy

6 C ′′′

∫
U

∣∣∣∇uij

1

∣∣∣
2

dx
∫

U
(uij

1 )2 dx
.

2.5. Second main step: reflection of the boundary domains

The basic idea consists in extending V and v by reflection through the
hyperplane {yn = 0}. We denote by σ the reflection

(2.8)
σ : Rn = R

n−1 × R −→ R
n = R

n−1 × R

y = (y′, yn) 7−→ (y′,−yn).

Intuitively, we define V R := Int
(
V ∪ σ(V )

)
, and the function vR in V R

by

(2.9) vR(y) =

{
v(y) if y ∈ V ;

v(σ(y)) if y ∈ σ(V ).

We expect |V R| = 2|V |, and vR ∈ H1
0 (V R). Indeed, if ∂V is regular enough,

v satisfies a Dirichlet boundary condition on ∂V \ {yn = 0}, and therefore
vR satisfies a Dirichlet boundary condition on ∂V R. We would then apply
the Faber–Krahn inequality to the domain V R to obtain a lower bound of
the Rayleigh quotient ∫

V
|∇v|2 dy∫
V
v2 dy

.

The above reasoning is of course not valid in general, since we do not
know if ∂V is regular enough. To overcome this difficulty, we follow a
method used in [2, Appendix D] (we use the same method to prove Propo-
sition 1.7). Let us first note that Proposition 1.6 implies that v can be
extended to a function w ∈ C1

(
V

)
. For α > 0 small enough, we consider

the super-level set

Vα := {y ∈ V ; w(y) > α}

and the functions

vα := (v − α)+ = max(v − α, 0)

and

wα := (w − α)+.
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If α is a regular value for the function v, the set Σα := ∂Vα \ {yn = 0} is
a C1 submanifold with boundary in R

n, the normal direction being given
by ∇v(y) for any y ∈ Σα. The boundary of Σα is

γα :=
{
y = (y′, yn) ∈ V ; yn = 0 and w(y) = α

}
.

Let us impose the additional condition that α is a regular value for the
function

w|Γ : Γ −→ R

y′ 7−→ w(y′, 0),

where Γ is the open set in R
n−1 defined by

Γ = {y′ ∈ R
n−1 ; (y′, 0) ∈ V and w(y′, 0) > 0}.

Then, for any y ∈ γα, the component of ∇w(y) tangential to {yn = 0} is
non-zero. This implies that Σα touches the hyperplane {yn = 0} transver-
sally. Let us now denote by V R

α and vR
α the reflection of Vα and vα through

{yn = 0}, defined in the same way as V R and vR in Equations (2.8)
and (2.9). By our choice of α,

∣∣V R
α

∣∣ = 2 |Vα| and the function vR
α belongs to

H1
0

(
V R

α

)
. The Faber–Krahn inequality, applied to the open set V R

α , gives
us

(2.10) λ1(Bn)2− 2
n |Vα|−

2
n = λ1(Bn)

∣∣V R
α

∣∣− 2
n

6

∫
V R

α

∣∣∇vR
α

∣∣2
dy

∫
V R

α

(vR
α )2 dy

=

∫
Vα

|∇vα|2 dy∫
Vα
v2

α dy
.

According to Sard’s theorem, applied to the functions v : D → R and
w|Γ : Γ → R, we can find a sequence (αm)m>1 of positive regular values for
both functions satisfying αm → 0. Using Inequality (2.10) for α = αm and
passing to the limit, we find

λ1(Bn)2− 2
n |V |−

2
n 6

∫
V

|∇v|2 dy∫
V
v2 dy

.

Using Inequalities (2.6), (2.7), and (2.4), we get

(2.11) λ1(Bn)
∣∣D1

j ∩ ∂Ω+
Aδ

∣∣− 2
n 6 λ1(Bn) |U |−

2
n

6 (2C ′′)
2
n C ′′′

∫
U

∣∣∣∇uij

1

∣∣∣
2

dx
∫

U
(uij

1 )2 dx
6
N

ε
(2C ′′)

2
n C ′′′

∫
U

∣∣∣∇uij

1

∣∣∣
2

dx
∫

D1
j

u2 dx
.
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A computation similar to the one done for u0, combined with Inequal-
ity (2.5), gives us

(2.12)
∫

U

∣∣∣∇uij

1

∣∣∣
2

dx 6 2
∫

D1
j

|∇u|2 dx+ 2
(C ′)2

δ2

∫

D1
j

u2 dx.

Combining Inequalities (2.11) and (2.12), as in the case of u0, we obtain

1 6 C̃|D1
j ∩ ∂Ω+

Aδ|ε− n
2

(
µ+ (C ′)2µ2θ

) n
2 ,

with C̃ a constant depending only on Ω. Summing over j ∈ {1, . . . , ν1(ε, µ)},
we get

ν1(ε, µ) 6 C̃|∂Ω+
Aδ|ε− n

2

(
µ+ (C ′)2µ2θ

) n
2 .

Since |∂Ω+
Aδ| ∼ Hn−1 (∂Ω)Aδ as δ → 0, we obtain finally

(2.13) ν1(ε, µ) 6 C̃ ′µ−θε− n
2

(
µ+ (C ′)2µ2θ

) n
2 ,

with C̃ ′ a constant depending only on Ω.

2.6. End of the proof

We now fix θ ∈ (0, 1/2), for instance θ = 1/4, and consider the limits
when k → +∞, keeping ε fixed (we recall that µ = µk(Ω)). We have

lim sup
k→+∞

νN
k (Ω)
k

6 lim sup
k→+∞

ν0(ε, µk(Ω))
k

+ lim sup
k→+∞

ν1(ε, µk(Ω))
k

.

Using Inequality (2.3), we get

lim sup
k→+∞

ν0(ε, µk(Ω))
k

6 lim sup
k→+∞

1
kλ1(Bn)

n
2

(
1 + ε

1 − ε
µk(Ω) +

1 + 1
ε

1 − ε
C2µk(Ω)2θ

) n
2

|Ω| .

We recall that µk(Ω) 6 λk(Ω) for all positive integers k [21, Section XIII.15,
Proposition 4]. According to Weyl’s law [21, Theorem XIII.78],

lim
k→+∞

λk(Ω)
n
2 |Ω|

k
=

(2π)n

ωn

.

We therefore have the asymptotic upper bound

(2.14) lim sup
k→+∞

µk(Ω)
n
2 |Ω|

k
6

(2π)n

ωn

.
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This gives us

lim sup
k→+∞

ν0(ε, µk(Ω))
k

6

(
1 + ε

1 − ε

) n
2 (2π)n

λ1(Bn)
n
2 ωn

=
(

1 + ε

1 − ε

) n
2

γ(n).

On the other hand, Inequality (2.13) implies

lim sup
k→+∞

ν1(ε, µk(Ω))
k

6 lim sup
k→+∞

C̃ ′

kµk(Ω)θ

(
2
ε
µk(Ω) +

2(C ′)2

ε
µk(Ω)2θ

) n
2

,

and therefore, according to Inequality (2.14),

lim sup
k→+∞

ν1(ε, µk(Ω))
k

= 0.

We obtain

lim sup
k→+∞

νN
k (Ω)
k

6

(
1 + ε

1 − ε

) n
2

γ(n).

Letting ε tend to 0, we get finally

lim sup
k→+∞

νN
k (Ω)
k

6 γ(n).

3. Proof of the auxiliary results

3.1. Proof of Proposition 1.6

We use the following regularity result, which can be found for instance
in [11, Section 2.1].

Lemma 3.1. — If Ω is a bounded open set with a C1,1 boundary and

f ∈ Lp (Ω) with p ∈ (1,∞), there exists a unique w ∈ W 2,p(Ω) which solves




−∆w + w = f in Ω;

∂w

∂n
= 0 on ∂Ω.

We now follow the method indicated in [16, Remark 1.2.11]. Let us con-
sider u, an eigenfunction of −∆N

Ω associated with µ. The function u is in
H1(Ω), and is the unique weak solution of the boundary value problem





−∆u+ u = f in Ω;

∂u

∂n
= 0 on ∂Ω;

with f = (µ+ 1)u. We know by Lemma 3.1 that this system has a solution
w ∈ H2(Ω). By uniqueness of the weak solution, w = u. We therefore
obtain u ∈ H2(Ω).
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If n 6 4, the Sobolev embedding theorem tells us that for any p ∈ [1,∞[,
u ∈ Lp(Ω), and another application of Lemma 3.1 gives us u ∈ W 2,p(Ω).
If n > 4, we still obtain u ∈ Lp(Ω), and therefore u ∈ W 2,p(Ω), for all p ∈

[1,∞[, after a standard bootstrap argument, using repeatedly Lemma 3.1
and the Sobolev embedding theorem. Since W 2,p(Ω) ⊂ C1,1− n

p

(
Ω

)
for all

p > n, we have proved Proposition 1.6.

3.2. Proof of Proposition 1.7

We use the method of [2, Appendix D]. We consider an eigenfunction u

of −∆N
Ω associated with µ, and a nodal domain D of u. Up to replacing u

by −u, we assume that u is positive in D. Since u ∈ C1
(
Ω

)
, there exist

an open neighborhood O of Ω in R
n and a C1 function g : O → R such

that g = u in Ω. We denote by E the nodal domain of g containing D. For
α > 0 small enough, we write

Dα := {x ∈ D ; u(x) > α}

and
Eα := {x ∈ E ; g(x) > α}.

Let us note that
∂Eα ∩ O = {x ∈ E ; g(x) = α}.

We have the following decomposition of ∂Dα ⊂ Ω into disjoint subsets:

(3.1) ∂Dα = Σα ∪ Γα ∪ γα,

where
Σα := ∂Eα ∩ Ω

is a closed set in Ω,
Γα := Eα ∩ ∂Ω

is an open set in ∂Ω, and

γα := ∂Eα ∩ ∂Ω

is a closed set in ∂Ω.
We now assume that α is a regular value for the function g. Then ∂Eα

is a C1-regular surface, and for each x ∈ ∂Eα, ∇g(x) is orthogonal to
∂Eα at x. Since u satisfies a Neumann boundary condition on ∂Ω, we
have n(x) · ∇g(x) = 0 for any x ∈ ∂Ω, where n(x) is the exterior normal
unit vector to ∂Ω at x. This implies that the two C1 submanifolds ∂Eα

and ∂Ω intersect transversally, and therefore that γα is a C1 submanifold
of ∂Ω, with dimension n − 2. From this and the decomposition (3.1), we
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conclude that ∂Dα is Lipschitz. We can therefore apply Green’s formula to
the function uα := u− α in Dα (see [11, Theorem 1.5.3.1]), and we obtain

∫

Dα

(−∆uα)uα dx = −

∫

∂Dα

uα

∂uα

∂n
dσ +

∫

Dα

|∇uα|2 dx,

and thus

µ

∫

Dα

u2 dx− αµ

∫

Dα

u dx

= −

∫

Σα

uα

∂uα

∂n
dσ −

∫

Γα

uα

∂uα

∂n
dσ +

∫

Dα

|∇u|2 dx.

We have uα = 0 on Σα and ∂uα

∂n
= 0 on Γα, and therefore

µ

∫

Dα

u2 dx− αµ

∫

Dα

u dx =
∫

Dα

|∇u|2 dx.

According to Sard’s theorem, there exists a sequence (αm)m>1 of positive
regular values for the function g, converging to 0. For any m large enough,
we have

µ

∫

Dαm

u2 dx− αmµ

∫

Dαm

u dx =
∫

Dαm

|∇u|2 dx.

Letting m → +∞, we get

µ

∫

D

u2 dx =
∫

D

|∇u|2 dx,

which concludes the proof of Proposition 1.7.

4. Robin boundary conditions

Let us begin this section with a definition of the operator −∆R,h
Ω . We

follow the method of [22, Section 3.1], although this reference uses slightly
stronger regularity assumptions on the domain. We define the real bilinear
form qh on the space H1(Ω) by

qh(u, v) =
∫

Ω
∇u · ∇v dx+

∫

∂Ω
huv dσ

for all u and v in H1(Ω). The form qh is closed, symmetric, and non-
negative. We define the self-adjoint operator −∆R,h

Ω as the Friedrichs ex-
tension of qh [20, Theorem X.23]. The compact embedding H1(Ω) ⊂ L2(Ω)
ensures that −∆R,h

Ω has compact resolvent. The spectrum of −∆R,h
Ω there-

fore consists of a sequence of isolated non-negative eigenvalues of finite
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multiplicity tending to +∞, which we denote by (µk(Ω, h))k>1 (with repe-
tition according to the multiplicities). Let us point out that for all positive
integers k, µk(Ω, h) 6 λk(Ω). Indeed,

qh(u, v) =
∫

Ω
∇u · ∇v dx

for all u and v in H1
0 (Ω), so that the inequality follows from the min-max

characterization of µk(Ω, h) and λk(Ω) [21, Theorem XIII.2]. Weyl’s law
for the sequence (λk(Ω))k>1 then implies

(4.1) lim sup
k→+∞

µk(Ω, h)
n
2 |Ω|

k
6

(2π)n

ωn

.

Proposition 1.6 can be generalized in the following way.

Proposition 4.1. — Let Ω ⊂ R
n be an open, bounded, and connected

set with a C1,1 boundary, and let h be a Lipschitz function in Ω with

h > 0 on ∂Ω. An eigenfunction u of −∆R,h
Ω belongs to C1,1−

(
Ω

)
:=⋂

α∈(0,1) C
1,α

(
Ω

)
. In particular, u ∈ C1

(
Ω

)
.

To prove Proposition 4.1, we use the following regularity result, which is
a special case of [11, Theorem 2.4.2.7].

Lemma 4.2. — Let Ω ⊂ R
n be an open, bounded, and connected set

with a C1,1 boundary, let h be a Lipschitz function in Ω with h > 0 on ∂Ω,

and let f ∈ Lp (Ω) with p ∈ (1,∞). There exists a unique w ∈ W 2,p(Ω)
which solves 




−∆w + w = f in Ω;

∂w

∂n
+ hw = 0 on ∂Ω.

We then repeat the steps in the proof of Proposition 1.6. For the type of
Robin boundary condition studied here, Green’s formula given in Proposi-
tion 1.7 can be replaced by the following inequality.

Proposition 4.3. — Let Ω ⊂ R
n be an open, bounded, and connected

set with a C1,1 boundary, and let h be a Lipschitz function in Ω with h > 0
on ∂Ω. If u is an eigenfunction of −∆R,h

Ω associated with the eigenvalue µ,

and if D is a nodal domain of u, then

(4.2)
∫

D

|∇u|2 dx 6 µ

∫

D

u2 dx.

Proof. — Using Proposition 4.1 instead of Proposition 1.6, we essentially
repeat the steps in the proof of Proposition 1.7. However, two points have
to be modified. First, since we do not in general have ∂u

∂n
= 0 on ∂Ω, the

TOME 69 (2019), FASCICULE 1



300 Corentin LÉNA

argument in Section 3.2 showing that ∂Eα and ∂Ω intersect transversally
does not apply. However, if α > 0 is a regular value for the function g :
∂Ω → R, the tangential part of ∇g(x) is non-zero when x ∈ γα. If α is also
a regular value for g, we can proceed as in Section 3.2. Applying Green’s
formula to uα, and using the Robin boundary condition, we obtain

µ

∫

Dα

u2 dx− αµ

∫

Dα

u dx =
∫

Γα

huuα dσ +
∫

Dα

|∇u|2 dx.

Since h > 0 on ∂Ω and u > 0 in Dα, this implies

(4.3) µ

∫

Dα

u2 dx >

∫

Dα

|∇u|2 dx.

Using Sard’s theorem for g and its restriction g : ∂Ω → R, we find a
sequence (αm)m>1 of positive regular values for both functions, such that
αm → 0. We conclude by applying Inequality (4.3) with α = αm and
passing to the limit. �

The proof of Theorem 1.5 then follows the steps of Section 2, using
Inequality (4.1) instead of Inequality (2.14), and Inequality (4.2) instead
of Equation (1.1).
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